地坪承载力计算

地坪承载力计算
地坪承载力计算

地坪承载力计算

公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

地坪承载力验算

一、构件编号: B-1

二、依据规范:

《混凝土结构设计规范》 (GB 50010-2010)

三、计算参数

1.几何参数:

地坪计算面积1500mmx1500mm

柱底板的长边尺寸: a=300mm

柱底板的短边尺寸: b=300mm

板的截面高度: h=250mm

板的截面有效高度: ho=200mm

2.材料信息:

混凝土强度等级: C30 ft=mm2

3.荷载信息:

局部荷载标准值: Fl=对应局部荷载设计值: Fl=

4.其他信息:

结构重要性系数: γo=

四、地坪承载力计算

地坪能承受柱最大轴力标准值50**=

地坪实配钢筋面积(D12@150)754mm2>375mm2满足规范要求

五、地坪冲切和剪切计算

1.计算βs:

βs=a/b=300/300=<2,取βs=。

2.确定板柱结构中柱类型的影响系数αs:

对于中柱αs=40。

3.计算临界截面的周长Um:

Um=(a+ho)*2+(b+ho)*2=(300+200)*2+(300+200)*2=2000mm

Um1=(a+b)*2=(300+300)*2=12000mm

4.计算影响系数η:

η1=+βs=+=

η2=+αs*ho/(4*Um)=+40*200/(4*2000)=

η=min(η1, η2)=min,=

5.计算截面高度影响系数βh:

h=250≤800,取βh=。

6.验算冲切承载力: *βh*ft*η*Um*ho=****2000*200=

γo*Fl=≤*βh*ft*η*Um*ho=,冲切承载力满足规范要求。

7.验算剪切承载力:

*βh*ft*η*Um1*ho=****1200*200=

γo*Fl=≤*βh*ft*η*Um*ho=240kN,剪切承载力满足规范要求。

地基承载力计算计算书

地基承载力计算计算书 项目名称_____________构件编号_____________日期_____________ 设计者_____________ 校对者_____________ 一、设计资料 1.基础信息 基础长:l=4000mm 基础宽:b=4000mm 修正用基础埋深:d=1.50m 基础底标高:dbg=-2.00m 2.荷载信息 竖向荷载:F k=1000.00kN 绕X轴弯矩:M x=0.00kN·m 绕Y轴弯矩:M y=0.00kN·m b = 4 0 l=4000 x Y 3.计算参数 天然地面标高:bg=0.00m 地下水位标高:wbg=-4.00m 宽度修正系数:wxz=1 是否进行地震修正:是 单位面积基础覆土重:rh=2.00kPa 计算方法:GB50007-2002--综合法 地下水标高-4.00 基底标高-2.00地面标高0.00 5 5 5 5 5 4.土层信息: 土层参数表格

二、计算结果 1.基础底板反力计算 基础自重和基础上的土重为: G k = A×p =16.0×2.0= 32.0kN 基础底面平均压力为: 1.1当轴心荷载作用时,根据5. 2.2-1 : P k = F k+G k A= 1000.00+32.00 16.00= 64.50 kPa 1.2当竖向力N和Mx同时作用时:x方向的偏心距为: e = M k F k+ G k= 0.00 1000.00 +32.00= 0.00m x方向的基础底面抵抗矩为: W = lb2 6= 4.00×4.00 2 6= 10.67m 3 x方向的基底压力,根据5.2.2-2、5.2.2-3为: P kmax = F k+G k A+ M k W= 64.50 + 0.00 10.67= 64.50 kPa P kmin = F k+G k A- M k W= 64.50 - 0.00 10.67= 64.50 kPa 1.3当竖向力N和My同时作用时:y方向的偏心距为: e = M k F k+ G k= 0.00 1000.00 +32.00= 0.00m y方向的基础底面抵抗矩为: W = bl2 6= 4.00×4.00 2 6= 10.67m 3 y方向的基底压力,根据5.2.2-2、5.2.2-3为: P kmax = F k+G k A+ M k W= 64.50 + 0.00 10.67= 64.50 kPa P kmin = F k+G k A- M k W= 64.50 - 0.00 10.67= 64.50 kPa 2.修正后的地基承载力特征值计算 基底标高以上天然土层的加权平均重度,地下水位下取浮重度 γm = ∑γi h i ∑h i = 2.0×18.0 2.0= 18.00 基底以下土层的重度为 γ = 18.00 b = 4.00 f a = f ak + ηbγ (b-3) + ηdγm (d-0.5) = 150.00+1.00×18.00×(4.00-3)+1.00×18.00×(1.50-0.5)

