_膜蛋白质组分析技术的研究进展

_膜蛋白质组分析技术的研究进展
_膜蛋白质组分析技术的研究进展

蛋白质组学的应用研究进展

蛋白质组学的应用研究进展 蛋白质组学的应用研究进展 尹稳1 伏旭2 李平1 (1. 兰州大学第二医院,兰州 730030 ;2. 兰州大学第二医院急救中心,兰州730030) 摘要:蛋白质组学(Proteomics)是一门大规模、高通量、系统化的研究某一类型细胞、组织或体液中的所有蛋白质组成 及其功能的新兴学科。虽然基因决定蛋白质的水平,但是基因表达的水平并不能代表细胞内活性蛋白的水平,蛋白质组学分析是对蛋白质翻译和修饰水平等研究的一种补充,是全面了解基因组表达的一种必不可少的手段。蛋白质组学相关技术的发展极大地推动了蛋白质组学的研究进展,使其在各研究领域得到了广泛的应用。对蛋白质组学相关技术及其在各领域的应用进行了综述,最后对蛋白质组学的发展趋势和应用前景作出展望。 关键词:蛋白质组学双向凝胶电泳 质谱 生物信息学 应用现状 Application Research Progress of Proteomics (1. Lanzhou University Second Hospital,Lanzhou 730030 ;2. Department of Emergency,Lanzhou University Second Hospital,Lanzhou 730030) Abstract: Proteomics is an emerging discipline for studying proteins composition and function in a type of cell, tissue or body fluids in a large-scale, high-throughput and systematic level. While genes determine the level of protein, but the level of gene expression can not represent the intracellular reactive protein levels. Proteomic analysis is a complement to the study of translation and modification and also an indispensable tool for a comprehensive understanding of genome expression. The development of proteomic technologies has greatly promoted the progress of proteomic research, and it has been widely used in various research fields.This paper revieweded the proteomic technologies and the applications in various fields are also briefly reviewed. Finally, some future issues are presented.

动态膜分离技术研究进展

文章编号:1007-8924(2007)04-0091-05专题综述 动态膜分离技术研究进展 李晓波,胡保安,顾 平 (天津大学环境科学与工程学院,天津300072) 摘 要:介绍动态膜分离技术的概念,着重讨论影响动态膜分离性能的相关因素以及动态膜 在污水处理中的应用效果,指出动态膜技术具有良好的应用前景,但目前仍处于试验阶段,尚需深入研究. 关键词:动态膜;污水处理;研究进展中图分类号:TQ028.8 文献标识码:A 膜分离技术是当今水处理领域研究的热点,国内外均做了大量的研究工作[1-5],然而,膜污染及膜组件昂贵的价格是阻碍膜技术广泛应用的主要原因.动态膜分离技术采用大孔径材料制作膜组件,降低了膜组件的造价;同时,已有研究表明,动态膜的渗透性能更佳、抗污染能力显著提高[6-8].因此,动态膜作为一项新型的特殊膜分离技术正越来越多地受到国内外水处理技术研究者的关注[9-13]. 1 动态膜分离技术 动态膜作为一种分离技术,包含动态膜的载体 及动态膜分离层本身.动态膜的载体指用来承载动态膜的大孔径材料,一般价格低廉、易得,常见的有不锈钢丝网、普通筛网、工业滤布、筛绢等多孔材料和一些高分子材料,如烧结聚氯乙烯管等.动态膜分离层是动态膜分离技术的主体,指依附于动态膜载体之上、执行分离功能的滤饼层或污泥层.它是通过错流过滤或死端过滤的方式将某种固体或胶体微粒沉淀在载体表面上形成的.用于形成动态膜的粒子种类较多,有粘土类矿物、粉状活性炭(PAC )、ZrO 2、MnO 2、聚乙烯醇(PVA )等,也可用被处理的废液中的某种物质作为成膜物质沉淀在载体上形成动态膜,如自生生物动态膜的成膜物质为污水中的活性污泥.目前国内外关于动态膜分离技术的研究主要 集中在影响动态膜分离性能的因素及操作参数的优化方面. 2 影响动态膜分离性能的因素 2.1 pH 的影响 p H 对ZrO 2动态膜和MnO 2动态膜的影响较为 明显,这是由于MnO 2动态膜和大多数ZrO 2动态膜都是通过化学反应来生成膜粒子的. ZrO 2粒子的形成有两种方法:一种是提高含Zr 4+溶液,如无水ZrCl 4的水溶液的p H 来形成[14], 另一种是将ZrOCl 2加入到硫酸溶液中而形成[15].Zr 的水合氧化物在不同p H 下的特性不同,其粒子大小也不同.p H 较低时所生成的粒子粒径较小,随着p H 升高,粒径也逐渐升高.由于小颗粒需要更长的时间堵塞载体的孔隙,所以形成动态膜所需的时间也更长.Altman 等[16]的研究表明,动态膜的形成时间从p H 为3.5时的120min 减少到p H 为6时的45min ;Rumyantsev 等[16]的研究结果则分别是100min 和小于45min.蛋白质的截留率与p H 的关系不是很明显,p H 为3.5、5和6时形成的动态膜的截留率大于p H 为4时的动态膜. MnO 2是KMnO 4的还原产物,其反应式为4KMnO 4+6HCOONa =4MnO 2↓+2K 2CO 3+ 3Na 2CO 3+3H 2O +CO 2↑ 收稿日期:2005-09-06;修改稿收到日期:2006-01-17 作者简介:李晓波(1970-),男,河南省人,博士生,主要从事水污染治理技术的研究. 第27卷 第4期膜 科 学 与 技 术 Vol.27 No.4 2007年8月MEMBRAN E SCIENCE AND TECHNOLO GY Aug.2007

