桩基承载力不足的影响因素及防治措施

桩基承载力不足的影响因素及防治措施
桩基承载力不足的影响因素及防治措施

 总第238期交 通 科 技

Serial No.238 2010年第1期Transportation Science &Technology No.1Feb.2010

DOI 1013963/j 1issn 1167127570120101011005

收稿日期:2009209213

桩基承载力不足的影响因素及防治措施

杨友梅

(福建省交通规划设计院 福州 350004)

摘 要 钻孔灌注桩在有些桥梁工程应用中出现实际承载力低于设计值的情况。文中以某实际工程为例,从施工、设计方面分析钻孔灌注桩承载能力不足的原因,提出钻孔灌注桩在穿过较厚砂、卵砾石层后,残积土不宜作为基底持力层,并对桩基承载力不足提出防治措施。实践证明:锚杆静压桩是一种行之有效的桩基补强方案,对类似工程具有较好的借鉴作用。关键词 钻孔桩 承载力 锚杆静压桩

随着我国高速公路的迅猛发展,作为桥梁基础承力结构普遍采用的一种形式———灌注桩,在

公路桥梁中得到了广泛应用。灌注桩的基础形式能适应不同的地质条件,具有占用面积小、承载力高的特点,尤其适宜持力层较深的地层。但是由于桩基是隐蔽工程,施工时不可见,实际工程中桩基承载能力的实现由于各种原因存在不确定性,有些工程出现实际承载力低于设计值的情况,这将直接影响上部结构乃至整个桥梁的安全。本文

以某实际工程为例,对影响钻孔灌注桩承载能力的各因素进行分析,提出桩基设计及施工要点,并对桩基承载力不足提出处治措施。1 工程实例1.1 概况

2001年福建某高速公路修建的一座大桥,上部为部分预应力混凝土连续箱梁桥,设计荷载:汽超220、挂2120,下部构造为双柱式墩,直径1.2、1.4m ,钻孔灌注桩基础直径1.2、1.5m 。桥址地层结构至上而下为:淤泥、泥质中细砂、含泥卵石

Damage Identif ication by Applying the Moving Mass

Method and W avelet Analysis

W an g X uef en g 1,Don g Kui 1,Yu Qi n gson g 2,Yi n L i an g 3

(1.China Communication North Road and Bridge Co.Ltd.,Beijing 100024,China ;

2.Engineering Consulting Company of China Railway Siyuan Survey and Design ,Wuhan 430063,China ;

3.Jiangsu Province Communication Planning and Design Institute Co.Ltd.,Nanjing 210005,China )

Abstract :In order to imp rove t he accuracy of t he identification of t he st ruct ure damage and take t he advantages of wavelet analysis which is charactered wit h feat ure extraction ,t he singularity of signal detection ,and signal de 2noising ,t he improved met hod of t he moving quality repetitious detection was p ut forward.In t his met hod ,a moving mass is used to measure t he st ruct ures in different positions.The tested nat ure f requencies are used as t he only index to determine t he model parameters ,t hus i 2dentifying t he damage of t he struct ures.Moreover ,t he t heoretical model of t he proposed met hod is established and t he corresponding equations are deduced.A numerical simulation is finally carried out to verify t he effectiveness of t he proposed met hod.

K ey w ords :damage identification ;met hod of moving quality repetitious detection ;wavelet analysis ;nat ural f requency

层、残积砂粘土、强风化花岗岩、弱风化花岗岩。1~12号墩基底持力层为残积砂粘土,其余墩台基底持力层为强风化花岗岩或弱风化花岗岩。1.2 病害情况

该桥在完成箱梁吊装并准备进行桥面铺装时,施工单位对支座垫石进行高程复测,结果发现1~12号墩顶发生沉降量异常,大部分沉降在1~2cm,其中8~10号墩下沉量较大,右幅9号墩最大沉降达7.7cm,其余墩台支座沉降在0.3cm 以内。

1.3 设计验证情况

单桩沉降由桩身压缩变形和桩端土的压缩变形组成,通过验算[1],设计荷载总下沉降量理论值为0.46cm,已发生最大施工荷载下沉降量理论值为0.27cm。而施工期1~12号墩下沉量已明显超出理论计算的最大施工荷载下沉降量0.27cm,尤其8~10号墩沉降量已明显表明桩基承载力不足。以沉降最大的右幅9号墩为例,根据原地勘报告对桩基承载力重新进行核查验算,控制桩入土长度单桩顶轴向力为4329kN,桩入土计算长度为26m,实际采用27m,设计桩侧极限承载力为8391kN,桩端持力层残积砂粘土极限承载力为1192kN,设计桩长满足桩基承载力要求[2],8~10号墩位进行地质补勘9个孔,根据补勘地质资料重新验算桩基承载力,结论是设计桩长满足桩基承载力要求,也排除了因地层性质变差造成桩身承载力不足的因素。通过施工验算,作用于单桩顶的最大施工荷载为2674kN,仅占设计控制桩入土长度单桩顶轴向力61.7%,显然,如果桩侧摩阻或端阻正常发挥,设计桩长完全可以满足施工荷载要求。

1.4 桥梁检测情况

该桥桩基都已通过质检部门检测,未发现有断桩、缩径等病害桩,排除了因桩身材料及尺寸变化造成的承载力不足。

2 原因分析

桩基承载力是通过桩身本身强度及桩侧摩阻力与桩端阻力来实现的,而桩侧摩阻力与桩端阻力的发挥过程是桩土体系荷载的传递过程。钻孔灌注桩在加荷初期,桩和土产生相对位移,桩顶侧摩阻力首先发挥,没有或仅有极小的荷载传到桩尖。随着荷载的逐渐增大,较长一段桩身的侧摩阻力得以发挥,桩尖土的支承作用也逐渐增大,引起地基土的弹性变形和塑性变形。再进一步加荷,侧摩阻力就在桩身全长被调动起来并达到极限值,若继续增加荷载,其荷载增量将全部由桩端阻力承担。一般说来,靠近桩身上部土层的侧阻力先于下部土层发挥,而侧阻力先于端阻力发挥出来[2]。桩基竖向承载力随桩的几荷尺寸、桩侧与桩端土的性质、成桩工艺等而变化。

经分析,笔者认为实际工程中钻孔灌注桩承载力不足的原因可归纳为以下几个方面:

2.1 施工方面

(1)泥皮的影响。采用泥浆护壁的技术在钻孔桩施工中是最基本和最常用的,泥浆颗粒吸附于孔壁形成泥皮,保护了孔壁的稳定,《公路桥涵施工规范》[3]要求泥皮厚度不大于2~3mm,因此大多数静荷载试验表明均能满足设计提出的承载力。而本例桥梁地层结构中砂、卵砾石层厚度达到10m,厚度较大,施工时为防止塌孔,采用了较大的泥浆质量浓度,形成了较大的泥皮厚度,在桩土间形成了一道隔离层,桩与土体间的摩擦在较大程度上转变为桩与泥皮间的摩擦,桩身混凝土与桩周土体的粘结度降低,大大降低桩侧摩阻力。

(2)施工时间的影响。成孔时间较长,孔壁侧向应力解除,桩周土体出现应力松弛,成孔时间越长,应力松弛越明显,孔壁泡水软化现象越严重,从而影响桩侧摩阻的发挥。同时由于桩底泥浆长时间浸泡桩底持力层导致桩端土体软化下沉,使桩端侧面一定范围产生负摩阻力,从而降低桩侧正摩阻力。

(3)桩底土体软化及沉渣的影响。成孔后桩底泥浆长时间浸泡桩底持力层,残积粘性土遇水土体产生崩解,使土体软化,压缩性增大,导致桩端承载力降低;且由于以施工用的泥浆作为清洗介质,泥浆比重控制不当,同时二次清渣与桩身混凝土首斗灌注间有时差,这段时间孔内泥浆中的部分沉渣将继续沉淀于孔底,形成桩底沉渣,若桩底沉渣过厚,在桩底形成一个“软垫子”,会影响桩底承载力发挥。

