四探针测量金属薄膜电阻率

四探针测量金属薄膜电阻率
四探针测量金属薄膜电阻率

实验三(I)探针测量半导体或金属薄膜电阻率

一.实验目的

1.熟悉四探针测量半导体或金属薄膜电阻率的原理

2.掌握四探针测量材料电阻率的方法

二.实验原理

薄膜材料是支持现代高新技术不断发展的重要材料之一,已经被广泛地应用在微电子器件、微驱动器/ 微执行器、微型传感器中。金属薄膜的电阻率是金属薄膜材料的一个重要的物理特性,是科研开发和实际生产中经常要测量的物理特性,对金属薄膜电阻率的测量也是四端法测量低电阻材料电阻率的一个实际的应用,它比传统的四端子法测量金属丝电阻率的实验更贴近现代高新技术的发展。

直流四探针法也称为四电极法,主要用于半导体材料或超导体等的低电阻率的测量。使用的仪器以及与样品的接线如图3-1所示。由图可见,测试时四根金属探针与样品表面接触,外侧两根1、4为通电流探针,内侧两根2、3为测电压探针。由电流源输入小电流使样品内部产生压降,同时用高阻抗的静电计、电子毫伏计或数字电压表测出其他二根探针的电压即V23(伏)。

(a)仪器接线(b)点电流源(c)四探针排列

图3-1 四探针法测试原理示意图

若一块电阻率为ρ的均匀半导体样品,其几何尺寸相对于探针间距来说可以看作半无限大。当探针引入的点电流源的电流为I,由于均匀导体内恒定电场的等位面为球面,则在半径为r处等位面的面积为2πr2,电流密度为

j=I/2πr2(3-1)

根据电导率与电流密度的关系可得

E =2222r I r I j

πρσπσ== (3-2) 则距点电荷r 处的电势为

r I V πρ2= (3-3)

半导体内各点的电势应为四个探针在该点形成电势的矢量和。通过数学推导可得四探针法测量电阻率的公式为:

I V C r r r r I V 2313413241223)1111(2=+--?=-πρ (3-4) 式中,134

132412)1111(2-+--=r r r r C π为探针系数,单位为cm ;r 12、r 24、r 13、r 34分别为相应探针间的距离,见图3-1c 。若四探针在同一平面的同一直线上,其间距分别为S 1、S 2、S 3,且S 1=S 2=S 3=S 时,则

S I V S S S S S S I V ππρ2)1111(223133221123=++-+-?=- (3-5) 这就是常见的直流等间距四探针法测电阻率的公式。

为了减小测量区域,以观察电阻率的不均匀性,四根探针不—定都排成—直线,而可排成正方形或矩形,此时,只需改变计算电阻率公式中的探针系数C 。

四探针法的优点是探针与半导体样品之间不要求制备合金结电极,这给测量带来了方便。四探针法可以测量样品沿径向分布的断面电阻率,从而可以观察电阻率的不均匀情况。由于这种方法可迅速、方便、无破坏地测量任意形状的样品且精度较高,适合于大批生产中使用。但由于该方法受针距的限制,很难发现小于0.5mm 两点电阻的变化。

根据样品在不同电流(I )下的电压值(V )计算出该样品的电阻值及电阻率,例如某一种薄膜样品,在薄膜的面积为无限大或远大于四探针中相邻探针间距的时候,金属薄膜的电阻率ρ可以由以下式算出。

π V

ρF = ------ X ------ X d

ln2 I

四探针法测量金属薄膜电阻率的原理图d

恒流源

V 四探针

薄膜

电流

三.实验装置:

1. 四探针组件、

2. SB118 精密直流电流源

3. PZ158 A 直流数字电压表.

四.实验步骤:

1. 预热:打开SB118电流源和PZ158A 电压表的电源开关,使仪器预热30分钟

2. 放置被测样品:首先拧动四探针支架上的铜螺柱,松开四探针与小平台的接触,将样品放置于小平台上,然后再拧动铜螺柱,使四探针的所有针尖同样品薄膜有良好的接触即可。

注意事项:

a) 在拧动四探针架上的铜螺柱时,用手扶住四探针架,不要让四探针在样品表面滑动,以免探针的针尖滑伤薄膜。

b) 在拧动四探针支架上的铜螺柱时,不要拧得过紧,以免四探针的针尖严重刺伤样品薄膜,只要四探针的所有针尖同样品薄膜有良好的接触即可。

3. 联机

将四探针的四个接线端子,分别正确地接入相应的位置,即接线板上最外面的端子,对应于四探针的最外面二根针,应接入SB118电流源的电流输出孔上,而接线板上内侧的二个端子,对应于四探针的内侧的二根针应接在PZ158A电压表的输入孔上。如图2四探针法测量金属薄膜电阻率的原理图

注意:在联接SB118电流源前,应先将其电流输出调节到零,PZ158A可选择在0.2V 或2V量程。

4. 测量

使用SB118电流源部分,选择合适的电流输出量程,以及适当调节电流(粗调及细调),可以在PZ158A上测量出样品在不同电流下的电压值。

注意:

a)在切换电流量程时,应先将电流输出调至近零,以免造成电流对样品的冲击。

b)在选择电流时,对某些样品,最大的电流值对应的电压值一般不超过5mV,流

过样品薄膜的电流太大,导致样品发热,从而影响测量。

c)在某一电流值下,测量电压时,可分别测量正反向电压。(通过按下电流源的正

向或反向按键来实现),再取其大小的平均值。

d)调换被测样品时,一定要把SB118电流源的电流调为零。

四探针法测电阻率

实验 四探针法测电阻率 1.实验目的: 学习用四探针法测量半导体材料的体电阻率和扩散薄层的电阻率及方块电阻。 2.实验内容 ① 硅单晶片电阻率的测量:选不同电阻率及不同厚度的大单晶圆片,改变条件(光照 与否),对测量结果进行比较。 ② 薄层电阻率的测量:对不同尺寸的单面扩散片和双面扩散片的薄层电阻率进行测 量。改变条件进行测量(与①相同),对结果进行比较。 3. 实验原理: 在半导体器件的研制和生产过程中常常要对半导体单晶材料的原始电阻率和经过扩散、外延等工艺处理后的薄层电阻进行测量。测量电阻率的方法很多,有两探针法,四探针法,单探针扩展电阻法,范德堡法等,我们这里介绍的是四探针法。因为这种方法简便可行,适于批量生产,所以目前得到了广泛应用。 所谓四探针法,就是用针间距约1毫米的四根金属探针同时压在被测样品的平整表面上如图1a 所示。利用恒流源给1、4两个探针通以小电流,然后在2、3两个探针上用高输入阻抗的静电计、电位差计、电子毫伏计或数字电压表测量电压,最后根据理论 公式计算出样品的电阻率[1] I V C 23 =ρ 式中,C 为四探针的修正系数,单位为厘米,C 的大小取决于四探针的排列方法和针距,