蛋白质组学与分析技术1

名词解释 蛋白质组学:是研究与基因对应的蛋白质组的学科。指一种基因组所表达的全套蛋白质,即包括一个基因组、一种细胞或组织,乃至一种生物所表达的全部蛋白质。 双向电泳原理:双向一般是指第一向为等点聚焦(IEF),根据蛋白质等电点进行分离;第二向为SDS凝胶电泳(SDS-PAGE),根据蛋白质的相对分子量进行分离。 三步纯化策略:第一步粗提,浓缩,稳定蛋白,去除蛋白酶,使用梯度洗脱来增加捕获步骤的速度和容量;第二步中度纯化,去除主要杂质,一般需要连续梯度洗脱; 第三步精纯,最终去除痕量杂质,如目标蛋白的结构变体。 高效液相色谱:是一种以高压输出液体为流动相的色谱技术。在技术上采用高压输液泵、高效固定相和高灵敏度检测器,克服了经典液相色谱固定相柱效低,分析周期 长的缺点,具有分析速度快、分离效率高、检出极限地的特点。 吸附色谱:吸附色谱系色谱法之一种,利用固定相吸附中对物质分子吸附能力的差异实现对混合物的分离,吸附色谱的色谱过程是流动相分子与物质分子竞争固定相吸 附中心的过程。 PCR扩增:即聚合酶链式反应,是体外酶促合成特异DNA片段的一种方法,由高温变性、低温退火(复性)及适温延伸等反应组成一个周期,循环进行,使目的DNA 得以迅速扩增,具有特异性强、灵敏度高、操作简便、省时等特点。 基因组文库:基因文库是指整套由基因组DNA片段插入克隆载体获得的分子克隆的总和。 广义的基因文库指来于单个基因组的全部DNA克隆,理想情况下应含有这一 基因组的全部DNA序列(遗传信息),这种基因文库常通过鸟枪法获得。 狭义的基因文库有基因组文库和cDNA文库之分。 cDNA文库:按构建基因文库的类似方法对cDNA进行克隆,获得的克隆总称。 基因芯片:基因芯片又叫DNA芯片(DNA chip),DNA微阵列(DNA microarray), DNA集微芯片(DNA microchip),寡核苷酸阵列(oligonucleotide array)是一种将核酸分子杂交原理与微电子技术相结合而形成的高新生物技术。将靶标样品核酸或探针中的任一方按阵列形式固定在固相载体(硅片、尼龙膜、聚丙烯膜、硝酸纤维素膜、玻璃片等)上,另一方用荧光分子标记后,加样至微阵列上杂交,然后用荧光扫描或摄像技术记录,通过计算机软件分析处理,获得样品中大量的基因序列和表达信息。 基因敲除(gene knock out):又称基因打靶(gene targeting),是指用外源的DNA与受体细

蛋白质组学的应用研究进展_尹稳

?综述与专论? 2014年第1期 生物技术通报 BIOTECHNOLOGY BULLETIN 随着基因组计划的完成,生命科学研究开始进入以基因组学、蛋白质组学、营养组学、代谢组学等“组学”为研究标志的后基因组时代。蛋白质组(proteome)一词最早是由澳大利亚科学家Wilkins 和Williams 于1994年提出[1],1995年7月最早见诸于Electrophoresis 杂志[2],意指一个细胞或组织中由基因组表达的全部蛋白质。蛋白质组学(proteomics)是一门大规模、高通量、系统化的研究某一类型细胞、组织、体液中的所有蛋白质组成、功能及其蛋白之间的相互作用的学科。 虽然基因决定蛋白质的水平,mRNA 只包含了转录水平的调控,其表达水平并不能代表细胞内活 收稿日期:2013-09-05基金项目:甘肃省科技计划基金资助项目(0708NKCA129),兰州大学第二医院医学研究基金项目(YJ2010-08)作者简介:尹稳,女,硕士,研究方向:蛋白质组学;E -mail :yinwen0508@https://www.360docs.net/doc/137062182.html, 通讯作者:伏旭,男,硕士,研究方向:生物化学与分子生物学;E -mail :fuxu0910@https://www.360docs.net/doc/137062182.html, 蛋白质组学的应用研究进展 尹稳1 伏旭2 李平1 (1.兰州大学第二医院,兰州 730030;2.兰州大学第二医院急救中心,兰州 730030) 摘 要: 蛋白质组学(Proteomics)是一门大规模、高通量、系统化的研究某一类型细胞、组织或体液中的所有蛋白质组成及其功能的新兴学科。虽然基因决定蛋白质的水平,但是基因表达的水平并不能代表细胞内活性蛋白的水平,蛋白质组学分析是对蛋白质翻译和修饰水平等研究的一种补充,是全面了解基因组表达的一种必不可少的手段。蛋白质组学相关技术的发展极大地推动了蛋白质组学的研究进展,使其在各研究领域得到了广泛的应用。对蛋白质组学相关技术及其在各领域的应用进行了综述,最后对蛋白质组学的发展趋势和应用前景作出展望。 关键词: 蛋白质组学 双向凝胶电泳 质谱 生物信息学 应用现状 Application Research Progress of Proteomics Yin Wen 1 Fu Xu 2 Li Ping 1 (1. Lanzhou University Second Hospital ,Lanzhou 730030;2. Department of Emergency ,Lanzhou University Second Hospital ,Lanzhou 730030) Abstract: Proteomics is an emerging discipline for studying proteins composition and function in a type of cell, tissue or body fluids in a large -scale, high -throughput and systematic level. While genes determine the level of protein, but the level of gene expression can not represent the intracellular reactive protein levels. Proteomic analysis is a complement to the study of translation and modification and also an indispensable tool for a comprehensive understanding of genome expression. The development of proteomic technologies has greatly promoted the progress of proteomic research, and it has been widely used in various research fields.This paper revieweded the proteomic technologies and the applications in various fields are also briefly reviewed. Finally, some future issues are presented. Key words: Proteomics Two -dimensional gel electrophoresis Mass spectrometry Bio -informactics Application status 性蛋白的水平[3],且转录水平的分析不能反应翻译后对蛋白质的功能和活性起至关重要作用的蛋白修饰过程[4],如酰基化、泛素化、磷酸化或糖基化等。而蛋白质组学除了能够提供定量的数据以外,还能提供包括蛋白定位和修饰的定性信息。只有通过对生命过程中蛋白质功能和蛋白质之间的相互作用以及特殊条件下的变化机制进行研究,才能对生命的复杂活动具有深入而又全面的认识。近年来,蛋白质组学技术取得了长足的发展,随着新技术的不断涌现,其应用范围也不断扩大。本文对蛋白质组学相关技术及其在各研究领域的应用进行了简要的归纳和评述,并对蛋白质组学的发展趋势和应用前景