浅析混凝土路面的承载力

浅析混凝土路面的承载力 水泥混凝土(素混凝土)路面是山东地区加油站选用的主要硬化地面形式之一,由于公司部分加油站临近煤矿区或物流区,且车辆超载运输现象也较为普遍和严重,因此很多路面在使用初期就发生了严重的结构损坏,路面的使用寿命大大缩短,严重影响了加油站的经营销售、通行能力、行车安全和投资效益。因此,为解决大载重车辆地区的混凝土地面易破损问题,需要在施工开展前分析此地段的极限车辆荷载与混凝土地面的设计方法。 本文主要从混凝土地面承载力的主要影响因素入手,重点分析各因素对地面造成破坏的原因并根据破坏原因进行简单的数据测算,最后针对各破坏因素的极限值进行承载力比对,确定固定厚度的混凝土路面的极限承载力。 目的是简单清晰的确定混凝土的竖向承载力与混凝土厚度的比例关系。 混凝土地面承载力主要有四个影响因素,分别为:基础承载力,混凝土标号,混凝土厚度,及设计形式。 基础承载力(计算目标值):由于重点分析混凝土路面的承载力情况,且设计院设计的三元结构(15CM黄土垫层、15CM砂石垫层)一般情况下符合基础要求,因此计算中的基础一律按无限宽(刚性)基础进行考虑(根据厚度进行求解)。 混凝土标号:混凝土中的标号与刚度是成正比的即标号越大,混凝土的刚度越大,因此路面选择过低标号的混凝土会导致整体路面的网裂,而选择过高标号的混凝土会导致整体路面的刚度过大,呈现脆性即易整体开裂,因此标号的正确选择也是混凝土路面能否长期保持良好情况的重要因素,所以本文中的混凝土标号一律选用设计院设计的C30标号。 混凝土厚度(一般为18CM-30CM):根据公式分别代入25CM、28CM、30 CM。以25CM厚的C30混凝土为例,C30轴心抗压是20.1Mpa=20.1N/mm2=20.1×1000000N/m2,相当于20. 1×100000千克(五个零,除以10,重力加速度),也就是20.1×100吨,2010吨,即2010 吨/m2,因为是25CM厚混凝土,所以需要乘以0.25,因此推算每立方米的,25CM厚的C30混凝土的设计抗压能力约为502.5吨/m3。(初略计算,C30,厚25cm,最大只能承受63.245吨) 设计形式:由于上述影响因素均对混凝土的抗压进行考虑(即垂直地面方向),因此均按设计院提供的素混凝土方案,未进行配筋处理。 根据上述分析可以看出,素混凝土路面的抗压承载力主要取决于混凝土厚度,因此需要根据已知厚度可以通过公式计算出极限承载力。 Fcd=0.7·βh·Ftd·Um·H Fcd——混凝土最大集中返力; βh——对于厚度小于300mm时,取1; Ftd——轴心抗拉应力(C30取1.39mpa); Um——高度换算比=2·(a+b)+4H,a=20cm,b=60cm(a,b分别为轮迹宽、长); H ——厚度。 带入数值即对应关系: C30混凝土25CM 极限车辆承载力:63.245吨; C30混凝土28CM 极限车辆承载力:74.104吨; C30混凝土30CM 极限车辆承载力:81.732吨。 以上计算式只能计算出素混凝土路面在垂直方向上的极限承载力,但实际路面在对大车进行

地基承载力计算公式

地基承载力计算公式-CAL-FENGHAI.-(YICAI)-Company One1

地基承载力计算公式 地基承载力计算公式很多,有理论的、半理论半经验的和经验统计的,它们大都包括三项: 1. 反映粘聚力c的作用; 2. 反映基础宽度b的作用; 3. 反映基础埋深d的作 用。 在这三项中都含有一个数值不同的无量纲系数,称为承载力系数,它们都是内摩擦角φ的函数。 下面介绍三种典型的承载力公式。 a.太沙基公式 式中: P u——极限承载力,K a c ——土的粘聚力,KP a γ——土的重度,KN/m,注意地下水位下用浮重度; b,d——分别为基底宽及埋深,m; N c ,N q ,N r——承载力系数,可由图中实线查取。 图 2

对于松砂和软土,太沙基建议调整抗剪强度指标,采用 c′=1/3c , 此时,承载力公式为: 式中N c′,N q′,N r′——局部剪切破坏时的承载力系数,可由图中虚线查得。 对于宽度为b的正方形基础 对于直径为b′的圆形基础 b.汉森承载力公式 式中Nr,Nq,Nr——无量纲承载力系数,仅与地基土的内摩擦角有关,可查表c,N q,N r值 N c N q N r N c N q N r 024 226 428 630 832 1034 1236 1438 1640 1842 2044 3

2246 S c,S q,S r——基础形状系数,可查表 表基础形状系数S c,S q,S r值 基础形状S c S q S r 条形 圆形和方形1+N q/N c1+tanφ 矩形(长为L,宽为b)1+b/L×N q/N c1+b/LtanφL d c,d q,d r——基础埋深系数,可查表 表埋深系数d c,d q,d r d/b 埋深系数 d c d q d r ≤ 〉 i c,i q,i r——荷载倾斜系数,可查表 i c i q i r 注: H,V——倾斜荷载的水平分力,垂直分力,KN ; F——基础有效面积,F=b'L'm; 当偏心荷载的偏心矩为e c和e b,则有效基底长度, L'=L-2e c;有效基底宽度:b'=b-2e b。 c.我国地基规范提供的承载力公式 当荷载偏心矩e≤时,可用下列公式: 4