探针的位置和间距确定以后,探针系数C 就是一个常数;V 23为2、3两探针之间的电压,单位为伏特;I 为通过样品的电流,单位为安培。 半导体材料的体电阻率和薄层电阻率的测量结果往往与式样的形状和尺寸密切相关,下面我们分两种情况来进行讨论。 ⑴ 半无限大样品情形 图1给出了四探针法测半无穷大样品电阻率的原理图,图中(a)为四探针测量电阻率的装置;(b)为半无穷大样品上探针电流的分布及等势面图形;(c)和(d)分别为正方形排列及直线排列的四探针图形。因为四探针对半导体表面的接触均为点接触,所以,对图1(b )所示的半无穷大样品,电流I 是以探针尖为圆心呈径向放射状流入体内的。因而电流在体内所形成的等位面为图中虚线所示的半球面。于是,样品电阻率为ρ,半径为r ,间距为dr 的两个半球等位面间的电阻为 dr r dR 2 2πρ = , 它们之间的电位差为 dr r I IdR dV 2 2πρ= =。 考虑样品为半无限大,在r →∞处的电位为0,所以图1(a )中流经探针1的电流I 在r 点形成的电位为 ()r I dr r I V r r πρπρ222 1== ? ∞ 。 流经探针1的电流在2、3两探针间形成的电位差为 ()??? ? ??-= 1312123112r r I V πρ; 流经探针4的电流与流经探针1的电流方向相反,所以流经探针4的电流I 在探针2、3之间引起的电位差为 ()??? ? ??--=4342423112r r I V πρ。 于是流经探针1、4之间的电流在探针2、3之间形成的电位差为 ??? ? ??+--= 434213122311112r r r r I V πρ。 由此可得样品的电阻率为 ()1111121 434213 1223-???? ??+--=r r r r I V πρ 上式就是四探针法测半无限大样品电阻率的普遍公式。 在采用四探针测量电阻率时通常使用图1(c )的正方形结构(简称方形结构)和图1(d )的等间距直线形结构,假设方形四探针和直线四探针的探针间距均为S , 则对于直线四探针有 S r r S r r 2, 42134312==== ()2223 I V S ? =∴πρ 对于方形四探针有 S r r S r r 2,42134312==== () 322223 I V S ? -=∴ πρ

测定金属电阻率-

测定金属的电阻率 实验目的: 学会用伏安法测量电阻的阻值,测定金属的电阻率。 实验原理: 用刻度尺测一段金属导线的长度L ,用螺旋测微器测导线的直径d ,用伏安法测 导线的电阻R ,根据电阻定律,金属的电阻率ρ=RS /L =πd 2 R /4L 实验器材: 金属丝、千分尺、安培表、伏特表、(3伏)电源、(20Ω)滑动变阻器、电键一个、导线几根 【点拨】被测金属丝要选用电阻率大的材料,如铁铬铝合金、镍铬合金等或300瓦电炉丝经细心理直后代用,直径0.4毫米左右,电阻5~10欧之间为宜,在此前提下,电源选3伏直流电源,安培表选0 0.6安量程,伏特表选0 3伏档,滑动变阻器选0 20欧。 实验步骤: (1)用螺旋测微器三次测量导线不同位置的直径取平均值D 求出其横 截面积S =πD 2 /4. (2)将金属丝两端固定在接线柱上悬空挂直,用毫米刻度米尺测量接入电路的金属丝长度L ,测三次,求出平均值L 。 (3)根据所选测量仪器和选择电路的原则画好电路图1,然后依电路图按顺序给实物连线并将滑动变阻器的阻值调到最大。 【点拨】为避免接线交叉和正负极性接错,接线顺序应遵循:电源正极→电键(断开状态)→滑动变阻器→用电器→安培表正极→安培表负极→电源负极,最后将伏特表并接在待测电路的两端,即先接干路,后接支路。 (4)检查线路无误后闭合电键,调节滑动变阻器读出几组I 、U 值,分别计算电阻R 再求平均值,设计表格把多次测量的D 、L 、U 、I 记下来。 【点拨】测量时通过金属丝的电流应控制在1.00A 以下,本实验由于安培表量程0~0.60A ,每次通电时间应尽量短(以能读取电表数据为准),读数完毕立即断开电键S ,防止温度升高使金属丝长度和电阻率发生明显变化。 计算时,务必算出每次的电阻值再求平均值,不能先分别求电压U 和电流I 的平均值,再由欧姆定律得平均值,否则会带来较大计算误差。 实验记录 图1

四探针测电阻率实验指导书及SZT-2A四探针测试仪使用说明书

实验七四探针法测量材料的电阻率 一、实验目的 (1)熟悉四探针法测量半导体或金属材料电阻率的原理 (2)掌握四探针法测量半导体或金属材料电阻率的方法 二、实验原理 半导体材料是现代高新技术中的重要材料之一,已在微电子器件和光电子器件中得到了广泛应用。半导体材料的电阻率是半导体材料的的一个重要特性,是研究开发与实际生产应用中经常需要测量的物理参数之一,对半导体或金属材料电阻率的测量具有重要的实际意义。 直流四探针法主要用于半导体材料或金属材料等低电阻率的测量。所用的仪器示意图以及与样品的接线图如图1所示。由图1(a)可见,测试过程中四根金属探针与样品表面接触,外侧1和4两根为通电流探针,内侧2和3两根是测电压探针。由恒流源经1和4两根探针输入小电流使样品内部产生压降,同时用高阻抗的静电计、电子毫伏计或数字电压表测出其它两根探针(探针2和探针3)之间的电压V23。 a b 图1 四探针法电阻率测量原理示意图 若一块电阻率为 的均匀半导体样品,其几何尺寸相对探针间距来说可以看