以本文列举桥梁右幅9号墩为例,考虑施工泥皮及时间因素,桩侧极限摩阻力参考有关资料取12kPa,27m桩长桩侧极限承载力则降为1620kN,随着施工荷载增加,侧摩阻达到极限,继续增加荷载,其荷载增量1650kN将全部由桩端阻力承担。持力层为残积粘性土遇水软化,一般考虑桩底软化系数05~0.7,桩端残积粘性土极限承载力降为596~834kN,大大小于传至桩端的荷载,即实际桩基承载力小于理论承载力,桩基承载力不足,发生沉降。同理分析桩端持力层为强风化花岗岩的23号墩,设计桩长27m,因桩端持力层强风化花岗岩极限承载力为2115kN,

大于传至桩端的荷载,因此未发生沉降异常。

综上分析,施工工艺因素及桩底持力层采用残积粘性土是造成桩基承载力不足的重要因素。

2.2 设计方面

(1)确定单桩竖向承载力的方法不同。确定单桩竖向承载力的方法有多种,如静载试验法、动静力触探法、动测试桩法、经验公式法等,经验公式法中不同的规范采用的公式不同,如《公路桥涵地基与基础设计规范》、

《铁路桥涵设计规范》、

《建筑桩基技术规范》采用的公式、参数不同,设计计算的竖向容许承载力结果可能差异甚远,有可能造成设计与实际桩基承载力的差异。还需通过不断的工程实践来逐渐完善经验公式。

(2)参数取值的不确定性。桩侧土的摩阻力及桩底土层容许承载力是计算摩檫桩单桩竖向承载力的两个重要参数,在公路桥梁桩基设计中,设计人员一般是根据《公路桥涵地基与基础设计规范》(以下简称《地基规范》)的经验公式法确定单桩竖向承载力。一方面,桩侧土的摩阻力参数基本不是通过单桩摩阻力试验确定,而是根据有关规范推荐的取值范围采用,由于地基土具有多变性、复杂性和地域性等特点,参数取值可能与实际情况相差甚远,理论计算结果有可能与实际情况不符,造成桩基承载力不足;另一方面,在近些年实际应用中发现,对于某些特殊地质按旧《地基规范》(1985年版)计算的桩端处土的承载力容许值大出实测值较多,因此新《地基规范》对桩端持力层为砂土规定了桩端处土的承载力容许值的上限,桩端处土的性质已引起工程界的重视。而残积土作为一种遇水会软化且压缩量较大的地层,其承载力容许值也具有较大的差异空间,理论取值有可能与实际情况存在较大差异,若作为桩端持力层有可能造成桩基承载力不足。

3 保证钻孔灌注桩承载力的措施

基于上述分析,为避免桩基承载力不足,可采取以下有效预防措施。

(1)在设计上,应加强地质勘察工作,全面掌握地质情况,使设计计算的地层结构与实际吻合。地基土具有多变性、复杂性和地域性等特点,参数选用最好能通过试验分析取得,注意桩端持力层性质,选用承载能力高的地层,对类似残积粘性土土质,应充分考虑遇水软化特性,桩侧摩阻及桩端承载力应予一定折减。对于地层中出现较厚砂、卵砾石层,应充分考虑施工工艺造成的泥皮厚度对桩侧摩阻力的影响,设计桩长应适当加长,满足设计承载力要求。

(2)在施工上,应加强施工过程控制,严格按施工规范操作,根据掌握的地质情况,合理使用泥浆浓度,提高泥浆质量;控制成孔进尺速度和混凝土浇注时间;控制泥皮和沉渣厚度,严格按施工规范操作。

4 钻孔灌注桩承载力不足的处治措施

对于桩基沉降量异常,承载力不足的情况应采取有效措施加固,满足设计及运营要求。

4.1 加固方案

方案一。压力注浆加固:桩侧压浆可以破坏、消除泥皮,充填桩侧混凝土与桩侧周围土之间的粘结力,从而提高桩侧摩阻力;桩底压浆在桩下端形成扩大头,挤压桩底土层使周围土层更密实,增加桩端及周围土层侧压力,同时桩端土层密实向上传递反力,提高桩侧摩阻力,且扩大承压面积,使浆液向持力层渗透,改善了持力层性能,提高了桩底承载力。但该方案压浆量难以估算,效果需通过试验验证。

方案二。钻孔灌注桩抬桩加固:桩基承载力不足部分可通过计算,在病桩前后各增设一根桩,通过系梁将原桩基连成一体,以满足设计要求。该方案桩基补强受施工工艺影响较大,需通过试验验证。

方案三。锚杆静压桩加固:因桩基承载力不足部分可通过计算得到,因此可以根据压桩力确定锚杆静压桩根数,在桩周增设锚杆静压桩,通过承台将锚杆静压桩与原桩基连成一体,以满足设计要求。该方案受力明确,桩身为预制桩,施工方便、快捷,压桩力即为承载力,故无需通过静载试验验证。 对于本文列举的桥梁桩基加固,进行方案比选后认为:方案一采用注浆加固,施工控制较难,产生效果难以预测,桩基补强后是否满足设计要求需通过静载试验验证,对于墩柱已施工及上部梁已架设的情况,难度较大。方案二采用钻孔灌注桩抬桩,因桥墩较矮及上部梁已架设,钻孔桩施工空间受限,补强效果也需通过静载试验验证,难度较大。方案三采用锚杆静压桩,因桩基承载力不足部分可通过计算得到,因此可以根据压桩力确定锚杆静压桩根数,以满足设计要求,且桩身为预制桩,施工方便、快捷,承载力即为测得的压桩力,无需通过静载试验验证。故推荐方案三锚杆静压桩加固方案。

4.2 锚杆静压桩加固设计要点

以本文列举的桥梁为例,采用锚杆静压桩[4],桩持力层为砾卵石层,按现有桩基能承受上部箱梁、盖梁、柱、桩自重,满足设计要求的桩基承载力不足部分由锚杆静压桩承担,考虑安全系数一般取2。锚杆静压桩断面采用300mm ×300mm ;以压桩力为主,桩长为辅,每根压桩力按1000kN ,通过计算1~5号墩基础每桩承台设8个桩位(见图1、2),6~12号墩基础每桩承台设10个桩位,其中2根(阴影部分)为预留桩位

图1 

基础承台压桩孔平面布置图

图2 基础承台压桩孔剖面布置图

4.3 加固效果

本例桥梁通过锚杆静压桩处理后,经多年通

车验证,桩不再继续沉降,满足设计及运营要求。5 结论

(1)施工工艺是影响桩基承载力发挥的重要因素之一,对于地层中出现较厚砂、卵砾石层,在桩基施工中为防止塌孔,往往难以严格按施工规范操作,泥皮厚度超标,桩侧摩阻力会大大降低,应加强施工控制,且在设计上桩长应有一定的安全度。 (2)基底持力层性质是影响桩基承载力发挥的另一重要因素,设计人员仅从岩土工程勘察报告提供的岩土物理、力学性质指标计算桩长是不够的,应充分考虑到有些土层具有遇水土体易产生崩解、软化的特性,被施工扰动后其工程地质性能也会因此而降低,故应选择承载力较高,稳定性好的地层做为桩尖持力层,残积土不宜做为桩尖持力层。

(3)实践证明,锚杆静压桩具有受力明确,无需通过静载试验验证,施工方便、快捷等特点,是一种行之有效、比较直观的桩基补强方案,对类似工程具有较好的借鉴作用。

参考文献

[1] 赵明华1桥梁桩基计算与检测[M ].北京:人民交

通出版社,1999.