混凝土地坪承载力计算(第一版)

混凝土地坪承载力计算 对于500T吊机地面承载力计算 1.道路构造(1)——对应1#、3#支腿 2.道路基础承载力:本次重点分析混凝土路面的承载力情况及道路下卧层承载力验算。由 原设计单位设计的底基层250厚碎砾石碾压密实,30厚粗砂垫层应该符合道路基础的要求。 3.查表可得C25混凝土参数如下: 轴心抗压强度标准值fck=16.7N/mm2 抗拉强度标准值ftk=1.78N/mm2 抗剪强度ft=4N/mm2 4.假设3.5*2.5*0.3钢板为基础,以道路结构层为持力层,参照《建筑地基基础设计规范》 GB 50007-2011进行近似计算,已知吊车支腿最大荷126t,相当于1260KN,钢板重量 20.6T,相当于206KN。 ①计算混泥土地面附加应力: (1260+206)/2.5*3.5=167.5KN/M2<16700KN/M2 满足抗压要求 ②计算混泥土地面剪切应力: (1260+206)/((2.5+3.5)*2*0.2)=610KN/M2<4000KN/M2 满足抗剪要求

③下卧层承载力验算: 1)已知基础宽度b=2.5M,长度L=3.5M,基础埋深d=0M,持力层厚度 z=0.2+0.03+0.25=0.48M,下卧层承载力取fak=110kpa 2)持力层为混泥土结构,查表取其重度r=24KN/M3 3)按下卧层土性指标,对粉砂夹粉土的地基承载力修正: fa= fak+ηbγ(b-3)+ηdγm(d-0.5)=110kpa 式中:fa——修正后的地基承载力特征值(kPa); fak——地基承载力特征值(kPa),按本规范第 5.2.3 条的原则确定; ηb、ηd——基础宽度和埋深的地基承载力修正系数,按基底下土的类别查表 5.2.4 取值;γ——基础底面以下土的重度(kN/m3),地下水位以下取浮重度;

钢筋混凝土受弯构件正截面承载力的计算

第3章钢筋混凝土受弯构件正截面承载力的计算 §1概述 1、受弯构件(梁、板)的设计内容:图3-1 ①正截面受弯承载力计算:破坏截面垂直于梁的轴线,承受弯矩作用而 破坏,叫做正截面受弯破坏。 ②斜截面受剪承载力计算:破坏截面与梁截面斜交,承受弯剪作用而破 坏,叫做斜截面受剪破坏。 ③满足规范规定的构造要求:对受弯构件进行设计与校核时,应满足规 范规定的要求。比如最小配筋率、纵向 2 ①板 ⑴板的形状与厚度: a.形状:有空心板、凹形板、扁矩形板等形式;它与梁的直观 区别是高宽比不同,有时也将板叫成扁梁。其计算与 梁计算原理一样。 b.厚度:板的混凝土用量大,因此应注意其经济性;板的厚度 通常不小于板跨度的1/35(简支)~1/40(弹性约束) 或1/12(悬臂)左右;一般民用现浇板最小厚度60mm, 并以10mm为模数(讲一下模数制);工业建筑现浇板 最小厚度70mm。 ⑵板的受力钢筋:单向板中一般仅有受力钢筋和分布钢筋,双向 板中两个方向均为受力钢筋。一般情况下互相垂直的

两个方向钢筋应绑扎或焊接形成钢筋网。当采用绑扎 钢筋配筋时,其受力钢筋的间距:当板厚度h≤150mm 时,不应大于200mm,当板厚度h﹥150mm时,不应大 于1.5h,且不应大于250mm。板中受力筋间距一般不 小于70mm,由板中伸入支座的下部钢筋,其间距不应 大于400mm,其截面面积不应小于跨中受力钢筋截面 面积的1/3,其锚固长度l as不应小于5d。板中弯起钢 筋的弯起角不宜小于30°。 板的受力钢筋直径一般用6、8、10mm。 对于嵌固在砖墙内的现浇板,在板的上部应配置构造钢筋,并应符合下列规定: a. 钢筋间距不应大于200mm,直径不宜小于8mm(包括弯起钢筋在内), 其伸出墙边的长度不应小于l1/7(l1为单向板的跨度或双向板的短边跨 度)。 b. 对两边均嵌固在墙内的板角部分,应双向配置上部构造钢筋,其伸出 墙边的长度不应小于l1/4。 c. 沿受力方向配置的上部构造钢筋,直径不宜小于6mm,且单位长度内的 总截面面积不应小于跨中受力钢筋截面面积的1/3。 ⑶板的分布钢筋:其作用是: a.分布钢筋的作用是固定受力钢筋; b.把荷载均匀分布到各受力钢筋上; c.承担混凝土收缩及温度变化引起的应力。 当按单向板设计时,除沿受力方向布置受力钢筋外,还应在垂直受力方向布置分布钢筋。单位长度上分布钢筋的截面面积不应小于单位宽度上 受力钢筋截面面积的15%,且不应小于该方向板截面面积的0.15%,分布 钢筋的间距不宜大于250mm,直经不宜小于6mm,对于集中荷载较大的情 况,分布钢筋的截面面积应适当增加,其间距不宜大于200mm,当按双向 板设计时,应沿两个互相垂直的方向布置受力钢筋。 在温度和收缩应力较大的现浇板区域内尚应布置附加钢筋。附加钢筋的数量可按计算或工程经验确定,并宜沿板的上,下表面布置。沿一个方向增加的附加钢筋配筋率不宜小于0.2%,其直径不宜过大,间距宜取150~200mm,并应按受力钢筋确定该附加钢筋伸入支座的锚固长度。 ⑷板中钢筋的保护层及有效高度:保护层厚度与环境条件及混凝 土等级有关,在一般情况下,混凝土保护层取15mm,详见规范; 有效高度是指受力钢筋形心到混凝土受压区外边缘的距离,用