作半无限大。当探针引入的点电流源的电流为I ,由于均匀导体内恒定电场的等位面为球面,则在半径为r 处等位面的面积为22r π,电流密度为 2/2j I r π= (1) 根据电流密度与电导率的关系j E σ=可得 22 22j I I E r r ρ σ πσπ= = = (2) 距离点电荷r 处的电势为 2I V r ρ π= (3) 半导体内各点的电势应为四个探针在该点所形成电势的矢量和。通过数学推导,四探针法测量电阻率的公式可表示为 123 231224133411112( )V V C r r r r I I ρπ-=--+?=? (4) 式中,1 12241334 11112( )C r r r r π-=--+为探针系数,与探针间距有关,单位为cm 。 若四探针在同一直线上,如图1(a)所示,当其探针间距均为S 时,则被测样品的电阻率为 123 2311112()222V V S S S S S I I ρππ-=- -+?=? (5) 此即常见的直流等间距四探针法测电阻率的公式。 有时为了缩小测量区域,以观察不同区域电阻率的变化,即电阻率的不均匀性,四根探针不一定都排成一直线,而可排成正方形或矩形,如图1(b)所示,此时只需改变电阻率计算公式中的探针系数C 即可。 四探针法的优点是探针与半导体样品之间不要求制备接触电极,极大地方便了对样品电阻率的测量。四探针法可测量样品沿径向分布的断面电阻率,从而可以观察电阻率的不均匀性。由于这种方法允许快速、方便、无损地测试任意形状样品的电阻率,适合于实际生产中的大批量样品测试。但由于该方法受到探针间距的限制,很难区别间距小于0.5mm 两点间电阻率的变化。 根据样品在不同电流(I )下的电压值(V 23),还可以计算出所测样品的电阻率。

电阻选型:厚膜、薄膜电阻特性优缺点比较

电阻选型:厚膜、薄膜电阻特性优缺点比较 薄膜电阻由陶瓷基片上厚度为50 ? 至250 ? 的金属沉积层组成(采用真空或溅射工艺)。薄膜电阻单位面积阻值高于线绕电阻或Bulk Metal? 金属箔电阻,而且更为便宜。在需要高阻值而精度要求为中等水平时,薄膜电阻更为经济并节省空间。 它们具有最佳温度敏感沉积层厚度,但最佳薄膜厚度产生的电阻值严重限制了可能的电阻值范围。因此,采用各种沉积层厚度可以实现不同的电阻值范围。薄膜电阻的稳定性受温度上升的影响。薄膜电阻稳定性的老化过程因实现不同电阻值所需的薄膜厚度而不同,因此在整个电阻范围内是可变的。这种化学/机械老化还包括电阻合金的高温氧化。此外,改变最佳薄膜厚度还会严重影响 TCR。由于较薄的沉积层更容易氧化,因此高阻值薄膜电阻退化率非常高。

由于金属量少,薄膜电阻在潮湿的条件下极易自蚀。浸入封装过程中,水蒸汽会带入杂质,产生的化学腐蚀会在低压直流应用几小时内造成薄膜电阻开路。改变最佳薄膜厚度会严重影响 TCR。由于较薄的沉积层更容易氧化,因此高阻值薄膜电阻退化率非常高。 如前所述,受尺寸、体积和重量的影响,线绕电阻不可能采用晶片型。尽管精度低于线绕电阻,但由于具有更高的电阻密度(高阻值/小尺寸)且成本更低,厚膜电阻得到广泛使用。与薄膜电阻和金属箔电阻一样,厚膜电阻频响速度快,但在目前使用的电阻技术中,其噪声最高。虽然精度低于其他技术,但我们之所以在此讨论厚膜电阻技术,是由于其广泛应用于几乎每一种电路,包括高精密电路中精度要求不高的部分。 厚膜电阻依靠玻璃基体中粒子间的接触形成电阻。这些触点构成完整电阻,但工作中的热应变会中断接触。由于大部分情况下并联,厚膜电阻不会开路,但阻值会随着时间和温度持续增加。因此,与其他电阻技术相比,厚膜电阻稳定性差(时间、温度和功率)。 由于结构中成串的电荷运动,粒状结构还会使厚膜电阻产生很高的噪声。给定尺寸下,电阻值越高,金属成份越少,噪声越高,稳定性越差。厚膜电阻结构中的玻璃成分在电阻加工过程中形成玻璃相保护层,因此厚膜电阻的抗湿性高于薄膜电阻。 金属箔电阻 将具有已知和可控特性的特种金属箔片敷在特殊陶瓷基片上,形成热机平衡力对于电阻成型是十分重要的。然后,采用超精密工艺光刻电阻电路。这种工艺将低、长期稳定性、无感抗、无感应、低电容、快速热稳定性和低噪声等重要特性结合在一种电阻技术中。

四探针测量金属薄膜电阻率

实验三(I)探针测量半导体或金属薄膜电阻率 一.实验目的 1.熟悉四探针测量半导体或金属薄膜电阻率的原理 2.掌握四探针测量材料电阻率的方法 二.实验原理 薄膜材料是支持现代高新技术不断发展的重要材料之一,已经被广泛地应用在微电子器件、微驱动器/ 微执行器、微型传感器中。金属薄膜的电阻率是金属薄膜材料的一个重要的物理特性,是科研开发和实际生产中经常要测量的物理特性,对金属薄膜电阻率的测量也是四端法测量低电阻材料电阻率的一个实际的应用,它比传统的四端子法测量金属丝电阻率的实验更贴近现代高新技术的发展。 直流四探针法也称为四电极法,主要用于半导体材料或超导体等的低电阻率的测量。使用的仪器以及与样品的接线如图3-1所示。由图可见,测试时四根金属探针与样品表面接触,外侧两根1、4为通电流探针,内侧两根2、3为测电压探针。由电流源输入小电流使样品内部产生压降,同时用高阻抗的静电计、电子毫伏计或数字电压表测出其他二根探针的电压即V23(伏)。 (a)仪器接线(b)点电流源(c)四探针排列 图3-1 四探针法测试原理示意图 若一块电阻率为ρ的均匀半导体样品,其几何尺寸相对于探针间距来说可以看作半无限大。当探针引入的点电流源的电流为I,由于均匀导体内恒定电场的等位面为球面,则在半径为r处等位面的面积为2πr2,电流密度为 j=I/2πr2(3-1)

根据电导率与电流密度的关系可得 E =2222r I r I j πρσπσ== (3-2) 则距点电荷r 处的电势为 r I V πρ2= (3-3) 半导体内各点的电势应为四个探针在该点形成电势的矢量和。通过数学推导可得四探针法测量电阻率的公式为: I V C r r r r I V 2313413241223)1111(2=+--?=-πρ (3-4) 式中,134 132412)1111(2-+--=r r r r C π为探针系数,单位为cm ;r 12、r 24、r 13、r 34分别为相应探针间的距离,见图3-1c 。若四探针在同一平面的同一直线上,其间距分别为S 1、S 2、S 3,且S 1=S 2=S 3=S 时,则 S I V S S S S S S I V ππρ2)1111(223133221123=++-+-?=- (3-5) 这就是常见的直流等间距四探针法测电阻率的公式。 为了减小测量区域,以观察电阻率的不均匀性,四根探针不—定都排成—直线,而可排成正方形或矩形,此时,只需改变计算电阻率公式中的探针系数C 。 四探针法的优点是探针与半导体样品之间不要求制备合金结电极,这给测量带来了方便。四探针法可以测量样品沿径向分布的断面电阻率,从而可以观察电阻率的不均匀情况。由于这种方法可迅速、方便、无破坏地测量任意形状的样品且精度较高,适合于大批生产中使用。但由于该方法受针距的限制,很难发现小于0.5mm 两点电阻的变化。 根据样品在不同电流(I )下的电压值(V )计算出该样品的电阻值及电阻率,例如某一种薄膜样品,在薄膜的面积为无限大或远大于四探针中相邻探针间距的时候,金属薄膜的电阻率ρ可以由以下式算出。