[2] J TJ 024—85公路桥涵地基与基础设计规范[S].北

京:人民交通出版社,1985.

[3] J TJ041—2000公路桥涵施工技术规范[S].北京:人

民交通出版社,20001

[4] Y BJ 227—91锚杆静压桩技术规程[S]1北京:冶金

工业部建筑研究总院,19911

I nfluence and Prevention Measures of B earing C ap acity Deficiency of B ored Pile

Yan g Youmei

(Fujian Communication Planning and Design Institute ,Fuzhou ,350004,China )

Abstract :The real bearing capacity of bored pile was always less t han t he design value in some bridge engineering practices.Taking a practical engineering as an example ,t he reasons of bearing capacity deficiency of bored pile were analyzed f rom t he aspect s of const ruction and design.The residual soil can ’t be used as t he subst rate bearing strat um after t he bored pile passed t hrough t he t hick sand and gravel formation ,and t he correspo nding prevention measures were also p ut forward.It is believed t hat t he anchor jacked pile is proved an effective and int uitive reinforcement for t he bored pile ,which will be a good reference for some similar project s.

K ey w ords :bored pile ;bearing capacity ;anchored static p ressure pile

桩基设计计算公式.doc

单桩承载力设计计算 ( 建筑桩基技术规范 08版) ⒈单桩竖向极限承载力标准值计算 根据《建筑桩基技术规范》 (JGJ94—2008), 单桩竖向极限承载力标准值按下列公式计算: Q uk u q ski l i q pk A p 式中: Quk —单桩竖向极限承载力标准值 (kN); u —桩身周长 (m); qski —单桩第 i 层土极限侧阻力标准值 (kPa); li —第 i 层土厚度 (m); qpk —持力层端阻力极限标准值 (kPa); Ap —桩身截面积 (m2)。 Quk u qski li qpk Ap 11345.54771 3.76991118 70 1.6 9309.7957 90 2.8 70 0.9 30 0.7 155 5.3 120 10 1800 1.130973355 2469.5 2035.75204 桩长 21.3 m 2 桩身强度设计值计算 N ≤0.9 φ (Apfc+ A ’ sf ’ s) 式中 : N —轴向压力设计值 (kN); φ—钢筋混凝土构件的稳定系数,根据《混凝土结构设计规范》 (GB50010— 2002)第7.3.1条表 7.3.1; fc ——混凝土轴心抗压强度设计值; Ap ——构件截面面积; f ’s ——钢筋 (HRB335) 轴心抗压强度设计值; A ’s ——全部纵向钢筋的截面面积。 N(KN) φ fc (kN/m2)Ap(m2) f ’s(kN/m2) A ’s(m2) 桩直径 (m2) 11518.96362 0.7 11900 1.130973355 300000 0.016084954 1.2 标准值 19006.29 KN 3. 单桩水平承载力特征值计算 (配筋率不小于 0.65%) γH R h I W d/2 EI 0.85E c I 0(钢筋混凝)土桩 I 0 圆形截面 Wd 00/2() I 0 矩形截面 Wb 00/2()

某桥梁桩基础设计计算

第一章桩基础设计 一、设计资料 1、地址及水文 河床土质:从地面(河床)至标高32.5m 为软塑粘土,以下为密实粗砂,深度达30m ;河床标高为40.5m ,一般冲刷线标高为38.5m ,最大冲刷线为35.2m ,常水位42.5m 。 2、土质指标 表一、土质指标 3、桩、承台尺寸与材料 承台尺寸:7.0m ×4.5m ×2.0m 。拟定采用四根桩,设计直径 1.0m 。桩身混凝土用20号,其受压弹性模量h E =2.6×104MPa 4、荷载情况 上部为等跨25m 的预应力梁桥,混凝土桥墩,承台顶面上纵桥向荷载为:恒载及一孔活载时: 5659.4N KN =∑、 298.8H KN =∑、 3847.7M KN m =∑ 恒载及二孔活载时: 6498.2N KN =∑。桩(直径 1.0m )自重每延米为: 2 1.01511.78/4 q KN m π?= ?= 故,作用在承台底面中心的荷载力为:

5659.4(7.0 4.5 2.025)7234.4298.83847.7298.8 2.04445.3N KN H KN M KN =+???===+?=∑∑∑ 恒载及二孔活载时: 6498.2(7.0 4.5 2.025)8073.4N KN =+???=∑ 桩基础采用冲抓锥钻孔灌注桩基础,为摩擦桩 二、单桩容许承载力的确定 根据《公路桥涵地基与基础设计规范》中确定单桩容许承载力的经验公式,初步反算桩的长度,设该桩埋入最大冲刷线以下深度为h ,一般冲刷线以下深度 为3h ,则:002221 []{[](3)}2 h i i N p U l m A k h τλσγ==++-∑ 当两跨活载时: 8073.213.311.7811.7842 h N h =+?+? 计算[P]时取以下数据: 桩的设计桩径1.0m ,冲抓锥成孔直径为1.15m ,桩周长 2 22 02021211.15 3.6,0.485,0.7 4 0.9, 6.0,[]550,12/40,120, a a a u m A m m K Kp KN m Kp Kp ππλσγττ?=?== ======== 1 [] 3.16[2.740( 2.7)120]0.700.90.7852 [550 6.012( 3.33)]2057.17 5.898.78k p h h N h m =??+-?+??? +??+-==+∴= 现取h=9m ,桩底标高为26.2m 。桩的轴向承载力符合要求。具体见如图1所示。

桩基检测的7种方法

桩基检测的7种方法 桩基检测,分为桩基施工前和施工后的检测:施工前,为设计提供依据的试验桩检测,主要确定单桩极限承载力;施工后,为验收提供提供依据的工程桩检测,主要进行单桩承载力和桩身完整性检测。 桩基检测的7种方法 1单桩竖向抗压静载试验 单桩竖向静载荷试验是指将竖向荷载均匀的传至建筑物基桩上,通过实测单桩在不同荷载作用下的桩顶沉降,得到静载试验的Q—s曲线及s—lgt等辅助曲线,然后根据曲线推求单桩竖向抗压承载力特征值等参数。 目的确定单桩竖向抗压极限承载力;判定竖向抗压承载力是否满足设计要求;通过桩身应变、位移测试,测定桩侧、桩端阻力,验证高应变法的单桩竖向抗压承载力检测结果。 2单桩竖向抗拔静载试验

在桩顶部逐级施加竖向抗拔力,观测桩顶部随时间产生抗拔位移,以确定相应的单桩竖向抗拔承载力的试验方法。 目的确定单桩竖向抗拔极限承载力;判断竖向抗拔承载力是否满足设计要求;通过桩身应变、位移测试,测定桩的抗拔侧阻力。 3单桩水平静载试验 采用接近水平受力桩的实际工作条件的方法确定单桩水平承载力和地基土水平抗力系数或对工程桩水平承载力进行检验和评价的试验方法。单桩水平载荷试验宜采用单向多循环加卸载试验法,当需要测量桩身应力或应变时宜采用慢速维持荷载法。 目的确定单桩水平临界和极限承载力,推定土抗力参数;判定水平承载力或水平位移是否满足设计要求;通过桩身应变、位移测试,测定桩身弯矩。 4钻芯法 钻孔取芯法主要是采用钻孔机(一般带10mm内径)对桩基进行抽芯取样,根据取出芯样,可对桩基的长度、混凝土强度、桩底沉渣厚度、持力层情况等作清楚的判断。