(新)搅拌站基础承载力验算书

拌合站基础计算书 梁场混凝土拌合站,配备HZS120拌合机两套,每套搅拌楼设有5个储料罐,单个罐在装满材料时均按照200吨计算。经过现场开挖检查,在地表往下0.5~3米均为粉质黏土。 一.计算公式 1 .地基承载力 P/A=σ≤σ0 P—储蓄罐重量KN A—基础作用于地基上有效面积mm2 σ—地基受到的压应力MPa σ0—地基容许承载力MPa 通过查资料得出该处地基容许承载力σ0=0.18 Mpa 2.风荷载强度 W=K1K2K3W0= K1K2K31/1.6V2 W —风荷载强度Pa,W=V2/1600 V—风速m/s,取28.4m/s(按10级风考虑) 3.基础抗倾覆计算 K c=M1/ M2=P1×1/2×基础宽/ P2×受风面×力矩≥2即满足要求 M1—抵抗弯距KN?M M2—抵抗弯距KN?M P1—储蓄罐自重KN P’—基础自重KN P2—风荷载KN 二、储料罐地基承载力验算 1.储料罐地基开挖及浇筑 根据厂家提供的拌合站安装施工图,现场平面尺寸如下: 地基开挖尺寸为半径为8.19m圆的1/4的范围,宽4.42m,基础浇注厚度为

2m。基底处理方式为:压路机碾压两遍,填筑30cm建筑砖碴、混凝土块并碾压两遍。查《路桥计算手册》,密实粗砂地基容许承载力为0.55Mpa。 2.计算方案 开挖深度为2米,根据规范,不考虑摩擦力的影响,计算时按整体受力考虑,每个水泥罐集中力P=2000KN,水泥罐整体基础受力面积为95.48m2,基础浇注C25混凝土,自重P’=4774KN,承载力计算示意见下图: 粉质黏土 根据历年气象资料,考虑最大风力为28.4m/s(10级风),风的动压力P2=V2/1600=504.1N/m,储蓄罐顶至地表面距离为20米,罐身长17m,5个罐基本并排竖立,受风面积306m2,在最不利风力下计算基础的抗倾覆性。计算示意图如下 P2 罐与基础自重P1+P’ 3.储料罐基础验算过程 3.1 地基承载力 根据上面公式,已知P+P’=14774KN,计算面积A=95.48×106mm2, P/A= 14774KN/95.48×106mm2=0.15MPa ≤σ0=0.55 MPa 地基承载力满足承载要求。

地基承载力计算公式

地基承载力计算公式很多,有理论的、半理论半经验的和经验统计的,它们大都包括三项: 1. 反映粘聚力c的作用; 2. 反映基础宽度b的作用; 3. 反映基础埋深d的作用。 在这三项中都含有一个数值不同的无量纲系数,称为承载力系数,它们都是内摩擦角φ的函数。下面介绍三种典型的承载力公式。 a.太沙基公式 式中: Pu——极限承载力,Ka c ——土的粘聚力,KPa γ——土的重度,KN/m,注意地下水位下用浮重度; b,d——分别为基底宽及埋深,m; Nc,Nq,Nr——承载力系数,可由图8.4.1中实线查取。 图8.4.1