新型膜分离技术研究进展

新型膜分离技术研究进展 摘要:膜分离技术是一项新兴的高效、快速、节能的新型分离技术。作为一种新型分离技术,在多种领域得到了广泛的应用。综述了反渗透、电渗析、纳滤、微滤、超滤、气体分离、渗透汽化和膜反应器等各种膜分离技术的分离原理、特点,在工业中的应用以及目前存在的问题。最后展望了膜技术的应用前景。 关键词:膜分离;原理;应用;进展 膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。与传统分离方法(蒸发、萃取或离子交换等)相比,它是在常温下操作,没有相变,最适宜对热敏性物质和生物活性物质的分离与浓缩,具有高效、节能,工艺过程简单,投资少,污染小等优点,因而在化工、轻工、电子、医药、纺织、生物工程、环境治理、冶金等方面具有广泛的应用前景。 1膜分离技术的分离原理和特点 1.1纳滤 纳滤膜具有纳米级孔径,截留相对分子质量为200-1000,能使溶剂、有机小分子和无机盐通过。纳滤膜的分离机理模型目前的看法主要是空间位阻-孔道模型。与超滤膜相比,纳滤膜有一定的荷电容量;与反渗膜相比,纳滤膜又不是完全无孔的。纳滤是介于反渗透和超滤之间的一种膜分离技术,是国内外研究的热点。余跃等[1]废水进行了去除COD和脱色的研究。结果表明,纳滤技术可有效地去除印染废水中的色度和COD。 1.2超滤 超滤的截留相对分子质量在1000-100000之间。超滤过程的分离机理一般认为是压力驱动的筛孔分离过程,是膜表面上的机械截留(筛分)、在膜孔中的停留(阻塞)、在膜表面及膜孔内的吸附三种形式。徐超等[2]在中试中采用浸没式超滤膜代替传统砂滤工艺处理浊度较低的滦河水,取得较好的处理效果,设备费用降低了。 1.3微滤 微滤是发展最早、制备技术最成熟的膜形式之一,孔径在0.05-10μm之间,可以将细菌、微粒、亚微粒、胶团等不溶物除去,滤液纯净,国际上通称为绝对过滤。微滤分离的实质是利用膜的“筛分”作用来进行的。即:比膜孔大的颗粒的机械截留、颗粒间相互作用及颗粒与膜表面的吸附、颗粒间的桥架作用这三种方式来实现的。 1.4反渗透 反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。因为它和自然渗透的方向相反,故称反渗透。学界对于反渗透分离机理的解释主要流行以下理论:溶解一扩散模型、优先吸附一毛细孔流理论、氢键理论。 自从上个世纪90年代邓宇发明了非加压吸附渗透海水淡化法以来,反渗透用于海水淡化的研究得到了极大发展[3]。在重金属废水处理领域,美国芝加哥API工艺公司采用B一9芳香族聚酞胺中空纤维膜组件处理镀镍漂洗水,废水中Niz+的分离率为92%[4]。 1.5电驱动膜

蛋白质组学研究方法选择及比较

蛋白质组学研究方法选择及比较 目前研究蛋白组学的主要方法有蛋白质芯片及质谱法,本文将从多方面对两种研究方法进行了解与比较; 蛋白质芯片(Protein Array) 将大量不同的蛋白质有序地排列、固定于固相载体表面,形成微阵列。利用蛋白质分子间特异性结合的原理,实现对生物蛋白质分子精准、快速、高通量的检测。 主要类型: ●夹心法芯片(Sandwich-based Array) ●标记法芯片(Label-based Array) ●定量芯片(Quantitative Array) ●半定量芯片(Semi-Quantitative Array) 质谱(Mass Spectrometry) 用电场和磁场将运动的离子按它们的质荷比分离后进行检测,测出离子准确质量并确定离子的化合物组成,即通过对样品离子质荷比的分析而实现对样品进行定性和定量的一种方法。 主要类型:

●二维电泳+质谱(2D/Mass Spectrometry, MS) ●表面增强激光解吸电离飞行时间质谱(Surface-enhanced laser desorption/ionization- time of flight, SELDI) ●同位素标记相对和绝对定量(Isobaric tags for relative and absolute quantitation, iTRAQ) Protein Array or Mass Spectrometry? 如何选择合适的研究方法?以下将从六个方面进行比较与推荐: 1.筛查蛋白组学表达差异 建议选择:RayBiotech(1000个因子的芯片)+质谱 a)不同的方法学有不同的特点:对于质谱,可以筛查到未知的蛋白,但是对于分子量大、 低丰度的蛋白质,质谱的灵敏度和准确性有一定的限制。 b)不同的方法能筛查到的目标不同:根据Proteome Analysis of Human Aqueous Humor 一文中报道,质谱筛查到的差异蛋白集中在小分子与代谢物。而用RayBiotech芯片筛查到的结果,多是集中在细胞因子、趋化、血管、生长等等。 c)质谱筛查到355个蛋白,而RayBiotech抗体芯片也筛查到328个蛋白,且用定量芯片 验证25个蛋白有差异,这些蛋白是质谱找不到的。目前RayBiotech夹心法抗体芯片已经可以检测到1000个蛋白,采用双抗夹心法,尤其是对于低丰度蛋白,有很好的灵敏度和特异性,很多的低丰度蛋白是抗体芯片可以检测出来,而质谱检测不到的,且样品不经过变性和前处理,保持天然状态的样品直接检测,对于蛋白的检测准确度高。 d)质谱的重复性一直是质谱工作者纠结的问题,不同操作者的结果,不同样品处理条件, 峰值的偏移等影响因素都会产生大的影响;RayBiotech的夹心法芯片重复性高。

新型膜分离技术的研究进展

收稿日期:2011-04-18 作者简介:陈默(1986—),硕士研究生,从事含能化合物的合成研究;王建龙,教授,博士生导师,通讯联系人,主要从事含能化合物合成及炸药中间体的制备、 应用及开发。新型膜分离技术的研究进展 陈 默,曹端林,李永祥,王建龙 (中北大学化工与环境学院,山西太原030051) 摘要:膜分离技术是一项新兴的高效、快速、节能的新型分离技术。作为一种新型分离技术,在多种领域得到了广泛的应用。综述了反渗透、 电渗析、纳滤、微滤、超滤、气体分离、渗透汽化和膜反应器等各种膜分离技术的分离原理、特点,在工业中的应用以及目前存在的问题。最后展望了膜技术的应用前景。关键词:膜分离;原理;应用;进展中图分类号:TQ028.8 文献标识码:A 文章编号:1008-021X (2011)05-0031-03 Research Progress of Membrane Technology CHEN Mo ,CAO Duan -lin ,LI Yong -xiang ,WANG Jian -long (College of Chemical Engineering and Environment ,North University of China ,Taiyuan 030051,China )Abstract :The membrane extraction technique is a new type extraction technique with high efficiency ,high speed and saving energy.Membrane separation technology is applied widely as a new kind of separation technology.The separation mechanism and characteristics of different kinds of membrane technologies were introduced ,including electrodialysis ,reverse osmosis ,nanofiltration ,ultrafiltration ,microfiltration ,gas separation ,pervaporation ,membrane reactor.Further more ,the application and current problems of different membrane technologies were extensively summarized.Finally ,application prospect of membrane separation technology was presented.Key words :membrane separation ;principle ;application ;progress 膜分离技术主要是采用天然或人工合成高分子 薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。与传统分离方法(蒸发、萃取或离子交换等)相比,它是在常温下操作,没有相变,最适宜对热敏性物质和生物活性物质的分离与浓缩,具有高效、节能,工艺过程简单,投资少,污染小等优点,因而在化工、轻工、电子、医药、纺织、生物工程、环境治理、冶金等方面具有广泛的应用前景。1膜分离技术的分离原理和特点1.1 纳滤 纳滤膜具有纳米级孔径,截留相对分子质量为200 1000,能使溶剂、有机小分子和无机盐通过。纳滤膜的分离机理模型目前的看法主要是空间位阻-孔道模型。与超滤膜相比,纳滤膜有一定的荷电容量;与反渗膜相比,纳滤膜又不是完全无孔的。纳滤是介于反渗透和超滤之间的一种膜分离技 术, 是国内外研究的热点。余跃等[1] 对纳滤技术处理印染废水进行了去除COD 和脱色的研究。结果 表明, 纳滤技术可有效地去除印染废水中的色度和COD 。Salzgitter Flachstahl 电镀厂采用膜技术处理 镀锌废水, 回收其中的Zn 2+ 和H 2SO 4,其结果达到了设计要求[2]。常江等[3] 在完成用新型纳滤膜处 理模拟含Ni 2+ 废水实验室研究的基础上,进行了电 镀镍漂洗废水的纳滤膜处理及镍和水回收利用的工业试验,为大规模工业应用提供了参考数据。杨青等[4] 研究报道将DK 型与NF90型纳滤膜组合可适用于治理高浓度、高盐分的吡啉农药废水污染。1.2 超滤 超滤的截留相对分子质量在1000 100000之间。超滤过程的分离机理一般认为是压力驱动的筛孔分离过程,是膜表面上的机械截留(筛分)、在膜孔中的停留(阻塞)、在膜表面及膜孔内的吸附三种形式。 徐超等 [5] 在中试中采用浸没式超滤膜代替传 统砂滤工艺处理浊度较低的滦河水,取得较好的处理效果, 设备费用降低了。罗涛等[6] 采用混凝沉淀-超滤工艺对微污染原水进行试验,结果表明,组合