目的测检灌注桩桩长、桩身混凝土强度、桩底沉渣厚度,判断或鉴别桩端持力层岩土性状,判定桩身完整性类别。 5低应变法 低应变检测法是使用小锤敲击桩顶,通过粘接在桩顶的传感器接收来自桩中的应力波信号,采用应力波理论来研究桩土体系的动态响应,反演分析实测速度信号,频率信号,从而获得桩的完整性。 目的检测桩身缺陷及其位置,判定桩身完整性类别。 6高应变法 高应变检测法是一种检测桩基桩身完整性和单桩竖向承载力的方法,该方法是采用锤重达桩身重量10%以上或单桩竖向承载力1%以上的重锤以自由落体击往桩顶,从而获得相关的动力系数,应用规定的程序,进行分析和计算,得到桩身完整性参数和单桩竖向承载力,也称为Case法或Cap-wape法。 目的判定单桩竖向抗压承载力是否满足设计要求;检测桩身缺陷及其位置,判定桩身完整性类别;分析桩侧和桩端土阻力;进行打桩过程监控。 7声波透射法

【2017年整理】地基承载力计算方法

一.地基承载力计算方法:按《建筑地基基础设计规范》(GBJ7-89) 1.野外鉴别法 岩石承载力标准值f k(kpa) 注:1.对于微风化的硬质岩石,其承载力取大于4000kpa时,应由试验确定; 2.对于强风化的岩石,当与残积土难于区分时按土考虑。 碎石承载力标准值f k(kpa) 注:1.表中数值适用于骨架颗粒空隙全部由中砂、粗砂或硬塑、坚硬状态的粘土或稍湿的粉土所充填的情况; 2.当粗颗粒为中等风化或强风化时,可按其风化程度适当降低承载力,当颗粒间呈半胶结状时,可适当提高承载力; 3.对于砾石、砾石土均按角砾查承载力。 2.物理力学指标法 粉土承载力基本值f(kpa) 注:1.有括号者仅供内插用; 2.折算系数§=0。 粘性土承载力基本值f(kpa) 注:1.有括号者仅供内插用; 2.折算系数§=0.1。

沿海地区淤泥和淤泥质土承载力基本值f(kpa) 注:对于内陆淤涨和淤泥质土,可参照使用。 红粘土承载力基本值f(kpa) 注:1.本表仅适用于定义范围内的红粘土; 2.折算系数§=0.4。 素填土承载力基本值f(kpa) 注:本表只适用于堆填时间超过10年的粘性土,以及超过5年的粉土;所查承载需经修正计算。3.标准贯入试验法 砂土承载力标准值f k(kpa) 注:1.砾砂不给承载力; 2.粉细砂按粉砂项给承载力;3.中粗砂按中砂项给承载力; 4.细中砂按细砂项给承载力; 5.粗砾砂按粗砂项给承载力; 6.N63.5需修正后查承载力. 粘性土承载力标准值f k(kpa) 注:N63.5需经修正后查承载力。 花岗岩风化残积土承载力基本值f(kpa) 注:花岗岩风化残积土的定名: 2mm含量≥20%为砾质粘性土; 2mm含量<20%为砂质粘性; 2mm含量=0为粘性土

桩基承载力计算公式(老规范)

一、嵌岩桩单桩轴向受压容许承载力计算公式 采用嵌岩的钻(挖)孔桩基础,基础入持力层1~3倍桩径,但不宜小于1.00m,其单桩轴向受压容许承载力[P]建议按《公路桥涵地基与基础设计规范》JTJ024—85第4.3.4条推荐的公式计算。 公式为:[P]=(c1A+c2Uh)Ra 公式中,[P]—单桩轴向受压容许承载力(KN); Ra—天然湿度的岩石单轴极限抗压强度(KPa),按表4.2 查取,粉砂质泥岩:Ra =14460KPa;砂岩:Ra =21200KPa h—桩嵌入持力层深度(m); U—桩嵌入持力层的横截面周长(m); A—桩底横截面面积(m2); c1、c2—根据清孔情况、岩石破碎程度等因素而定的系数。挖孔桩取c1=0.5,c2=0.04;钻孔桩取c1=0.4,c2=0.03。 二、钻(挖)孔桩单桩轴向受压容许承载力计算公式 采用钻(挖)孔桩基础,其单桩轴向受压容许承载力[P]建议按《公路桥涵地基与基础设计规范》JTJ024—85第4.3.2条推荐的公式计算。 公式为:[]()R p A Ul Pσ τ+ = 2 1 公式中,[P] —单桩轴向受压容许承载力(KN); U —桩的周长(m); l—桩在局部冲刷线以下的有效长度(m); A —桩底横截面面积(m2),用设计直径(取1.2m)计算;

p τ— 桩壁土的平均极限摩阻力(kPa),可按下式计算: ∑==n i i i p l l 11ττ n — 土层的层数; i l — 承台底面或局部冲刷线以下个土层的厚度(m); i τ— 与i l 对应各土层与桩壁的极限摩阻力(kPa),按表 3.1查取; R σ— 桩尖处土的极限承载力(kPa),可按下式计算: {[]()}322200-+=h k m R γσλσ []0σ— 桩尖处土的容许承载力(kPa),按表3.1查取; h — 桩尖的埋置深度(m); 2k — 地面土容许承载力随深度的修正系数,据规范表 2.1.4取为0.0; 2γ— 桩尖以上土的容重(kN/m 3); λ— 修正系数,据规范表4.3.2-2,取为0.65; 0m — 清底系数,据规范表4.3.2-3,钻孔灌注桩取为 0.80,人工挖孔桩取为1.00。

桥梁桩基础竖向承载力探究

桥梁桩基础竖向承载力探究 摘要:随着我国城市进程的加快,国民经济迅速增长,建筑业也得到迅猛的发展。我国城市中高楼林立,建设很多大型的公共设施。本文就要根据荣成至乌海 线青岛镜段告诉公路中桥梁的桩基础竖向承载力为研究对象,选择具有代表性的 K6中桥4号台和K8中桥5号台进行试验分析。具体的试验过程就是通过载荷试验,利用在每个桩不同截面上的钢筋盈利反映桩身轴力的相关数据,通过对实验 中得出的数据分析,获得不同类型不同桩长的承载力,为我国建筑工程提供更加 坚实可靠的依据。 关键词:桥梁桩基;竖向承载力;研究分析 随着我国国民经济的不断进步,建筑业也得到迅猛的发展,由于桩具有较高 的承载力,而且变形小,施工方便,能够满足建筑物负荷的要求,保证工程的治疗,因此桩在建筑行业中的应用非常普遍。高层的建筑、桥梁、码头等工程都采 用的桩基础施工技术[1]。桩技术能够将建筑物上部分的自重和荷载传递到桩基础 下稳定的土层当中,从而增加了建筑物的稳定性,防止建筑发生沉降。桩基础是 基桩和桩顶的承台组成的。桩身埋入土中,承台与地面接触,被称为低承台桩基。桩身一部分埋入土中,承台在地面以上,成为高承台基桩。 桩基础的基本概述 桩基础特点 桩主要用在坚硬的持力层,具有较高的竖向承载力和群桩承载力,能够承担 高层建筑的全部竖向承载力。同时,还具有较高的竖向刚度和群刚度,保证建筑 物不会发生沉降,建筑物的倾斜保证在安全范围内。桩凭借较强的高度和群桩刚 度以及抗倾斜能力,能够防止建筑物在地震或者台风中出现坍塌和倾斜[2]。桩身 在穿过液化的土层支撑在稳定的坚实土层中,发生地震的时候,液化土层发生塌陷,但是支撑在坚实土层中的桩基依然具有抗压和承载能力,保证了建筑的稳定性。 桩基础的适用性 装技术不仅能够支撑竖向承载力,还能支撑水平承载力,能够在发生地震的 时候起到减震的效果。桩基础承载力高,稳定性强,能够保证建筑物沉降在安全 范围内,因此桩基础已经是桥梁等建筑最常采用的形式。 根据以往的实践经验来看,桩基础方案的选择需要满意一些条件。1、建筑 的载荷过大,地基上部的土层比较柔软,采用浅基础或者人工地基的基础上,需 要控制成本。2、河床冲刷力比较大,河道不稳定,浅基础施工很难进行。3、建 筑上部的结构发生不均匀沉降。4、施工的水位较高或者建筑所在地区的地下水 位过高。5、在地震常发地区,需要加强建筑的抗震能力[3]。 根据以往实践经验,在一些情况下也要谨慎选择使用桩基础。第一,层土比 下层土要坚硬。第二,地下水被大量吸收。第三,水文地质条件非常复杂[4]。 桩基础的发展趋势 桩基础的应用具有非常久远的历史,我国大规模的应用是在改革开放后,近 几年,我国建筑工程的实践应用推动了传统桩型和新桩型的发展。目前,桩基的 发展向大直径发展,随着跨江、跨海桥梁的建筑越来越多,建筑上部结构对桩基 础的承载力和变形要求越来越高,因此桩变得越来越长,直径也越变越大。 桩基础的书香承载力承载着桥梁上半部分,并且将承受到的力传送到地基上,随着自然和水文地质的影响,在进行施工的时候也要考虑各方面因素的影响,通