物理实验金属薄膜电阻率的测量

银薄膜电阻率测量数据记录表 膜厚:44.4nm 电流I/mA 正向电压U+/Mv 反向电压U-/mV 平均电压U/mV 0.151 0.162 0.163 0.163 0.172 0.186 0.185 0.186 0.193 0.207 0.208 0.208 0.223 0.241 0.240 0.241 0.281 0.301 0.302 0.302 0.316 0.340 0.339 0.340 0.356 0.383 0.384 0.384 0.402 0.433 0.434 0.434 0.448 0.482 0.483 0.483 电阻率为216.879(Ω/nm) 膜厚:88.8nm 电流I/mA 正向电压U+/Mv 反向电压U-/mV 平均电压U/mV 0.532 0.121 0.126 0.124 1.743 0.404 0.409 0.407 3.264 0.759 0.764 0.762 4.744 1.105 1.110 1.108 5.642 1.314 1.320 1.317 7.539 1.758 1.763 1.761 9.163 2.138 2.143 2.141 10.679 2.492 2.497 2.495 12.221 2.854 2.859 2.857 电阻率为94.11(Ω/nm) 膜厚:133.2nm 电流I/mA 正向电压U+/Mv 反向电压U-/mV 平均电压U/mV 0.794 0.107 0.112 0.110 2.372 0.327 0.332 0.330 3.988 0.553 0.558 0.556 5.235 0.727 0.732 0.730 6.904 0.960 0.965 0.963 8.488 1.181 1.187 1.184 9.785 1.362 1.368 1.365 13.193 1.839 1.844 1.842 14.871 2.073 2.079 2.076 电阻率为84.35(Ω/nm) 膜厚:222nm 电流I/mA 正向电压U+/Mv 反向电压U-/mV 平均电压U/mV 3.970 0.376 0.382 0.379 10.090 0.962 0.967 0.965 14.480 1.382 1.387 1.385

国家标准-硅单晶电阻率的测定 直排四探针法和直流两探针法-编制说明-送审稿

国家标准《硅单晶电阻率的测定直排四探针法和直流两探针法》 编制说明(送审稿) 一、工作简况 1、立项的目的和意义 硅单晶是典型的元素半导体材料,具有优良的热性能与机械性能,易于长成大尺寸高纯度晶体,是目前最重要、用途最广的半导体材料。在当今全球半导体市场中,超过95%以上的半导体器件和99%以上的集成电路都是在硅单晶片上制作的,在未来30年内,它仍是半导体工业最基本和最重要的功能材料。 一般而言,硅单晶的电学性能对器件性能有决定性的作用,其中电阻率是最直接、最重要的参数,直接反映出了晶体的纯度和导电能力。例如,晶体管的击穿电压就直接与硅单晶的电阻率有关。在器件设计时,根据器件的种类、特性以及制作工艺等条件,对硅单晶的电阻率的均匀和可靠都有一定的要求,因此,硅单晶电阻率的测试就显得至关重要。目前测试硅单晶电阻率时,一般利用探针法,尤其是直流四探针法。该方法原理简单,数据处理简便,是目前应用最广泛的一种测试电阻率的技术。 由于硅单晶电阻率与温度有关,通常四探针电阻率测量的参考温度为23℃±1℃,如检测温度有异于该温度,往往需要进行温度系数的修正。原来GB/T 1551-2009标准中直接规定测试温度为23℃±1℃,对环境的要求过于严格,造成很多企业和实验室无法满足,因此需要对标准测试温度进行修订,超出参考范围可以用温度系数修正公式修正。另外,原标准四探针和两探针法的干扰因素没有考虑全面,修订后的新标准对干扰因素进行了补充和修正。原标准的电阻率范围没有对n型硅单晶和p型硅单晶做出区分,由于n型硅单晶电阻率比p型硅单晶电阻率范围大,所以应该对n型和p型硅单晶的电阻率测试范围区分界定。综上,需要对GB/T 1551-2009标准进行修订,以便更好满足硅单晶电阻率的测试要求。该标准的修订将有利于得到硅单晶电阻率准确的测量结果,满足产品销售的要求,为硅产业的发展提供技术保障。 2.任务来源 根据《国家标准化管理委员会关于下达2018年第三批国家标准制修订计划的通知》(国标委综合[2018] 60号)的要求,由中国电子科技集团公司第四十六研究所(中国电子科技集团公司第四十六研究所是信息产业专用材料质量监督检验中心法人单位)负责修订《硅单晶电阻率的测定直排四探针法和直流两探针法》,计划编号为20181809-T-469,要求完成时间2020年。 计划项目由全国有色金属标准化技术委员会提出,后经标委会协调后于国家标准化

常见金属电阻率

常见金属的电阻率,都来看看哦 很多人对镀金,镀银有误解,或者是不清楚镀金的作用,现在来澄清下。。。 1。镀金并不是为了减小电阻,而是因为金的化学性质非常稳定,不容易氧化,接头上镀金是为了防止接触不良(不是因为金的导电能力比铜好)。 2。众所周知,银的电阻率最小,在所有金属中,它的导电能力是最好的。 3。不要以为镀金或镀银的板子就好,良好的电路设计和PCB的设计,比镀金或镀银对电路性能的影响更大。 4。导电能力银好于铜,铜好于金! 现在贴上常见金属的电阻率及其温度系数: 物质温度t/℃电阻率电阻温度系数aR/℃-1 银20 1.586 0.0038(20℃) 铜20 1.678 0.00393(20℃) 金20 2.40 0.00324(20℃) 铝20 2.65480.00429(20℃) 钙0 3.91 0.00416(0℃) 铍20 4.00.025(20℃) 镁20 4.45 0.0165(20℃) 钼 0 5.2

铱20 5.3 0.003925(0℃~100℃) 钨27 5.65 锌20 5.196 0.00419(0℃~100℃) 钴20 6.64 0.00604(0℃~100℃) 镍20 6.84 0.0069(0℃~100℃) 镉0 6.83 0.0042(0℃~100℃) 铟208.37 铁209.71 0.00651(20℃) 铂20 10.6 0.00374(0℃~60℃) 锡0 11.0 0.0047(0℃~100℃) 铷20 12.5 铬0 12.9 0.003(0℃~100℃) 镓20 17.4 铊0 18.0 铯20 20.0 铅20 20.684 0.00376 (20℃~40℃) 锑0 39.0