对于松砂和软土,太沙基建议调整抗剪强度指标,采用 c′=1/3c , 此时,承载力公式为: 式中Nc′,Nq′,Nr′——局部剪切破坏时的承载力系数,可由图8.4.1中虚线查得。 对于宽度为b的正方形基础 对于直径为b′的圆形基础 b.汉森承载力公式 式中Nr,Nq,Nr——无量纲承载力系数,仅与地基土的内摩擦角有关,可查表8.4.1 表8.4.1承载力系数Nc,Nq,Nr值 Nc Nq Nr Nc Nq Nr 0 5.14 1.00 0.00 24 19.32 9.60 6.90 2 5.6 3 1.20 0.01 26 22.25 11.85 9.53 4 6.19 1.43 0.0 5 28 25.80 14.72 13.13 6 6.81 1.72 0.14 30 30.14 18.40 18.09 8 7.53 2.06 0.27 32 35.49 23.18 24.95 10 8.35 2.47 0.47 34 42.16 29.44 34.54 12 9.28 2.97 0.76 36 50.59 37.75 48.06 14 10.37 3.59 1.16 38 61.35 48.93 67.40 16 11.63 4.34 1.72 40 75.31 64.20 95.51 18 13.10 5.26 2.49 42 93.71 85.38 136.76 20 14.83 6.40 3.54 44 118.37 115.31 198.70

第6章 混凝土梁承载力计算原理

6 混凝土梁承载力计算原理 6.1 概述 本章介绍钢筋混凝土梁的受弯、受剪及受扭承载力计算方法。钢筋混凝土梁是由钢筋和混凝土两种材料所组成,且混凝土本身是非弹性、非匀质材料。抗拉强度又远小于抗压强度,因而其受力性能有很大不同。研究钢筋混凝土构件的受力性能,很大程度上要依赖于构件加载试验。建筑工程中梁常用的截面形式如图6-1所示。 6.2 正截面受弯承载力 6.2.1 材料的选择与一般构造 1)截面尺寸 为统一模板尺寸以便施工,现浇钢筋混凝土构件宜采用下列尺寸: 梁宽一般为100m m、120m m、 150m m、180m m、 200m m、220m m、250和300m m,以上按 b/,50m m模数递增。梁高200~800m m,模数为50m m,800m m以上模数为100m m。梁高与跨度只比l h/,主梁为1/8~1/12,次梁为1/15~1/20,独立梁不小于1/15(简支)和1/20(连续);梁高与梁宽之比b 在矩形截面梁中一般为2~2.5,在T形梁中为2.5~4.0。 2)混凝土保护层厚度 为了满足对受力钢筋的有效锚固及耐火、耐久性要求,钢筋的混凝土保护层应有足够的厚度。混凝土保护层最小厚度与钢筋直径,构件种类、环境条件和混凝土强度等级有关。具体应符合下表规定。 表6-1 混凝土保护层最小厚度 注:(1)基础的保护层厚度不小于40mm;当无垫层时不小于70mm。 (2)处于一类环境且由工厂生产的预制构件,当混凝土强度不低于C20时,其保护层厚度可按表中规定减少5mm,但预制构件中的预应力钢筋的保护层厚度不应小于15mm;处于二类环境且由工厂生产的预制构件,当表面另做水泥砂浆抹面层且有质量保证措施时,保护层厚度可按表中一类环境数值取用。 (3)预制钢筋混凝土受弯构件钢筋端头的保护层厚度不应小于10mm,预制肋形板主肋钢筋的保护层厚度应按梁的数值采用。 (4)板、墙、壳中分布钢筋的保护层厚度不应小于10mm,梁、柱中箍筋和构造钢筋的保护层厚度不应小于15mm。 (5)处于二类环境中的悬臂板,其上表面应另作水泥砂浆保护层或采取其它保护措施。

复合地基承载力计算示例

1、单桩竖向承载力特征值: 设置桩长为空桩1.8m ,实桩6.5m ,桩底穿透淤泥质土夹粉砂5.2m ,进入粉质粘土0.5m ;桩距为1.5*1.5m 。 由桩周土和桩端土的抗力所提供的单桩承载力: kN 102.72455.014.31504.05.0152.5555.014.321=÷???+?+???=+=∑=)(p p n i i si p a A q l q u R α——① 由桩身材料强度确定的单桩承载力 kN 275.71455.014.3120025.02=÷???==p cu a A f R η——② 取①、②两者中较小值,R a =71.275kN ; 式中 cu f —与搅拌桩桩身水泥土配比相同的室内加固土试块(边长为70.7mm 的立方体,也可采用边长为50mm 的立方体)在标准养护条件下90d 龄期的立方体抗压强度平均值(kPa ); η—桩身强度折减系数,干法可取0.20~0.30;湿法可取0.25~0.33; p u —桩的周长(m ); n —桩长范围内所划分的土层数; si q —桩周第i 层土的侧阻力特征值; i l —桩长范围内第i 层土的厚度(m ); p q —桩端地基土未经修正的承载力特征值(kPa ),可按现行国家标准《建

筑地基基础设计规范》GB 50007的有关规定确定; α—桩端天然地基土的承载力折减系数,可取0.4~0.6,承载力高时取低值。 2、复合地基承载力特征值 kPa f m A R m sk p a 508.6750)1055.01(8.0237.0275.711055.0)1(f spk =?-?+?=-+=β 1055.05.1455.014.3m 2 2=÷?= 式中 spk f —复合地基承载力特征值(kPa ); m —面积置换率; a R —单桩竖向承载力特征值(kN ); p A —桩的截面积(m 2); β—桩间土承载力折减系数,宜按地区经验取值,如无经验时可取0.75~0.95,天然地基承载力较高时取大值。 要复合地基承载力达到90KPa ,需调整搅拌桩间距,最疏为1.1m*1.1m ,计算得: kPa kPa f m A R m sk p a 9017.9150)196.01(8.0237 .0275.71196.0)1(f spk >=?-?+?=-+=β 196.01 .1455.014.3m 22=÷?= 2010-11-10