桩基础作业(承载力计算)-附答案

1.某灌注桩,桩径0.8d m =,桩长20l m =。从桩顶往下土层分布为: 0~2m 填土,30sik a q kP =;2~12m 淤泥,15sik a q kP =;12~14m 黏土,50sik a q kP =;14m 以下为密实粗砂层,80sik a q kP =,2600pk a q kP =,该层厚度大,桩未穿透。试计算单桩竖向极限承载力标准值。 【解】 uk sk pk sik i pk p Q Q Q u q l q A =+=+∑ ()20.8302151050280426000.84 1583.41306.92890.3uk sk pk Q Q Q kN π π=+=???+?+?+?+??=+= 2.某钻孔灌注桩,桩径 1.0d m =,扩底直径 1.4D m =,扩底高度1.0m ,桩长 12.5l m =,桩端入中砂层持力层0.8m 。土层分布: 0~6m 黏土,40sik a q kP =;6~10.7m 粉土,44sik a q kP =; 10.7m 以下为中砂层,55sik a q kP =,1500pk a q kP =。试计算单桩竖向极限承载力标准值。 【解】 1.00.8d m m =>,属大直径桩。 大直径桩单桩极限承载力标准值的计算公式为: p pk p i sik si pk sk uk A q l q u Q Q Q ψψ+=+=∑ (扩底桩斜面及变截面以上d 2长度范围不计侧阻力) 大直径桩侧阻、端阻尺寸效应系数为: 桩侧黏性土和粉土:() 1/5 1/5(0.8/)0.81.00.956si d ψ=== 桩侧砂土和碎石类土:()1/3 1/3(0.8/)0.81.00.928si d ψ=== 桩底为砂土:() 1/3 1/3(0.8/)0.81.40.830p D ψ=== ()2 1.00.9564060.956440.831500 1.410581505253.3564 uk Q kN ππ =????+??+???=+= 3.某工程采用泥浆护壁钻孔灌注桩,桩径1.2m ,桩端进入中等风化岩1.0m ,中等风化岩岩体较完整,饱和单轴抗压强度标准值为41.5a MP ,桩顶以下土层参数

地基承载力计算例子

地基承载力计算计算书 项目名称_____________构件编号_____________日期_____________ 设计者_____________ 校对者_____________ 一、设计资料 1.基础信息 基础长:l=4000mm 基础宽:b=4000mm 基础底标高:dbg=-2.00m 2.荷载信息 竖向荷载:F k=1000.00kN 绕X轴弯矩:M x=0.00kN·m 绕Y轴弯矩:M y=0.00kN·m

3.计算参数 天然地面标高:bg=0.00m Array地下水位标高:wbg=-4.00m 宽度修正系数:wxz=1 是否进行地震修正:是 单位面积基础覆土重:rh=2.00kPa 计算方法:GB50007-2002--综合法 4.土层信息: 土层参数表格 二、计算结果 1.基础底板反力计算 基础自重和基础上的土重为:

G k = A×p =16.0×2.0= 32.0kN 基础底面平均压力为: 1.1当轴心荷载作用时,根据5. 2.2-1 : P k = = = 64.50 kPa 1.2当竖向力N和Mx同时作用时: x方向的偏心距为: e = = = 0.00m x方向的基础底面抵抗矩为: W = = = 10.67m3 x方向的基底压力,根据5.2.2-2、5.2.2-3为:P kmax = + = 64.50 + = 64.50 kPa P kmin = - = 64.50 - = 64.50 kPa 1.3当竖向力N和My同时作用时: y方向的偏心距为: e = = = 0.00m y方向的基础底面抵抗矩为: W = = = 10.67m3 y方向的基底压力,根据5.2.2-2、5.2.2-3为:P kmax = + = 64.50 + = 64.50 kPa

最全面的桩基计算总结

最全面的桩基计算总结 桩基础计算 一.桩基竖向承载力《建筑桩基技术规范》 5.2.2 单桩竖向承载力特征值Ra应按下式确定: Ra=Quk/K 式中 Quk——单桩竖向极限承载力标准值; K——安全系数,取K=2。 5.2.3对于端承型桩基、桩数少于4根的摩擦型柱下独立桩基、或由于地层土性、使用条件等因素不宜考虑承台效应时,基桩竖向承载力特征值应取单桩竖向承载力特征值。5.2.4对于符合下列条件之一的摩擦型桩基,宜考虑承台效应确定其复合基桩的竖向承载力特征值: 1 上部结构整体刚度较好、体型简单的建(构)筑物; 2 对差异沉降适应性较强的排架结构和柔性构筑物; 3 按变刚度调平原则设计的桩基刚度相对弱化区; 4 软土地基的减沉复合疏桩基础。 当承台底为可液化土、湿陷性土、高灵敏度软土、欠固结土、新填土时,沉桩引起超孔隙水压力和土体隆起时,不考虑承台效应,取η=0。

单桩竖向承载力标准值的确定: 方法一:原位测试 1.单桥探头静力触探(仅能测量探头的端阻力,再换算成探头的侧阻力)计算公式见《建筑桩基技术规范》5.3.3 2.双桥探头静力触探(能测量探头的端阻力和侧阻力)计算公式见《建筑桩基技术规 范》5.3.4 方法二:经验参数法 1.根据土的物理指标与承载力参数之间的关系确定单桩承载力标准值《建筑桩基技术规范》5.3.5 2.当确定大直径桩(d>800mm)时,应考虑侧阻、端阻效应系数,参见5. 3.6 钢桩承载力标准值的确定: 1.侧阻、端阻同混凝土桩阻力,需考虑桩端土塞效应系数;参见5.3.7 混凝土空心桩承载力标准值的确定: 1.侧阻、端阻同混凝土桩阻力,需考虑桩端土塞效应系数;参见5.3.8 嵌岩桩桩承载力标准值的确定: 1.桩端置于完整、较完整基岩的嵌岩桩单桩竖向极限承载力,由桩周土总极限侧阻力和嵌岩段总极限阻力组成。 后注浆灌注桩承载力标准值的确定: 1.承载力由后注浆非竖向增强段的总极限侧阻力标准值、后注浆竖向增强段的总极限侧阻力标准值,后注浆总极限端阻力标准值; 特殊条件下的考虑 液化效应: 对于桩身周围有液化土层的低承台桩基,当承台底面上下分别有厚度不小于1.5m、1.0m 的非液化土或非软弱土层时,可将液化土层极限侧阻力乘以土层液化折减系数计算单桩

地基承载力计算公式(附小桥涵地基承载力检测)