四探针法测电阻率共14页

实验四探针法测电阻率 1.实验目的: 学习用四探针法测量半导体材料的体电阻率和扩散薄层的电阻率及方块电阻。 2.实验内容 ①硅单晶片电阻率的测量:选不同电阻率及不同厚度的大单晶圆片, 改变条件(光照与否),对测量结果进行比较。 ②薄层电阻率的测量:对不同尺寸的单面扩散片和双面扩散片的薄层 电阻率进行测量。改变条件进行测量(与①相同),对结果进行比较。 3.实验原理: 在半导体器件的研制和生产过程中常常要对半导体单晶材料的原始电阻率和经过扩散、外延等工艺处理后的薄层电阻进行测量。测量电阻率的方法很多,有两探针法,四探针法,单探针扩展电阻法,范德堡法等,我们这里介绍的是四探针法。因为这种方法简便可行,适于批量生产,所以目前得到了广泛应用。 所谓四探针法,就是用针间距约1毫米的四根金属探针同时压在被测样品的平整表面上如图1a所示。利用恒流源给1、4两个探针通以小电流,然后在2、3两个探针上用高输入阻抗的静电计、电位差计、电子毫伏计或数字电压表测量电压,最后根据理论公式计算出样品的电阻率[1] 式中,C为四探针的修正系数,单位为厘米,C的大小取决于四探针的

排列方法和针距,探针的位置和间距确定以后,探针系数C 就是一个常数;V 23为2、3两探针之间的电压,单位为伏特;I 为通过样品的电流,单位为安培。 半导体材料的体电阻率和薄层电阻率的测量结果往往与式样的形状和尺寸密切相关,下面我们分两种情况来进行讨论。 ⑴ 半无限大样品情形 图1给出了四探针法测半无穷大样品电阻率的原理图,图中(a)为四探针测量电阻率的装置;(b)为半无穷大样品上探针电流的分布及等势面图形;(c)和(d)分别为正方形排列及直线排列的四探针图形。因为四探针对半导体表面的接触均为点接触,所以,对图1(b )所示的半无穷大样品,电流I 是以探针尖为圆心呈径向放射状流入体内的。因而电流在体内所形成的等位面为图中虚线所示的半球面。于是,样品电阻率为ρ,半径为r ,间距为dr 的两个半球等位面间的电阻为 它们之间的电位差为 dr r I IdR dV 2 2πρ= =。 考虑样品为半无限大,在r →∞处的电位为0,所以图1(a )中流经探针1的电流I 在r 点形成的电位为 ()r I dr r I V r r πρπρ222 1==? ∞。 流经探针1的电流在2、3两探针间形成的电位差为 ()??? ? ??-=1312 12311 2r r I V πρ; 流经探针4的电流与流经探针1的电流方向相反,所以流经探针4的电流I 在探针2、3之间引起的电位差为 ()??? ? ??--=43424 23112r r I V πρ。 于是流经探针1、4之间的电流在探针2、3之间形成的电位差为

《金属薄膜电阻率的测量》鉴定报告.

金属薄膜电阻率的测量》鉴定报告 一、主题把当今高新技术领域中的科研开发和生产中实际应用的物理测量技术放到大学本科的普通物理实验教学中,不断提高和更新普通物理实验教学的档次,使普通物理实验教学更贴近当今高新技术的发展,从而使学生们在学校期间就能够接触到一些同高新技术领域相关的实验内容,对于提高学生们的学习兴趣和培养将来实际科研开发能力将起到很大的帮助。培养创新型人才,使高等学校培养的毕业生进入社会后能够更快的担负起发展国家高新技产业的重担,这是当前普通物理实验教学改革的重要方向之一。 把科研开发中实际应用的方法向工科物理实验教学转化。科研开发中实际应用的方法包括二部分——(1)具体的实验方法、原理和设备(统称:硬件);(2)提出问题、分析问题和解决问题的思维方法(统称:软件)。 本实验是把科研开发中实际应用的方法——用四探针法测量金属薄膜电阻率引入到工科物理实验教学中。 二、目的 1.让同学们直接地接触薄膜材料,对薄膜材料有一个直观的感性认识;了解和学会现在科研开发和生产中使用的四探针法测量金属薄膜电阻率的原理和方法; 2.了解薄膜的膜厚对金属薄膜电阻率的影响(即,金属薄膜电阻率的尺寸效应);薄膜材料同普通块体材料的差异; 3.分析用四探针法测量金属薄膜电阻率时可能产生误差的根源;4.使学生们在直接感受到工科物理实验在当今高新技术中的应用实例,从而提高学生们的学习兴趣和探索自然的积极性; 5.培养学生们提出问题、分析问题和解决问题的科研开发能力,培养学生们的创新能力; 6.使低价格同时又具有一定科学实用价值的实验仪器进入工科物理实验教学中,降低实验教育的成本。 三、实验讲义 《实验讲义》在内容上有以下几个特点:(1)主要标题中的[引言]、[实验目的]、[实验仪器]、[实验原理]、[实验测量及数据处理]、[讨论]、[结论]、[参考文献]为通常科学论文所用的形式,其目的是让学生们在阅读实验讲义和写实验报告时能够熟悉科学论文的写作方式。(2)讲义中的[引言]部分主要介绍了与相关实验有关的应用背景、在物理学发展史 中的作用等知识,其目的是提高学生们的学习兴趣、探索自然奥秘的积极性以及开阔学生们的眼界。(3)讲义中的[讨论]、[研究性题目]和[思考题]部分主要分不同层次地给学生们提出一些与实验相关的问题,要求学生们认真思考后,通过自己设计、编排实验,用实验数据回答提出的问题,其目的是提高学生们提出问题、分析问题、解决问题能力,培养创新意识和创新能力,体现分层次教育的思想。(4)讲义中的[结论]部分让学生们通过实验给出自己想说的结论,其目的是让同学们从自己感兴趣的视角给出结论,拓宽学生们的思维空间,培养学生们的科学概括、总结能力。(5)讲义中的[参考文献]部分提醒、培养同学们在科研开发工作中应该养成参考学习前人的结果的工作习惯和实事求是的科学道德。 四、实验内容 1.实验仪器 主要实验仪器包括,四探针组件、SB118精密直流电流源、PZ158A直流数字电压表、 具有七种不同膜厚的金薄膜材料、具有七种不同膜厚的铁薄膜材料。 SB118精密直流电流源是精密恒流源,它的输出电流在1微安(1微安=10-6安培)一一 200毫安(1毫安=10-3安培)范围内可调,其精度为土0.03%。PZ158A直流数字电压表是具