桩基地基承载力计算公式方法

地基承载力计算公式 对于宽度为b的正方形基础 对于直径为b′的圆形基础 b.汉森承载力公式 式中Nr,Nq,Nr——无量纲承载力系数,仅与地基土的内摩擦角有关,可查表8.4.1 S c ,S q ,S r ——基础形状系数,可查表8.4.2

d c ,d q ,d r ——基础埋深系数,可查表8.4.3 c q r 注: H,V——倾斜荷载的水平分力,垂直分力,KN ; F——基础有效面积,F=b'L'm; 当偏心荷载的偏心矩为e c和e b,则有效基底长度, L'=L-2e c;有效基底宽度:b'=b-2e b。 地基承载力计算公式很多,有理论的、半理论半经验的和经验统计的,它们大都包括三项: 1. 反映粘聚力c的作用; 2. 反映基础宽度b的作用; 3. 反映基础埋深d的作用。 在这三项中都含有一个数值不同的无量纲系数,称为承载力系数,它们都是内摩擦角φ的函数。 下面介绍三种典型的承载力公式。 a.太沙基公式

式中: P u ——极限承载力,K a c ——土的粘聚力,KP a γ——土的重度,KN/m,注意地下水位下用浮重度;b,d——分别为基底宽及埋深,m; N c ,N q ,N r ——承载力系数,可由图8.4.1中实线查取。 图8.4.1 对于松砂和软土,太沙基建议调整抗剪强度指标,采用 c′=1/3c , 此时,承载力公式为:

式中N c ′,在这三项中都含有一个数值不同的无量纲系数,称为承载力系数,它们都是内摩擦角φ的函数。 下面介绍三种典型的承载力公式。 N q ′,N r ′——局部剪切破坏时的承载力系数,可由 图8.4.1中虚线查得。 对于宽度为b的正方形基础 对于直径为b′的圆形基础 b.汉森承载力公式 式中Nr,Nq,Nr——无量纲承载力系数,仅与地基土的内摩擦角有关,可查表8.4.1

地基承载力计算

地基承载力计算 5.2.1 基础底面的压力,应符合下列规定: 1 当轴心荷载作用时 p k ≤f a (5.2.1-1) 式中:p k ——相应于作用的标准组合时,基础底面处的平均压力值(kPa ); f a ——修正后的地基承载力特征值(kPa )。 2 当偏心荷载作用时,除符合式(5.2.1-1)要求外,尚应符合下式规定: p kmax ≤1.2f a (5.2.1-2) 式中:p kmax ——相应于作用的标准组合时,基础底面边缘的最大压力值(kPa )。 5.2.2 基础底面的压力,可按下列公式确定: 1 当轴心荷载作用时 A G F p k k k += (5.2.2-1) 式中:F k ——相应于作用的标准组合时,上部结构传至基础顶面的竖向力值(kN ); G k ——基础自重和基础上的土重(kN ); A ——基础底面面积(m 2)。 2 当偏心荷载作用时 W M A G F p k k k k ++= max (5.2.2-2) W M A G F p k k k k -+= min (5.2.2-3) 式中:M k ——相应于作用的标准组合时,作用于基础底面的力矩值(kN ·m ); W ——基础底面的抵抗矩(m 3); p kmin ——相应于作用的标准组合时,基础底面边缘的最小压力值(kPa )。 3 当基础底面形状为矩形且偏心距e >b /6时(图5.2.2)时,p kmax 应按下式计算: la G F p k k k 3) (2max += (5.2.2-4) 式中:l ——垂直于力矩作用方向的基础底面边长(m ); a ——合力作用点至基础底面最大压力边缘的距离(m )。