地基承载力计算公式(附小桥涵地基承载力检测) 【摘要】简明列出太沙基、汉森、魏锡克、梅耶霍夫、沈珠江、普兹列夫斯基、王长科等地基承载力理论计算公式。下面用TXT文本简明列出太沙基、汉森、魏锡克、梅耶霍夫、沈珠江、普兹列夫斯基、王长科等地基承载力理论计算公式,供参考使用。适于标准受压,只考虑基础宽度、超载影响,不考虑其他诸如倾斜等因素。 1、太沙基(Terzaghi)地基极限承载力qu公式 qu=c*Nc+q*Nq+0.5*γ*B*Nγ 其中 Nc=(Nq-1)*cotφ Nq=exp(π*tanφ) * tan2(45+φ/2) Nγ= 6 * φ / (40 -φ) 式中c、φ分别表示土的粘聚力、内摩擦角,B表示基础宽度。以下同。 2、汉森(Hansen)地基极限承载力qu公式 qu=c*Nc+q*Nq+0.5*γ*B*Nγ 其中 Nc=(Nq-1)*cotφ Nq=exp(π*tanφ) * tan2(π/4+φ/2) Nγ = 1.5 * Nc * tan2φ 3、梅耶霍夫(Meyerhof)地基极限承载力qu公式 qu=c*Nc+q*Nq+0.5*γ*B*Nγ 其中 Nc=(Nq-1) * cotφ Nq=exp(π*tanφ)*tan2(π/4+φ/2) Nγ = (Nq - 1) * tan(1.4 * φ) 4、魏锡克(Vesic)地基极限承载力qu公式 qu=c*Nc+q*Nq+0.5*γ*B*Nγ 其中 Nc=(Nq-1) * cotφ Nq=exp(π*tanφ) * tan2(π/4+φ/2) Nγ = 2 * (Nq + 1) * tanφ 5、沈珠江地基极限承载力qu公式 qu= (1 + d / B) ^ (1 / 3) * (c / tanφ * (Nq - 1) + 0.5 * γ * b * Nγ)

桥梁桩基础设计计算部分

一方案比选优化 公路桥涵结构设计应当考虑到结构上可能出现的多种作用,例如桥涵结构构件上除构件永久作用(如自重等)外,可能同时出现汽车荷载、人群荷载等可变作用。《公路桥规》要求这时应该按承载力极限状态和正常使用极限状态,结合相应的设计状况进行作用效应组合,并取其最不利组合进行计算。 1、按承载能力极限状态设计时,可采用以下两种作用效应组合。 (1)基本作用效应组合。基本组合是承载能力极限状态设计时,永久作用标准值效应与可变作用标准值效应的组合,基本组合表达式为 (1-1) 或(1-2) γ0-桥梁结构的重要性系数,按结构设计安全等级采用,对于公路桥梁,安全等级一级、二级、三级,分别为1.1、1.0和0.9; γGi-第i个永久荷载作用效应的分项系数。分项系数是指为保证所设计的结构具有结构的可靠度而在设计表达式中采用的系数,分为作用分项系数和抗力分项系数两类。当永久作用效应(结构重力和预应力作用)对结构承载力不利时,γGi=1.2; 对结构的承载能力有利时,γGi=10;其他永久作用效应的分项系数详见《公路桥规》; γQ1-汽车荷载效应(含汽车冲击力、离心力)的分项系数,取γQ1=1.4;当某个可变作用在效用组合中,其值超过汽车荷载效用时,则该作用取代汽车荷载,其分项系数应采用汽车荷载的分项系数;对专门为承受某种作用而设置的结构或装置,设计时该作用的分项系数取与汽车荷载同值;计算人行道板和人行道栏杆的局部荷载时,其分项系数也与汽车荷载取同值。 γQj-在作用效应组合中除汽车荷载效应(含汽车冲击力、离心力)、风荷载以外的其他第j个可变作用效应的分项系数,取γQ1=1.4,但风荷载的分项系数取γQ1= 1.1;

单桩竖向承载力特征值计算方法

单桩竖向承载力特征值按《建筑桩基技术规范》JGJ94 -2008第5.2.2条公式5.2.2计算: R a=Q uk/K 式中: R a——单桩竖向承载力特征值; Q uk——单桩竖向极限承载力标准值; K——安全系数,取K=2。 1. 一般桩的经验参数法 此方法适用于除预制混凝土管桩以外的单桩。 按JGJ94-2008规范中第5.3.5条公式5.3.5计算: 式中: Q sk——总极限侧阻力标准值; Q pk——总极限端阻力标准值; u——桩身周长; l i——桩周第i 层土的厚度; A p——桩端面积; q sik——桩侧第i 层土的极限侧阻力标准值;参考JGJ94-2008规范表5.3.5-1取值,用户需在地质资料土层参数中设置此值;对于端承桩取q sik=0; q pk——极限端阻力标准值,参考JGJ94-2008规范表5.3.5- 2取值,用户需在地质资料土层参数中设置此值;对于摩擦桩取q pk=0; 2. 大直径人工挖孔桩(d≥800mm)单桩竖向极限承载力标准值的计算 此方法适用于大直径(d≥800mm)非预制混凝土管桩的单桩。按JGJ94-2008规范第5.3.6条公式5.3.6 计算: 式中: Q sk——总极限侧阻力标准值; Q pk——总极限端阻力标准值; q sik——桩侧第i层土的极限侧阻力标准值,可按JGJ94-2008规范中表5.3.5-1取值,用户 需 1取值,用户需在地质资料土层参数中设置此值;对于扩底桩变截面以上2d范围不计侧阻力;对于端承桩取q sik=0; q pk——桩径为800mm极限端阻力标准值,可按JGJ94-2008规范中表5.3.6- 1取值;用户需在地质资料土层参数中设置此值;对于摩擦桩取qpk=0; ψsi,ψp——大直径桩侧阻、端阻尺寸效应系数,按JGJ94-2008表5.3.6-2取值;

地基承载力计算

地基bai承载力=8*N-20(N为锤击数) 地基基础允许承载力是指在保证地基稳定的条件下,房屋和构筑物 的沉降量不超过容许值的地基承载力。中国制定的“工业与民用建 筑地基基础设计规范”(TJ7-74)中规定,在基础宽度小于3米,埋深0.5—1.0米的条件下,粘性土主要根据孔隙比(e)、天然含 水量(Wo)、相对含水量(Wb)考虑。砂根据饱和度(Sr)和紧密度(D)决定,也可按标准贯入试验及钻探试验锤击数确定地基 承载力。当基础宽度大于3米,埋深大于1米时,必须按下式校正:P=[σ]+ k1r0(b-3)+k2r(h-1)。式中P为计算承载力(吨/平 方米),[σ]为按表查得的承载力(吨/平方米),r0及r为地基土 持力层的天然容重(地下水位以下取水下容重,吨/立方米),k1 及k2为安全系数,取2—3。 密实法 用密实法处理地基又可分为:①碾压夯实法:对含水量在一定 范围内的土层进行碾压或夯实。此法影响深度约为200毫米,仅适于平整基槽或填土分层夯实。②重锤夯实法:利用起重机械提起重锤,反复夯打(图a),其有效加固深度可达1.2米。此法适用于处理粘性土、砂土、杂填土、湿陷性黄土地基和对大面积填土的压实以及杂 填土地基的处理。③机械碾压法:用平碾、羊足碾、压路机、推土 机及其他压实机械压实松散土层(图b)。碾压效果取决于被压土层的含水量和压实机械的能量。对于杂填土地基常用 8~12吨的平碾或13~16吨的羊足碾,逐层填土,逐层碾压。④振动压实法:在地基表面施加振动力,以振实浅层松散土(图c)。振动压实效果取决于 振动力、被振的成分和振动时间等因素。用此法处理以砂土、炉渣、碎石等无粘性土为主的填土地基,效果良好。⑤强夯法:利用重量 为8~40吨的重锤从6~40米的高处自由落下,对地基进行强力夯实的处理方法。经过强夯的地基承载能力可提高3~4倍,以至6倍,