蛋白质组学研究的完整解决方案

蛋白质组学研究的完整解决方案 人体内真正发挥作用的是蛋白质,蛋白质扮演着构筑生命大厦的“砖块”角色,随着破译生命密码的人类基因组计划进入尾声,一个以蛋白质和药物基因学为研究重点的后基因组时代已经拉开序幕,蛋白质将是今后的重点研究方向之一。然而,蛋白质的分离和鉴定非常费时,目前测定蛋白质的技术远远落后于破译基因组的工具,最好的实验室每天只能分离和识别出100种蛋白质。据估计,人体内可能有几十万种蛋白质,这大概需要10年时间进行识别。 为了加快蛋白质组学研究进程,以专业生产蛋白质组学研究设备而著称的美国Genomic Solution Inc.公司开发了完整的蛋白质组学解决方案,由一系列机械手臂与软件,并结合了二维电泳实验设备与质谱仪,可以进行高效、自动化且具重复性的试验分析。在Genomic solution值得信赖的技术平台上,你的研究工作将更富成效,重复性更好。在这一整套Investigator平台上,各仪器之间配合无隙,由于它的整合性及标准性,使得研究进程大大加快,原来需要9—12个月才能获得数据结果发表的时间减少到9—12周。这套完整的系统具备蛋白质组研究所需的众多功能:2-D电泳、图像获取、2-D胶分析、蛋白样品切割、蛋白消化、MALDI样品准备、消化及点样、数据分析整合,再加上制备好的胶、试剂及附件,使研究工作可以立即展开。此套设备为进行蛋白质组学研究的利器,大大加速了蛋白质分离和鉴定的速度。该系统主要由以下几部分组成: 一、2-D电泳系统(Investigator? 2-D Electophoresis System) 该系统主要进行2D PAGE第一向等电聚焦凝胶电泳和第二向SDS-PAGE电泳,设备包括2-D电泳系统所需的各种设备,如pHaser?(IPG胶条电泳)、管状制胶设备、二维电泳装置、电源设备、半导体冷却器及各种相关的蛋白纯化试剂盒。 产品特征: * 提供2D PAGE电泳所需的各种设备,使电泳更加简便,大大节约研究时间 * 高分辨率:有效的第一向等电聚焦凝胶电泳和23cm X 23cm第二向SDS-PAGE大面积板胶提供清晰的电泳图像,有效提高单体、磷酸化和糖基化蛋白的分离 * 大容量:可同时容纳15块1mm一维管状胶,或8块2-3mm管状胶;10块IPG胶条和10块二维电泳板胶 * 灵活性:该系统用于管状胶、IPG 胶条、预制胶、自制胶和SDS PAGE胶使用 * 恒温:高效的半导体制冷装置保证电泳体系温度恒定,温度变化< 0.5℃ * 专门为高分辨率2D PAGE而设计的电源系统 * 提供超纯的相关化学试剂和药品

生物化工及膜分离技术研究进展

动态与信息 专题报道 生物化工及膜分离技术研究进展 现代生物技术是新兴高技术领域中的重要技术之一,是21世纪高新技术的核心。它在生物学、分子生物学、细胞生物学和生物化学等基础上发展起来,是以重组DNA技术和细胞融合技术为基础,基因工程、细胞工程、酶工程和发酵工程四大先进技术所组成的新技术群。大力发展生物技术及其产业已成为世界各国经济发展的战略重点,目前最具代表性的应用领域是生物医药和农业。生物技术与化学工程相结合而形成的生物化工技术已成为生物技术的重要组成部分。生物化工技术为生物技术提供了多种高效率的反应器、新型分离介质、工艺控制技术和后处理技术,从而可以促进生物技术不断更新和提高;因而新兴的生物化工技术已经成为当今世界高技术竞争的重要焦点之一。生物化工产品的分离技术也被称为生物技术的下游加工术,是整个生物技术的重要组成部分,它的成功与否,是决定生物技术成果能否转变为具有实用价值和竞争力的产品的重要因素。生物化工产品的分离与化学物质的分离相比具有一定的特殊性,产品大多要求高纯度并具有一定的生物活性,因其易受化学、物理和生物等外界环境因素的破坏而发生变性,因而生化分离过程一般要求在快速、低温、洁净的条件下进行。总之,生物化工产品的分离技术具有一定特殊性。 1 生物化工分离过程的重要性及一般步骤生物化工分离过程是生物化学工程的重要组成部分,一般指的是从发酵液或酶反应液中分离生物产品,它是生物技术转化为生产力过程中不可或缺的重要环节。生物产品一般是从杂质含量远远高于产物的悬浮液中进行分离的,而且产品要求纯度较高,只有经过分离加工过程,才可以制得符合规定要求的产品,因此分离是生物化工工业化的必需手段。与此同时,进行生化分离过程十分困难,这是由于产物原料液的含量极低与产物的高纯度要求之间的差异造成的,而且分离的方法复杂,因此,开发新的分离工艺手段也是提高经济效益的手段。由于生物化工产品不同(如酶或代谢产物),所采用的分离方法也不同。但大多数生物化工分离过程常采用4个分离步骤:1)对发酵液或酶反应液预处理,进行固液分离。在这个步骤中过滤和离心是常用的基本单元操作。在过滤操作中有时为了减少过滤介质的阻力,采用了膜分离技术。但该过程对产物的含量改善作用很小。2)进一步分离。此步骤使产物的含量增加。常用的分离方法有吸附、萃取等,如合成ATP 时用颗粒活性炭作吸附剂。3)高度分离。在这个步骤中分离技术对产物具有一定的选择性,典型方法有层析、电泳等。4)精制,先进行结晶析出再干燥即可。合成ATP时,用离子交换树脂进行浓缩,最后用五氧化二磷干燥器进行减压干燥,可得ATP成品。生物化工过程中常用的分离方法如蒸馏、萃取、过滤、结晶、 元操作过程,而另一些则为新近发展的分离技术,如细胞膜破碎技术(包括球磨破碎和化学破碎等)、膜分离、色层分离等。在此着重介绍膜分离技术。 2 膜分离技术概述 膜分离技术被认为是20世纪末至21世纪中期最有发展前途,甚至会导致一次工业革命的高新技术之一,成为当今世界各国研究热点。膜分离作为一种新发展的高新分离技术,其应用领域不断扩大,广泛应用于化工、食品、水加工业、医药、环境保护、生物技术、能源工程等领域,并发挥了巨大的作用。我国对膜分离技术的研究是从20世纪60年代对离子交换膜的研究开始的。从60年代的反渗透技术到90年代的渗透汽化技术,我国的膜分离技术得到了迅速的发展。经过几十年的努力,目前我国在膜分离技术研究开发方面已成功地研制出一批具有实用价值、接近或达到国际先进水平的成果,如无机膜反应分离技术等。 3 膜分离技术的原理及优点 膜分离是指用半透膜作为障碍层,借助于膜的选择渗透作用,在能量、浓度或化学位差的作用下对混合物中的不同组分进行分离提纯。由于半透膜中滤膜孔径大小不同,可以允许某些组分透过膜层,而其它组分被保留在混合物中,以达到一定的分离效果。利用膜分离技术来进行分离具有如下优点:膜分离过程装置比较简单,同时操作方 032化 学 试 剂2008年3月