四探针测试仪测量薄膜的电阻率题库

四探针测试仪测量薄膜的电阻率 一、 实验目的 1、掌握四探针法测量电阻率和薄层电阻的原理及测量方法; 2、了解影响电阻率测量的各种因素及改进措施。 二、实验仪器 采用SDY-5型双电测四探针测试仪(含:直流数字电压表、恒流源、电源、 DC-DC 电源变换器)。 三、实验原理 电阻率的测量是半导体材料常规参数测量项目之一。测量电阻率的方法很 多,如三探针法、电容---电压法、扩展电阻法等。四探针法则是一种广泛采用的标准方法,在半导体工艺中最为常用。 1、半导体材料体电阻率测量原理 在半无穷大样品上的点电流源, 若样品的电阻率ρ均匀, 引入点电流源的 探针其电流强度为I ,则所产生的电场具有球面的对称性, 即等位面为一系列以点电流为中心的半球面,如图1所示。在以r为半径的半球面上,电流密度j的分布是均匀的: 若E 为r处的电场强度, 则: 由电场强度和电位梯度以及球面对称关系, 则: 取r为无穷远处的电位为零, 则: (1) dr d E ψ -=dr r I Edr d 22πρψ-=-=???∞∞I -=-=)(022r r r r dr Edr d ψπρ ψ r l r πρψ2)(=

图3 四探针法测量原理图 上式就是半无穷大均匀样品上离开点电流源距离为r的点的电位与探针流 过的电流和样品电阻率的关系式,它代表了一个点电流源对距离r处的点的电势 的贡献。 对图2所示的情形,四根探针位于样品中央,电流从探针1流入,从探针4 流出, 则可将1和4探针认为是点电流源,由1式可知,2和3探针的电位为: 2、3探针的电位差为: 此可得出样品的电阻率为: 上式就是利用直流四探针法测量电阻率的普遍公式。 我们只需测出流过1、 4 探针的电流I 以及2、3 探针间的电位差V 23,代入四根探针的间距, 就可以 求出该样品的电阻率ρ。实际测量中, 最常用的是直线型四探针(如图3所示), 即四根探针的针尖位于同一直线上,并且间距相 等, 设r 12=r 23=r 34=S ,则有:S I V πρ223= 需要指出的是: 这一公式是在半无限大样 品的基础上导出的,实用中必需满足样品厚度及 边缘与探针之间的最近距离大于四倍探针间距, 这样才能使该式具有足够的精确度。 如果被测样品不是半无穷大,而是厚度,横向尺寸一定,进一步的分析表明, 在四探针法中只要对公式引入适当的修正系数B O 即可,此时: (223I V πρ=134132412)1111-+--r r r r )11(224122r r I -=πρψ)11(234 133r r I -=πρψ)1111(234 1324123223r r r r I V +--=-=πρψψS IB V πρ20 23=

四探针电阻率测试仪检定规程

四探针电阻率测试仪检定规程 Verification Regulation of Resistivity Measuring Instruments with FourPorope Array Method 本检定规程经国家计量局于1987年7月6日批准,并自1988年5月6日起施行。 归口单位:中国计量科学研究院 起草单位:中国计量科学研究院 本规程技术条文由起草单位负责解释。 本规程主要起草人: 鲁效明(中国计量科学研究院) 参加起草人: 张鸿祥(中国计量科学研究院) 李利保(中国计量科学研究院) 四探针电阻率测试仪检定规程 本规程适用于新生产、使用中和修理后的接触式测量范围在0.001~103Ω·cm的电阻率测试仪的检定。对某些多功能的测试或只能测方块电阻的测试仪也同样适用,方块电阻的测量范围在0.01~104Ω/□。本规程不适用于二探针、三探针和六探针以及方形探头电阻率测试仪。 一概述 电阻率测试仪是用来测量半导体材料及工艺硅片的电阻率,或扩散层及外延层方块电阻的测量 仪器。它主要由电气部分和探头部分组成,电气部分一般包括稳流源、数字电压表或电位差计、换向开关等仪器。探头部分一般包括探针架、探针头和样品台。其原理图及外形结构如图1和图2所示。

图1 1-稳流源;2-换向开关;3-标准电阻;4-探针接线;5-无热电势开关;6-数字电压表;7-被测样品 图2 1-微型计算机部分;2-电气箱部分;3-手动升降机构、探针架、探针头及样品台部分 二技术要求 1 整体方法检定电阻率测试仪的标准样片,表面应没有任何脏物,长期使用应注意定期清洗(按标准样片使用说明中规定的方法清洗),以保持样片表面的清洁。 表1

实验一:四探针法测半导体电阻率

实验一:四探针法测量半导体电阻率 1、实验目的 (1)熟悉四探针法测量半导体或金属材料电阻率的原理(2)掌握四探针法测量半导体或金属材料电阻率的方法 2、实验仪器 XXXX 型数字式四探针测试仪;XXXX 型便携式四探针测试仪;硅单晶; 3、实验原理 半导体材料是现代高新技术中的重要材料之一,已在微电子器件和光电子器件中得到了广泛应用。半导体材料的电阻率是半导体材料的的一个重要特性,是研究开发与实际生产应用中经常需要测量的物理参数之一,对半导体或金属材料电阻率的测量具有重要的实际意义。 直流四探针法主要用于半导体材料或金属材料等低电阻率的测量。所用的仪器示意图以及与样品的接线图如图1所示。由图1(a)可见,测试过程中四根金 属探针与样品表面接触,外侧1和4两根为通电流探针,内侧 2和3两根是测 电压探针。由恒流源经 1和4两根探针输入小电流使样品内部产生压降,同时 用高阻抗的静电计、电子毫伏计或数字电压表测出其它两根探针(探针2和探 针3)之间的电压V 23。 图1 四探针法电阻率测量原理示意图 若一块电阻率为的均匀半导体样品,其几何尺寸相对探针间距来说可以 看作半无限大。当探针引入的点电流源的电流为I ,由于均匀导体内恒定电场的 等位面为球面,则在半径为 r 处等位面的面积为2 2r ,电流密度为 2 /2j I r (1) 根据电流密度与电导率的关系 j E 可得 2 2 22j I I E r r (2) 距离点电荷r 处的电势为 2I V r (3)