地基承载力计算公式

地基承载力计算公式-CAL-FENGHAI.-(YICAI)-Company One1

地基承载力计算公式 地基承载力计算公式很多,有理论的、半理论半经验的和经验统计的,它们大都包括三项: 1. 反映粘聚力c的作用; 2. 反映基础宽度b的作用; 3. 反映基础埋深d的作 用。 在这三项中都含有一个数值不同的无量纲系数,称为承载力系数,它们都是内摩擦角φ的函数。 下面介绍三种典型的承载力公式。 a.太沙基公式 式中: P u——极限承载力,K a c ——土的粘聚力,KP a γ——土的重度,KN/m,注意地下水位下用浮重度; b,d——分别为基底宽及埋深,m; N c ,N q ,N r——承载力系数,可由图中实线查取。 图 2

对于松砂和软土,太沙基建议调整抗剪强度指标,采用 c′=1/3c , 此时,承载力公式为: 式中N c′,N q′,N r′——局部剪切破坏时的承载力系数,可由图中虚线查得。 对于宽度为b的正方形基础 对于直径为b′的圆形基础 b.汉森承载力公式 式中Nr,Nq,Nr——无量纲承载力系数,仅与地基土的内摩擦角有关,可查表c,N q,N r值 N c N q N r N c N q N r 024 226 428 630 832 1034 1236 1438 1640 1842 2044 3

2246 S c,S q,S r——基础形状系数,可查表 表基础形状系数S c,S q,S r值 基础形状S c S q S r 条形 圆形和方形1+N q/N c1+tanφ 矩形(长为L,宽为b)1+b/L×N q/N c1+b/LtanφL d c,d q,d r——基础埋深系数,可查表 表埋深系数d c,d q,d r d/b 埋深系数 d c d q d r ≤ 〉 i c,i q,i r——荷载倾斜系数,可查表 i c i q i r 注: H,V——倾斜荷载的水平分力,垂直分力,KN ; F——基础有效面积,F=b'L'm; 当偏心荷载的偏心矩为e c和e b,则有效基底长度, L'=L-2e c;有效基底宽度:b'=b-2e b。 c.我国地基规范提供的承载力公式 当荷载偏心矩e≤时,可用下列公式: 4

桥桥墩桩基础基础设计

桥桥墩桩基础基础设计文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

华东交通大学 课程设计(论文) 题目名称某桥桥墩桩基础设计计算 院(系)土木建筑学院 专业道路与铁道工程 班级道铁2班 姓名欧阳俊雄 2011年 6 月 13 日至 2011 年 6 月 29 日共 1 周 指导教师: 耿大新 教研室主任: 李明华 资料收集 某桥梁上部构造采用预应力箱梁。标准跨径32m,梁长,计算跨径,桥面宽13m,墩上纵向设两排支座,一排固定,一排滑动,桥墩采用圆端形实心墩,平面尺寸形式如图1所示,墩高12m,计算墩顶变形时,不考虑墩身的挠曲。下部结构采用钻孔灌注桩基础。 1、地质及地下水位情况: 河面常水位标高,河床标高为,一般冲刷线标高,最大冲刷线标高处,一般冲刷线以下的地质情况如下:

2、设计荷载: (1)恒载: 桥面自重:1N=1500kN+学号×20kN=1500+16×20=1820kN 箱梁自重:2N=6000kN+学号×40kN=6000+16×40=6640kN 桥墩自重:3N=3875kN (2)活载 一跨活载反力:2835.75kN N4=,在顺桥向引起弯矩: M1? 3334.3 =; kN m 两跨活载反力: =+学号×50kN=+16×50=\ N 5 (3)水平力 =300kN,对承台顶力矩; 制动力:H 1 风力:H = kN,对承台顶力矩 2 主要材料 承台采用C30混凝土,重度γ=25kN/m3、γ′=15kN/m3(浮容重)。

在班编号为20,所以桩基采用C30混凝土,HRB400级钢筋; 4、其它参数 结构重要性系数γso =,荷载组合系数φ=,恒载分项系数γG =,活载分项系数γQ =,风荷载ψ=,制动力: 拟定承台尺寸: 假设承台的厚度为,根据圆端形实心墩的平面尺寸计算承台的长和宽 宽度:m 615.123=??+ 长度:m 915.126=??+ 三、拟定桩的尺寸及桩数: 1、摩擦桩,桩身采用C30混凝土。 2、由于d 516=-,d=,所以设计桩径采用d=,成孔桩径为,钻孔灌注桩,采用旋转式钻头。 3、画出土层分布图,选用卵石层为持力层,则取桩长l=。 4、估算桩数:(按双孔重载估算) 估算公式: 据高等学校教材《基础工程(第四版)》(人民交通出版社)查表4—2可得λ=,查表4—3得m 0=, 查表2-24有k 2= 由于桩侧土为不同土层,应采用各土层容重加权平均,透水层采用浮容重,不透水层采用天然容重 3 2/46.105 .221 .11105.205.4102.187.3103.172.25.170.15.16m kN =?-+?-+?-+?+?= )()()(γ持力层为卵石,查表得650kPa ][0=fa ,q ik 查表4—1得

地基承载力(轻、重型计算公式)

小桥涵地基承载力检测 《公路桥涵施工技术规范》JTJ041-2000(P28)“小桥涵的地基检验可采用直观法或触探方法,必要时可进行土质试验”。就我国在建高速公路桥涵地基承载力而言,设计单位在施工图中多给出了地基承载力要求,如圆管涵基底承载力要求100kpa、箱涵250 kpa等等。因此承建单位一般采用(动力)触探法对基底进行检验。 触探法可分为静力触探试验、动力触探试验及标准贯入试验,那么它们分别是怎样定义的?适用范围又是什么呢?我想我们检测人 员是应该搞清楚的。 1、静力触探试验:指通过一定的机械装置,将某种规格的金属触探头用静力压入土层中,同时用传感器或直接量测仪表测试土层对触探头的贯入阻力,以此来判断、分析确定地基土的物理力学性质。静力触探试验适用于粘性土,粉土和砂土,主要用于划分土层,估算地基土的物理力学指标参数,评定地基土的承载力,估算单桩承载力及判定砂土地基的液化等级等。(多为设计单位采用)。 2、动力触探试验:指利用锤击功能,将一定规格的圆锥探头打入土中,根据打入土中的阻抗大小判别土层的变化,对土层进行力学分层,并确定土层的物理力学性质,对地基土作出工程地质评价。动力触探试验适用于强风化、全风化的硬质岩石,各种软质岩及各类土;动力触探分为轻型、重型及超重型三类。目前承建单位一般选用轻型和重型。

①轻型触探仪适用于砂土、粉土及粘性土地基检测,(一般要求土中不含碎、卵石),轻型触探仪设备轻便,操作简单,省人省力,记录每打入30cm的锤击次数,代用公式为R=(0.8×N-2)×9.8(R-地基容许承载力Kpa , N-轻型触探锤击数)。 ②重型触探仪:适用于各类土,是目前承建单位应用最广泛的一种地基承载力测试方法,该法是采用质量为63.5kg的穿心锤,以76cm 的落距,将触探头打入土中,记录打入10cm的锤击数,代用公式为y=35.96x+23.8( y-地基容许承载力Kpa , x-重型触探锤击数)。 3、标准贯入试验:标准贯入试验是动力触探类型之一,其利用质量为63.5 kg的穿心锤,以76cm的恒定高度上自由落下,将一定规格的触探头打入土中15cm,然后开始记录锤击数目,接着将标准贯入器再打入土中30 cm,用此30 cm的锤击数(N)作为标准贯入试验指标,标准贯入试验是国内广泛应用的一种现场原位测试手段,它不仅可用于砂土的测试,也可用于粘性土的测试。锤击数(N)的结果不仅可用于判断砂土的密实度,粘性土的稠度,地基土的容许承载力,砂土的振动液化,桩基承载力,同时也是地基处理效果的一种重要方法。(多为测试中心及设计单位采用)。