蛋白质组学与分析技术课复习思1考

蛋白质组学与分析技术课复习思考 一、名词解释 1、蛋白质组学: 蛋白质组学是研究与基因对应的蛋白质组的学科,蛋白质组(proteome)一词,源于蛋白质(protein)与基因组(genome)两个词的杂合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。 2、二维(双向)电泳原理: 根据蛋白质的等电点和相对分子质量的特异性将蛋白质混合物在第一个方向上按照等电点高低进行分离,在第二个方向上按照相对分子质量大小进行分离。二维电泳分离后的蛋白质点经显色,通过图象扫描存档,最后是呈现出来的是二维方向排列的,呈漫天星状的小原点,每个点代表一个蛋白质。 3、三步纯化策略: 第一步:粗提。纯化粗样快速浓缩(减少体积) 和稳定样品(去除蛋白酶) 最适用层析技术: 离子交换/疏水层析 第二步:中度纯化。去除大部分杂质 最适用层析技术: 离子交换/疏水层析 第三步:精细纯化。达到最终纯度(去除聚合物,结构变异物) 最适用层析技术:凝焦过滤/离子交换/疏水层析/反相层析 4、高效纯化策略 在三步纯化蛋白质过程中,同时考虑到纯化的速度、载量、回收率及分辨率的纯化策略。5、离子交换色谱: 离子交换色谱中的固定相是一些带电荷的基团,这些带电基团通过静电相互作用与带相反电荷的离子结合。如果流动相中存在其他带相反电荷的离子,按照质量作用定律,这些离子将与结合在固定相上的反离子进行交换。固定相基团带正电荷的时候,其可交换离子为阴离子,这种离子交换剂为阴离子交换剂;固定相的带电基团带负电荷,可用来与流动相交换的离子就是阳离子,这种离子交换剂叫做阳离子交换剂。阴离子交换柱的功能团主要是-NH2,及-NH3 :阳离子交换剂的功能团主要是-SO3H及-COOH。其中-NH3 离子交换柱及-SO3H离子交换剂属于强离子交换剂,它们在很广泛的pH范围内都有离子交换能力;-NH2及-COOH 离子交换柱属于弱离子交换剂,只有在一定的pH值范围内,才能有离子交换能力。离子交换色谱主要用于可电离化合物的分离,例如,氨基酸自动分析仪中的色谱柱,多肽的分离、蛋白质的分离,核苷酸、核苷和各种碱基的分离等。 6、吸附色谱 吸附色谱系色谱法之一种,利用固定相吸附中对物质分子吸附能力的差异实现对混合物的分离,吸附色谱的色谱过程是流动相分子与物质分子竞争固定相吸附中心的过程。洗脱次序∶一般为正相,即:极性低的先被洗脱。 7、PCR扩增 PCR技术(polymerase chain reaction)技术能把单个目的基因大量扩增,这个方法必须在已知基因序列或已知该基因所翻译的氨基酸序列。进而推断出因序列的情况下使用。PCR 的每次扩增循环包括三步:1)变性,在高温下把双链靶DNA拆开;2)在较低的温度下使