半导体内各点的电势应为四个探针在该点所形成电势的矢量和。通过数学推导,四探针法测量电阻率的公式可表示为 1 232312 24 13 34 11112( ) V V C r r r r I I (4) 式中,1 12 24 13 34 11112( )C r r r r 为探针系数,与探针间距有关,单位为cm 。 若四探针在同一直线上,如图1(a)所示,当其探针间距均为S 时,则被测样 品的电阻率为 1 232311112( )222V V S S S S S I I (5) 此即常见的直流等间距四探针法测电阻率的公式。 有时为了缩小测量区域,以观察不同区域电阻率的变化,即电阻率的不均匀性,四根探针不一定都排成一直线,而可排成正方形或矩形,如图1(b)所示, 此时只需改变电阻率计算公式中的探针系数 C 即可。 四探针法的优点是探针与半导体样品之间不要求制备接触电极,极大地方便了对样品电阻率的测量。四探针法可测量样品沿径向分布的断面电阻率,从而可以观察电阻率的不均匀性。由于这种方法允许快速、方便、无损地测试任意形状样品的电阻率,适合于实际生产中的大批量样品测试。但由于该方法受到探针间距的限制,很难区别间距小于 0.5mm 两点间电阻率的变化。 根据样品在不同电流(I )下的电压值(V 23),还可以计算出所测样品的电阻率。 4、实验内容 1、预热:打开SB118恒流源和PZ158A 电压表的电源开关(或四探针电阻率测试仪的电源开关),使仪器预热 30分钟。 2、放置待测样品:首先拧动四探针支架上的铜螺柱,松开四探针与小平台的接触,将样品置于小平台上,然后再拧动四探针支架上的铜螺柱,使四探针的所有针尖同样品构成良好的接触即可。 3、联机:将四探针的四个接线端子,分别接入相应的正确的位置,即接线板上最外面的端子,对应于四探针的最外面的两根探针, 应接入SB118恒流 源的电流输出孔上,二接线板上内侧的两个端子,对应于四探针的内侧的两根探针,应接在PZ158A 电压表的输入孔上,如图 1(a)所示。

四探针法测电阻率实验原理

实验四探针法测电阻率 1.实验目的: 学习用四探针法测量半导体材料的体电阻率和扩散薄层的电阻率及方块电阻。 2.实验内容 ①硅单晶片电阻率的测量:选不同电阻率及不同厚度的大单晶圆片,改变条件(光照与 否),对测量结果进行比较。 ②薄层电阻率的测量:对不同尺寸的单而扩散片和双而扩散片的薄层电阻率进行测量。 改变条件进行测疑(与①相同),对结果进行比较。 1 2 3 4 你 E 恒) 图1四按针法測电磴車煉建图0}四慄計測倒F且奉装貫Q)半无筲犬祥品上探针帧的分布炭半球等势面k)正方形排列的四探针爲直线枠列的四探针圏形 3.实验原理: 在半导体器件的研制和生产过程中常常要对半导体单晶材料的原始电阻率和经过扩散、外延等工艺处理后的薄层电阻进行测量。测量电阻率的方法很多,有两探针法, 四探针法,单探针扩展电阻法,范徳堡法等,我们这里介绍的是四探针法。因为这种方法简便可行,适于批量生产,所以目前得到了广泛应用。 所谓四探针法,就是用针间距约1亳米的四根金属探针同时压在被测样品的平整表面上如图la所示。利用恒流源给1、4两个探针通以小电流,然后在2、3两个探针上用髙输入阻抗的静电计、电位差计、电子毫伏计或数字电压表测量电压,最后根据理论公式计算岀样品的电阻率m 式中,C为四探针的修正系数,单位为厘米,C的大小取决于四探针的排列方法和针距,

探针的位巻和间距确泄以后,探针系数C 就是一个常数:V23为2、3两探针之间的电 压,单位为伏特:I 为通过样品的电流,单位为安培。 半导体材料的体电阻率和薄层电阻率的测量结果往往与式样的形状和尺寸密切相 关,下面我们分两种情况来进行讨论。 (1) 半无限大样品情形 图1给出了四探针法测半无穷大样品电阻率的原理图,图中(a)为四探针测量电阻 率的装置:(b)为半无穷大样品上探针电流的分布及等势而图形;(c)和(d)分别为正方形 排列及直线排列的四探针图形。因为四探针对半导体表而的接触均为点接触,所以,对 图1 (b)所示的半无穷大样品,电流I 是以探针尖为圆心呈径向放射状流入体内的。 因而电流在体内所形成的等位而为图中虚线所示的半球面。于是,样品电阻率为P,半 径为r,间距为dr 的两个半球等位而间的电阻为 dR = -^dr, 它们之间的电位差为dV = IdR = ^dr° 2加「 考虑样品为半无限大,在r-8处的电位为0,所以图1 流经探针4的电流?与流经探针1的电流方向相反,所以流经探针4的电流I 在探针2、 于是流经探针1、 4之间的电流在探针2、 3之间形成的电位差为 由此可得样品的电阻率为 p=^\- -丄-丄+丄『 (1) / 1人2 斤3 r 42 r 43 ) 上式就是四探针法测半无限大样品电阻率的普遍公式。 在采用四探针测量电阻率时通常使用图1(C)的正方形结构(简称方形结构)和 图1 (d)的等间距直线形结构,假设方形四探针和直线四探针的探针间距均为S, 则对于直线四探针有金=知=S,斤厂 =r 42=2S ⑵ 对于方形四探针有金=金=S, 6 = 7 42=^5 2於 厶 (a)中流经探针1的电流I 在 r 点形成的电位为 讣 4歸 流经探针1的电流在2、3两探针间形成的电位差为 3之间引起的电位差为

实验测定金属的电阻率

实验八 测定金属的电阻率 1.实验原理(如图1所示) 由R =ρl S 得ρ=RS l ,因此,只要测出金属丝的长度l 、横截面积S 和金属丝的电阻R ,即可求 出金属丝的电阻率ρ. 图1 2.实验器材 被测金属丝,直流电源(4 V),电流表(0~0.6 A),电压表(0~3 V),滑动变阻器(0~50 Ω),开关,导线若干,螺旋测微器,毫米刻度尺. 3.实验步骤 (1)用螺旋测微器在被测金属丝上的三个不同位置各测一次直径,求出其平均值d . (2)连接好用伏安法测电阻的实验电路. (3)用毫米刻度尺测量接入电路中的被测金属丝的有效长度,反复测量三次,求出其平均值l . (4)把滑动变阻器的滑片调节到使接入电路中的电阻值最大的位置. (5)闭合开关,改变滑动变阻器滑片的位置,读出几组相应的电流表、电压表的示数I 和U 的值,填入记录表格内. (6)将测得的R x 、l 、d 值,代入公式R =ρl S 和S =πd 2 4 中,计算出金属丝的电阻率. 1.数据处理 (1)在求R x 的平均值时可用两种方法 ①用R x =U I 分别算出各次的数值,再取平均值.