混凝土基础承载力计算

混凝土基础承载力计算 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

浅析混凝土路面的承载力水泥混凝土(素混凝土)路面是山东地区加油站选用的主要硬化地面形式之一,由于公司部分加油站临近煤矿区或物流区,且车辆超载运输现象也较为普遍和严重,因此很多路面在使用初期就发生了严重的结构损坏,路面的使用寿命大大缩短,严重影响了加油站的经营销售、通行能力、行车安全和投资效益。因此,为解决大载重车辆地区的混凝土地面易破损问题,需要在施工开展前分析此地段的极限车辆荷载与混凝土地面的设计方法。 本文主要从混凝土地面承载力的主要影响因素入手,重点分析各因素对地面造成破坏的原因并根据破坏原因进行简单的数据测算,最后针对各破坏因素的极限值进行承载力比对,确定固定厚度的混凝土路面的极限承载力。 目的是简单清晰的确定混凝土的竖向承载力与混凝土厚度的比例关系。 混凝土地面承载力主要有四个影响因素,分别为:基础承载力,混凝土标号,混凝土厚度,及设计形式。 基础承载力(计算目标值):由于重点分析混凝土路面的承载力情况,且设计院设计的三元结构(15CM黄土垫层、15CM砂石垫层)一般情况下符合基础要求,因此计 算中的基础一律按无限宽(刚性)基础进行考虑(根据厚度进行求解)。 混凝土标号:混凝土中的标号与刚度是成正比的即标号越大,混凝土的刚度越大,因此路面选择过低标号的混凝土会导致整体路面的网裂,而选择过高标号的混凝土会导致整体路面的刚度过大,呈现脆性即易整体开裂,因此标号的正确选择也是混凝土路面能否长期保持良好情况的重要因素,所以本文中的混凝土标号一律选用设计院设计的 C30标号。

地基承载力(轻、重型计算公式)

小桥涵地基承载力检测 《公路桥涵施工技术规范》JTJ041-2000(P28)“小桥涵的地基检验可采用直观法或触探方法,必要时可进行土质试验”。就我国在建高速公路桥涵地基承载力而言,设计单位在施工图中多给出了地基承载力要求,如圆管涵基底承载力要求100kpa、箱涵250 kpa等等。因此承建单位一般采用(动力)触探法对基底进行检验。 触探法可分为静力触探试验、动力触探试验及标准贯入试验,那么它们分别是怎样定义的?适用范围又是什么呢?我想我们检测人 员是应该搞清楚的。 1、静力触探试验:指通过一定的机械装置,将某种规格的金属触探头用静力压入土层中,同时用传感器或直接量测仪表测试土层对触探头的贯入阻力,以此来判断、分析确定地基土的物理力学性质。静力触探试验适用于粘性土,粉土和砂土,主要用于划分土层,估算地基土的物理力学指标参数,评定地基土的承载力,估算单桩承载力及判定砂土地基的液化等级等。(多为设计单位采用)。 2、动力触探试验:指利用锤击功能,将一定规格的圆锥探头打入土中,根据打入土中的阻抗大小判别土层的变化,对土层进行力学分层,并确定土层的物理力学性质,对地基土作出工程地质评价。动力触探试验适用于强风化、全风化的硬质岩石,各种软质岩及各类土;动力触探分为轻型、重型及超重型三类。目前承建单位一般选用轻型和重型。①轻型触探仪适用于砂土、粉土及粘性土地基检测,(一般要求土中不含碎、卵石),轻型触探仪设备轻便,操作简单,省人省

力,记录每打入30cm的锤击次数,代用公式为R=(0.8×N-2)×9.8(R-地基容许承载力Kpa , N-轻型触探锤击数)。②重型触探仪:适用于各类土,是目前承建单位应用最广泛的一种地基承载力测试方法,该法是采用质量为63.5kg的穿心锤,以76cm的落距,将触探头打入土中,记录打入10cm的锤击数,代用公式为y=35.96x+23.8( y-地基容许承载力Kpa , x-重型触探锤击数)。 3、标准贯入试验:标准贯入试验是动力触探类型之一,其利用质量为63.5 kg的穿心锤,以76cm的恒定高度上自由落下,将一定规格的触探头打入土中15cm,然后开始记录锤击数目,接着将标准贯入器再打入土中30 cm,用此30 cm的锤击数(N)作为标准贯入试验指标,标准贯入试验是国内广泛应用的一种现场原位测试手段,它不仅可用于砂土的测试,也可用于粘性土的测试。锤击数(N)的结果不仅可用于判断砂土的密实度,粘性土的稠度,地基土的容许承载力,砂土的振动液化,桩基承载力,同时也是地基处理效果的一种重要方法。(多为测试中心及设计单位采用)。