蛋白质组学的研究进展及应用

《蛋白质工程》 (课程论文)题目名称:蛋白质组学技术的研究进展及应用 所在学院:生命科学与技术学院 专业(班级):生技131班 学生姓名:梁健 授课教师:韩晓菲

蛋白质组学技术的研究进展及应用 生技131班梁健13772025 摘要:随着人类基因组计划全部测序的初步完成,研究重点转到对基因功能的研究上。蛋白质作为基因功能的主要体现者,对其表达模式和功能的研究成为热点,出现了蛋白质组学。研究蛋白质组学有助于了解蛋白的结构、细胞的功能、生命的本质及活动规律,为疾病的诊断、治疗、疫苗及新药开发提供科学依据。关键词:蛋白质组学;进展;应用 蛋白质组学(proteomics)是产生于20世纪90年代中期的一门新兴学科,以 细胞内全部蛋白质的存在及其活动方式为研究对象,是后基因组时代生命科学研究的核心内容。蛋白质组学的产生与发展经历了一个漫长的过程,在这个过程中,研究者不断修正蛋白质组学的发展方向和推进蛋白质组学相关支撑技术的快速 发展,进而拓展蛋白质组学在整个生命科学和生物医学研究中的应用,成为后基因组时代重要的研究新领域,并成功地应用到基础研究及医学研究等各个领域,推进其迅速发展。 1 蛋白质组学的概念及研究内容 1.1蛋白质组学的概念 蛋白质组(proteome)源于protein和genome两词的杂合,最早是由澳大利亚 的WILKINS等于1995年提出,其定义为“一种基因组所表达的全部蛋白质”。早期相对狭义的蛋白质组的概念是指在某一特定的时间和空间条件下,1个细胞的基因组所表达的蛋白质数目的总和。随着研究的深入,人们提出了广义的蛋白质组的概念,用来描述1个细胞、组织、器官或1个物种的生命个体,在其不同的生存及发育条件下所表达的各种蛋白数目的总和。所以蛋白质组所含的蛋白数目及其表达量是随着时间和空间的不同而不断发生变化的。蛋白质组学最有价值的优势是它可以观察在特定的时间下一个完整的蛋白质组或蛋白亚型在某种生理 或病理状态中,发生的相应的变化。 1.2 研究内容 根据研究内容的不同,蛋白质组学可分为差异蛋白质组学(或称表达蛋白质 组学)、结构蛋白质组学和功能蛋白质组学,其中差异蛋白质组学在蛋白质组学 研究中十分常用且应用广泛。差异蛋白质组学主要是研究比较在2种或多种不同条件下蛋白质组表达的差异变化。结构蛋白质组学主要是蛋白质表达模式的研究,包括蛋白质氨基酸序列分析及空间结构的解析。蛋白质表达模式的研究是蛋白质组学研究的基础内容,主要研究特定条件下某一细胞或组织的所有蛋白质的表征问题。功能蛋白质组学主要是蛋白质功能模式的研究,包括蛋白质的功能和蛋白

蛋白质组学的研究进展及应用

蛋白质组学的研究进展及应用 21世纪是生命科学的时代随着人类基因组序列的完成和生命科学进入后基因组时代,研究这些基因的表达和调控已成为首要任务。因此,蛋白质组学研究已成为21世纪生命科学的战略任务蛋白质组学是所有或部分蛋白质在生命活动过程中的功能和作用。可以说,这是现代生物学研究的一个必不可少的手段。本文分析了蛋白质组学的内涵和研究进展,并介绍了蛋白质组学的应用领域,以帮助人们更好地理解蛋白质组学的意义,促进蛋白质组学的更好发展。 关键词蛋白质组学;研究;应用文件识别码A,文件识别码R341于 ,文号XXXX,是一门以生物体的全部或部分蛋白质为研究对象,研究生物体、细胞(组织)或基因组的蛋白质变化规律的学科。蛋白质组学可以在整体水平上研究蛋白质表达和调控的水平和调控,旨在了解蛋白质与 相互作用的关系,为生命活动规律提供理论和物质基础,也为人类健康带来理论基础和解决方案 随着人类基因组序列的完成,生命科学研究的重点已经转移到基因表达产物即蛋白质的研究上。蛋白质组学已成为21世纪生命科学研究的战略任务和重点1.2蛋白质组学 的研究内容传统的蛋白质研究侧重于单个蛋白质的研究,而蛋白质组学则侧重于生物体全部或部分蛋白质的研究随着学科的逐步发展,蛋白质组学的研究内容也在不断更新和完善。蛋白质研究中的翻

译后修饰已经成为蛋白质组学研究的重要组成部分,因为翻译后修饰是蛋白质调节功能的重要途径在不同的发育阶段、生长阶段和不同的病理条件下,不同细胞类型的基因表达是不同的,因此有必要对细胞甚至亚细胞进行准确的蛋白质组学研究。最后,双向电泳被用来分离蛋白质。根据等电点和分子量的不同,用双向电泳分离不同种类的蛋白质。通过技术分离和处理的蛋白质可以在质谱系统中分析,以获得蛋白质的定性数据。1.3蛋白质组学的进展 蛋白质组学的主要任务是建立基于获取和分析蛋白质状态和规律的技术为了满足这些要求,需要高吞吐量技术。在研究技术方面,目前我国已经出现了高灵敏度、高效率的蛋白质分离和鉴定方法,如二维色谱-串联质谱 谱(2D-高效液相色谱/质谱-质谱)、电离飞行时间质谱 (MALDI-TOF/质谱)等。,获得了国际认可,具有一定的优势。其中,飞行时间电离质谱(MALDI-TOF/MS)是近年来广泛应用的软电离质谱,具有高准确度、高分辨率和低成本的特点。因此,蛋白质组学的发展离不开研究技术和方法的不断改进。 目前,中国已先后建立了一批蛋白质组学研究中心或实验室,如复旦大学蛋白质组学研究中心和中国科学院蛋白质组学重点实验室,为中国蛋白质组学研究提供了更加专业、便捷的技术服务平台。1.4蛋白质组学研究的意义 蛋白是生理功能的执行者和生命现象的直接体现。对蛋白质结构和功能的研究将直接阐明生理或病理条件下生命的变化机制。蛋白质