②用U -I 图线的斜率求出. (2)计算电阻率 将记录的数据R x 、l 、d 的值代入电阻率计算公式ρ=R x S l =πd 2U 4lI . 2.误差分析 (1)金属丝的横截面积是利用直径计算而得,直径的测量是产生误差的主要来源之一. (2)采用伏安法测量金属丝的电阻时,由于采用的是电流表外接法,测量值小于真实值,使电阻率的测量值偏小. (3)金属丝的长度测量、电流表和电压表的读数等会带来偶然误差. (4)由于金属丝通电后发热升温,会使金属丝的电阻率变大,造成测量误差. 3.注意事项 (1)本实验中被测金属丝的电阻值较小,因此实验电路一般采用电流表外接法. (2)实验连线时,应先从电源的正极出发,依次将电源、开关、电流表、被测金属丝、滑动变阻器连成主干线路(闭合电路),然后再把电压表并联在被测金属丝的两端. (3)测量被测金属丝的有效长度,是指测量被测金属丝接入电路的两个端点之间的长度,亦即电压表两端点间的被测金属丝长度,测量时应将金属丝拉直,反复测量三次,求其平均值. (4)测金属丝直径一定要选三个不同部位进行测量,求其平均值. (5)闭合开关S 之前,一定要使滑动变阻器的滑片处在有效电阻值最大的位置. (6)在用伏安法测电阻时,通过被测金属丝的电流强度I 不宜过大(电流表用0~0.6 A 量程),通电时间不宜过长,以免金属丝的温度明显升高,造成其电阻率在实验过程中逐渐增大. (7)若采用图象法求R 的平均值,在描点时,要尽量使各点间的距离拉大一些,连线时要尽可能地让各点均匀分布在直线的两侧,个别明显偏离较远的点可以不予考虑. 命题点一 教材原型实验 例1 在“测定金属的电阻率”实验中,所用测量仪器均已校准.待测金属丝接入电路部分的长度约为50 cm. (1)用螺旋测微器测量金属丝的直径,其中某一次测量结果如图2所示,其读数应为 mm(该值接近多次测量的平均值). 图2

KDY—1型四探针电阻率方阻测试仪

KDY—1型四探针电阻率/方阻测试仪 使用说明书 广州市昆德科技有限公司

1、概述 KDY-1型四探针电阻率/方阻测试仪(以下简称电阻率测试仪)是用来测量半导体材料(主要是硅单晶、锗单晶、硅片)电阻率,以及扩散层、外延层、ITO导电薄膜、导电橡胶方块电阻的测量仪器。它主要由电气测量部份(简称:主机)、测试架及四探针头组成。 本仪器的特点是主机配置双数字表,在测量电阻率的同时,另一块数字表(以万分之几的精度)适时监测全程的电流变化,免除了测量电流/测量电阻率的转换,更及时掌控测量电流。主机还提供精度为0.05%的恒流源,使测量电流高度稳定。本机配有恒流源开关,在测量某些薄层材料时,可免除探针尖与被测材料之间接触火花的发生,更好地保护箔膜。仪器配置了本公司的专利产品:“小游移四探针头”,探针游移率在0.1~0.2%。保证了仪器测量电阻率的重复性和准确度。本机如加配HQ-710E数据处理器,测量硅片时可自动进行厚度、直径、探针间距的修正,并计算、打印出硅片电阻率、径向电阻率的最大百分变化、平均百分变化、径向电阻率不均匀度,给测量带来很大方便。 2、测试仪结构及工作原理 测试仪主机由主机板、电源板、前面板、后背板、机箱组成。电压表、电流表、电流调节电位器、恒流源开关及各种选择开关均装在前面板上(见图2)。后背板上只装有电源插座、电源开关、四探针头连接插座、数据处理器连接插座及保险管(见图3)。机箱底座上安装了主机板及电源板,相互间均通过接插件联接。仪器的工作原理如图1所示: 测试仪的基本原理仍然是恒流源给探针头(1、4探针)提供稳定的测量电流I (由DVM1监测),探针头(2、3)探针测取电位差V(由DVM2测量),由下式即可计算出材料的电阻率:

最新四探针法测电阻率

四探针法测电阻率

实验四探针法测电阻率 1.实验目的: 学习用四探针法测量半导体材料的体电阻率和扩散薄层的电阻率及方块电阻。 2.实验内容 ①硅单晶片电阻率的测量:选不同电阻率及不同厚度的大单晶圆片,改变 条件(光照与否),对测量结果进行比较。 ②薄层电阻率的测量:对不同尺寸的单面扩散片和双面扩散片的薄层电阻 率进行测量。改变条件进行测量(与①相同),对结果进行比较。 3.实验原理:

在半导体器件的研制和生产过程中常常要对半导体单晶材料的原始电阻率和经过扩散、外延等工艺处理后的薄层电阻进行测量。测量电阻率的方法很多,有两探针法,四探针法,单探针扩展电阻法,范德堡法等,我们这里介绍的是四探针法。因为这种方法简便可行,适于批量生产,所以目前得到了广泛应用。 所谓四探针法,就是用针间距约1毫米的四根金属探针同时压在被测样品的平整表面上如图1a 所示。利用恒流源给1、4两个探针通以小电流,然后在2、3两个探针上用高输入阻抗的静电计、电位差计、电子毫伏计或数字电压表测量电压,最后根 据理论公式计算出样品的电阻率[1] I V C 23 =ρ 式中,C 为四探针的修正系数,单位为厘米,C 的大小取决于四探针的排列方法和针距,探针的位置和间距确定以后,探针系数C 就是一个常数;V 23为2、3两探针之间的电压,单位为伏特;I 为通过样品的电流,单位为安培。 半导体材料的体电阻率和薄层电阻率的测量结果往往与式样的形状和尺寸密切相关,下面我们分两种情况来进行讨论。 ⑴ 半无限大样品情形 图1给出了四探针法测半无穷大样品电阻率的原理图,图中(a)为四探针测量电阻率的装置;(b)为半无穷大样品上探针电流的分布及等势面图形;(c)和(d)分别为正方形排列及直线排列的四探针图形。因为四探针对半导体表面的接触均为点接触,所以,对图1(b )所示的半无穷大样品,电流I 是以探针尖为圆心呈径向放射状流入体内的。因而电流在体内所形成的等位面为图中虚线所示的半球面。于是,样品电阻率为ρ,半径为r ,间距为dr 的两个半球等位面间的电阻为 dr r dR 2 2πρ = , 它们之间的电位差为 dr r I IdR dV 2 2πρ= =。

相关文档
最新文档