单桩水平承载力计算

600 单桩水平承载力: ZH-600 600.1 基本资料 600.1.1 工程名称: 工程一 600.1.2 桩型:预应力混凝土管桩; 桩顶约束情况:铰接 600.1.3 管桩的编号 PHC-AB600(110),圆桩直径 d = 600mm ,管桩的壁厚 t = 110mm ; 纵向钢筋的根数、直径为 13φ10.7; 桩身配筋率 ρg = 0.826% 600.1.4 桩身混凝土强度等级 C80, f t = 2.218N/mm E c = 37969N/mm 纵向钢筋净保护层厚度 c = 25mm ; 钢筋弹性模量 E s = 200000N/mm 600.1.5 桩顶允许水平位移 x 0a = 10mm ; 桩侧土水平抗力系数的比例系数 m = 10MN/m 4 ; 桩的入土长度 h = 28m 600.2 计算结果 600.2.1 桩身换算截面受拉边缘的截面模量 W 0 600.2.1.1 扣除保护层厚度的桩直径 d 0 = d - 2c = 600-2*25 = 550mm 600.2.1.2 钢筋弹性模量与混凝土弹性模量的比值 αE = E s / E c = 200000/37969 = 5.2675 600.2.1.3 预应力混凝土管桩的内径 d 1 = d - 2t = 600-2*110 = 380mm 600.2.1.4 W 0 = π·[(d 4 - d 14) / d] / 32 + π·d·(αE - 1)·ρg ·d 02 / 16 = π*[(0.64-0.384)/0.6]/32+π*0.6*(5.2675-1)*0.00826*0.552/16 = 0.019051m 600.2.2 桩身抗弯刚度 EI 600.2.2.1 桩身换算截面惯性矩 I 0 = W 0·d 0 / 2 = 0.01905*0.55/2 = 0.0052390m 4 600.2.2.2 EI = 0.85E c ·I 0 = 0.85*37969*1000*0.005239 = 169079kN · m 600.2.3 桩的水平变形系数 α 按桩基规范式 5.7.5 确定: α = (m ·b 0 / EI)1/5 600.2.3.1 圆形桩当直径 d ≤ 1m 时 b 0 = 0.9(1.5d + 0.5) = 0.9*(1.5*0.6+0.5) = 1.260m 600.2.3.2 α = (m ·b 0 / EI)1/5 = (10000*1.26/169079)0.2 = 0.5949(1/m) 600.2.4 桩顶水平位移系数 νx 600.2.4.1 桩的换算埋深 αh = 0.5949*28 = 16.66m 600.2.4.2 查桩基规范表 5.7.2,桩顶水平位移系数 νx = 2.441 600.2.5 单桩水平承载力特征值按桩基规范式 5.7.2-2 确定: R ha = 0.75α3·EI·x 0a / νx 600.2.5.1 R ha = 0.75*0.59493*169079*0.01/2.441 = 109.4kN 600.2.5.2 验算地震作用桩基的水平承载力时,R haE = 1.25R ha = 136.7kN 9#,10#楼,查电算信息风荷载作用下基底剪力为Vx=1158kn,Vy=2077kn,地震作用下基底剪力为Vx=2292kn,Vy=3001kn.故由地震下控制。工程桩总桩数为64根。则作用于基桩顶处的水平力H ik 为3001/64=47kn< R ha .满足要求(还未考虑土对筏板的有利抗侧力). 2,3#楼,查电算信息风荷载作用下基底剪力为Vx=1098kn,Vy=1560kn,地震作用下基底剪力为Vx=2121kn,Vy=2048kn.故由地震下控制。工程桩总桩数为55根。则作用于基桩顶处的水平力H ik 为2121/55=39kn< R ha .满足要求(还未考虑土对筏板的有利抗侧力). 500 单桩水平承载力: ZH-500 500.1 基本资料 500.1.1 工程名称: 工程一 500.1.2 桩型:预应力混凝土管桩; 桩顶约束情况:铰接 500.1.3 管桩的编号 PHC-AB500(100),圆桩直径 d = 500mm ,管桩的壁厚 t = 100mm ; 纵向钢筋的根数、直径为 10φ10.7; 桩身配筋率 ρg = 0.877% 500.1.4 桩身混凝土强度等级 C80, f t = 2.218N/mm E c = 37969N/mm 纵向钢筋净保护层厚度 c = 25mm ; 钢筋弹性模量 E s = 200000N/mm 500.1.5 桩顶允许水平位移 x 0a = 10mm ; 桩侧土水平抗力系数的比例系数 m = 10MN/m 4 ; 桩的入土长度 h = 28m 500.2 计算结果 500.2.1 桩身换算截面受拉边缘的截面模量 W 0 500.2.1.1 扣除保护层厚度的桩直径 d 0 = d - 2c = 500-2*25 = 450mm 500.2.1.2 钢筋弹性模量与混凝土弹性模量的比值 αE = E s / E c = 200000/37969 = 5.2675 500.2.1.3 预应力混凝土管桩的内径 d 1 = d - 2t = 500-2*100 = 300mm 500.2.1.4 W 0 = π·[(d 4 - d 14) / d] / 32 + π·d·(αE - 1)·ρg ·d 02 / 16 = π*[(0.54-0.34)/0.5]/32+π*0.5*(5.2675-1)*0.00877*0.452/16 = 0.011425m 500.2.2 桩身抗弯刚度 EI 500.2.2.1 桩身换算截面惯性矩 I 0 = W 0·d 0 / 2 = 0.01143*0.45/2 = 0.0025707m 4 500.2.2.2 EI = 0.85E c ·I 0 = 0.85*37969*1000*0.0025707 = 82965kN · m 500.2.3 桩的水平变形系数 α 按桩基规范式 5.7.5 确定: α = (m ·b 0 / EI)1/5 500.2.3.1 圆形桩当直径 d ≤ 1m 时 b 0 = 0.9(1.5d + 0.5) = 0.9*(1.5*0.5+0.5) = 1.125m 500.2.3.2 α = (m ·b 0 / EI)1/5 = (10000*1.125/82965)0.2 = 0.6706(1/m) 500.2.4 桩顶水平位移系数 νx 500.2.4.1 桩的换算埋深 αh = 0.6706*28 = 18.78m 500.2.4.2 查桩基规范表 5.7.2,桩顶水平位移系数 νx = 2.441 500.2.5 单桩水平承载力特征值按桩基规范式 5.7.2-2 确定: R ha = 0.75α3·EI·x 0a / νx 500.2.5.1 R ha = 0.75*0.67063*82965*0.01/2.441 = 76.9kN 500.2.5.2 验算地震作用桩基的水平承载力时,R haE = 1.25R ha = 96.1kN 1#楼,查电算信息风荷载作用下基底剪力为Vx=955.5kn,Vy=3962.8kn,地震作用下基底剪力为Vx=4150.33kn,Vy=5372.60kn.故由地震下控制。工程桩总桩数为135根。则作用于基桩顶处的水平力H ik 为5372.60/135=39.8kn< R ha .满足要求(还未考虑土对筏板的有利抗侧力). 4#楼,查电算信息风荷载作用下基底剪力为Vx=895.6kn,Vy=1853.1kn,地震作用下基底剪力为 Vx=2005.43kn,Vy=2587.28kn.故由地震下控制。工程桩总桩数为66根。则作用于基桩顶处的水平力H ik 为2587.28/66=39.2kn< R ha .满足要求(还未考虑土对筏板的有利抗侧力).

相关文档
最新文档