膜分离技术研究进展+文献名称

膜分离技术研究进展 组员:吴佳曦、张雯辉、郭志新、李耀睿、刘汉飞、王伦、张振斌膜分离技术在近20年发展迅速,其应用已从早期的脱盐发展到化工、轻工、石油、冶金、电子、纺织、食品、医药等工业废水、废气的处理,原材料及产品的回收与分离和生产高纯水等,是适应当代新产业发展的重要高新技术。膜分离技术不但在工业领域得到广泛应用,同时正在成为解决能源、资源和环境污染问题的重要技术和可持续发展的技术基础。 膜分离是借助于膜,在某种推动力的作用下,利用流体中各组分对膜的渗透速率的差别而实现组分分离的过程。目前常见的膜分离过程可分为以下几种,电渗析(Electrodialysis,ED)、反渗透(Reverse osmosis,RO)、微滤(Microfiltration,MF)、超滤(Ultrafiltration,UF)、纳滤(Nanofiltration,UF)和液膜分离等。 膜技术具有分离效率高、能耗低、无相变、操作简便、无二次污染、分离产物易于回收、自动化程度高等优点,在水处理领域具有相当的技术优势,是现代分离技术中一种效率较高的分离手段。 在环境过程中膜分离技术以其独特的作用而被广泛用于水的净化与纯化过程中。下面分类介绍一下膜分离技术的研究现状。 1 电渗析技术研究现状(刘汉飞) 电渗析是在直流电场作用下,以电位差为推动力,利用离子交换膜的选择渗透性(与膜电荷相反的离子透过膜,相同的离子则被膜截留),使溶液中的离子作定向移动以达到脱除或富集电解质的膜分离操作。它可使电解质从溶液中分离出来,从而实现溶液的浓缩、淡化、精制和提纯。电渗析技术普遍应用于食品生化行业以及废水处理。下面分类对这几方面的应用现状做一介绍。 1.1 电渗透技术在食品行业中的应用 利用电渗析技术对酱油进行脱盐处理,可以制得低盐酱油并基本保持酱油原有风味,但要损失一部分作为酱油指标的氨基酸态氮和有机酸等有效成分,从而将酱油的含盐量降低。但国内尚无这方面的报导,刘贤杰等采用电渗析技术进行了酱油脱盐的研究。研究结果显示:原酱油食盐含量19.4%,经电渗析处理后,酱油含量降至约9%,食盐以外的有效成分也有一些被除去,比较明显的是作为酱油品质指标的氨基酸态氮,有约8%的损失。酱油风味大致不变,证明了电渗

蛋白质组学研究进展与趋势综述

蛋白质组学研究进展与趋势 蛋白质组(proteome)一词,源于蛋白质(protein)与基因组(genome)两个词的杂合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。1 994 年澳大利亚Macquaie 大学的Wilkins 和Williams 等在意大利的一次科学会议上首次提出了蛋白质组(Proteome)这个概念。2001 年的Science 杂志已把蛋白质组学列为六大研究热点之一,其“热度”仅次于干细胞研究,名列第二。蛋白质组学的受关注程度如今已令人刮目相看。本文就蛋白质组学研究相关技术与趋势等方面进行简要综述。 1.蛋白质组学研究的研究意义和背景 随着人类基因组计划的实施和推进,生命科学研究已进入了后基因组时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。目前功能基因组中所采用的策略,如基因芯片、基因表达序列分析(Serial analysisof gene expression, SAGE)等,都是从细胞中mRNA 的角度来考虑的,其前提是细胞中mRNA 的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNA mRNA 蛋白质,存在三个层次的调控,即转录水平调控(Transcriptional control ),翻译水平调控(Translational control),翻译后水平调控(Posttranslationalcontrol )。从mRNA 角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。实验也证明,组织中mRNA 丰度与蛋白质丰度的相关性并不好,尤其对于低丰度蛋白质来说,相关性更差。更重要的是,蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等则几乎无法从mRNA 水平来判断。毋庸置疑,蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。蛋白质本身的存在形式和活动规律,如翻译后修饰、蛋白质间相互作用以及蛋白质构象等问题,仍依赖于直接对蛋白质的研究来解决。虽然蛋白质的可变性和多样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生命过程。 传统的对单个蛋白质进行研究的方式已无法满足后基因组时代的要求。这是因为:(1)生命现象的发生往往是多因素影响的,必然涉及到多个蛋白质。(2) 多个蛋白质的参与是交织成网络的,或平行发生,或呈级联因果。(3) 在执行生理功能时蛋白质的表现是多样的、动态的,并不象基因组那样基本固定不变。因此要对生命的复杂活动有全面和深入的认识,必然要在整体、动态、网络的水平上对蛋白质进行研究。因此在上世纪90 年代中期,国际上产生了一门新兴学科-蛋白质组学(Proteomics),它是以细胞内全部蛋白质的存在及其活动方式为研究对象。可以说蛋白质组研究的开展不仅是生命科学研究进入后基因组时代的里程碑,也是后基因组时代生命科学研究的核心内容之一。 虽然第一次提出蛋白质组概念是在1994 年,但相关研究可以追溯到上世纪90 年代中期甚至更早,尤其是80 年代初,在基因组计划提出之前,就有人提出过类似的蛋白质组计划,当时称为Human Protein Index 计划,旨在分析细胞内的所有蛋白质。但由于种种原因,这一计划被搁浅。90 年代初期,各种技术已比较成熟,在这样的背景下,经过各国科学家的讨论,才提出蛋白质组这一

相关文档
最新文档