地基承载力特征值与地基承载力标准值是什么关系

转:地基承载力特征值与地基承载力标准值是什么关系 这个问题具有普遍的意义,但不是一两句话可以说清楚的,这里涉及土力学 的概念、统计的概念和设计方法的概念,而且相互交叉。首先需要了解新、老规 范术语的变化过程。老规范:(1)由载荷试验求得的称为地基承载力标准值;(2) 经过深宽修正以后称为地基承载力设计值;(3)将地基承载力公式计算的结果称 为地基承载力设计值;新规范:(1)由载荷试验求得的称为地基承载力特征值; (2)经过深宽修正以后称为修正后的地基承载力特征值;(3)将地基承载力公 式计算的结果称为地基承载力特征值。有位网友做过一个概括,比较简明扼要, 而且将地基承载力和设计时所用的载荷联系起来了,概念很清楚,特转引如下: “关于地基承载力的特征值与老规范标准值的关系,要弄清楚这个问题必须比较 三本规范,即74规范、89规范和2002规范。74规范是荷载标准值与容许承载 力的比较;89规范是荷载设计值与承载力设计值的比较;2002规范是荷载标准 值与承载力特征值的比较。从74规范到89规范,荷载放大1.25~1.30倍,承载 力只放大1.1~1.2倍,设计安全水平提高了约1.15倍。从89规范到2002规范。 承载力表达式基本不变,去掉1.1的约束,荷载相当于74规范。设计安全水平 又回到74规范的水平。实际上89规范是不正确的,2002规范的特征值物理意 义就是74规范的容许值,表达式与89规范一样,但物理意义不一样。”我国存 在一个不是太好的倾向,就是技术术语的稳定性太差,不尊重约定俗成的习惯, 随便下定义、改术语,给使用带来了许多的不方便,这样的例子太多了,标准值 和特征值的关系之惑,也是必然的。工程设计中所用的承载力、强度等性能值, 都是属于抗力,其术语存在两种有密切关系但概念不同的体系。从抗力的机理方 面来划分,可分为极限值和容许值,如地基极限承载力和地基容许承载力之分, 对材料则有极限强度和容许强度之分。其概念非常清楚,一种是极限状态,一种 是工作状态,极限状态验算需要用安全系数或者分项系数,而工作状态验算是不 需要用安全系数的。从设计方法方面来划分,则有标准值(代表性值)和设计值 的划分,标准值是某一保证率的分位值,如在《岩土工程勘察规范》(GB50021-2001)中给出了岩土参数标准值的近似公式,就是标准值的一种计 算方法,式中:而设计值则是该变量的验算点的坐标,都是一种具有概率统计含 义的取值方法。抗力的设计值是其标准值与分项系数之比值。在地基设计的抗力 中,地基极限承载力有平均值和标准值之分,地基容许承载力也有平均值和标准 值之分。标准值的取用是考虑了数据的离散性,在平均值的基础上打个折扣。例 如载荷试验的P~S曲线上有两个拐点,第一拐点是比例极限,用作容许承载力, 第二拐点是极限承载力。如果做了n个试验,则可以分别求得容许承载力的平均

塔吊基础承载力计算书

塔吊基础承载力计算书 编写依据塔吊说明书要求及现场实际情况,塔基承台设计为5200m×5200m×1.3m,根据地质报告可知,承台位置处于回填土上,地耐力为4T/m2,不能满足塔吊说明书要求的地耐力≥24T/m2。为了保证塔基承台的稳定性,打算设置四根人工挖孔桩。 地质报告中风化泥岩桩端承载力为P=220Kpa。按桩径r=1.2米,桩深h=9米,桩端置于中风化泥上(嵌入风化泥岩1米)进行桩基承载力的验算。 一、塔吊基础承载力验算 1、单桩桩端承载力为: F1=S×P=π×r2×P=π×0.62×220=248.7KN=24.87T 2、四根桩端承载力为: 4×F1=4×24.87=99.48T 3、塔吊重量51T(说明书中参数) 基础承台重量:5.2×5.2×1.3×2.2=77.33T 塔吊+基础承台总重量=51+77.33=128.33T 4、基础承台承受的荷载 F2=5.2×5.2×4.0=108.16T 5、桩基与承台共同受力=4F1+F1=99.48+108.16=207.64T>塔吊基础总重量=128.33T 所以塔吊基础承载力满足承载要求。 二、钢筋验算 桩身混凝土取C30,桩配筋23根ф16,箍筋间距φ8@200。 验算要求轴向力设计值N≤0.9(fcAcor+fy’AS’+2xfyAsso) 必须成立。 Fc=14.3/mm2(砼轴心抗压强度设计值) Acor=π×r2/4(构件核心截面积) =π×11002/4=950332mm2 fy’=300N/MM2(Ⅱ级钢筋抗压强度设计值) AS’=23×π×r2/4=23×π×162/4 =4624mm2(全部纵向钢筋截面积) x=1.0(箍筋对砼约束的折减系数,50以下取1.0) fy=210N/mm2 (Ⅰ级钢筋抗拉强度设计值) dCor=1100mm (箍筋内表面间距离,即核心截面直径) Ass1=π×r2/4=π×82/4=16×3.14=50.24mm2(一根箍筋的截面面积) S螺旋箍筋间距200mm A’sso=πdCorAssx/s =π×1100×50.24/200=867.65mm2(螺旋间接环式或焊接,环式间接钢筋换算截面面积)因此判断式 N≤0.9(fcAcor+fy’AS’+2xfyAsso)=0.9(14.3×950332+300×4624+2×1.0×210×867.65)=15341360.6N 248.7KN<12382.87KN 经验算钢筋混凝土抗拉满足要求。

地基承载力计算公式

地基承载力计算公式的说明:f=fk+ηbγ(b-3)+ηdγο(d-0.5) fk——垫层底面处软弱土层的承载力标准值(kN/m2) ηb、ηd——分别为基础宽度和埋深的承载力修正系数 b--基础宽度(m) d——基础埋置深度(m) γ--基底下底重度(kN/m3) γ0——基底上底平均重度(kN/m3) 地基的处理方法 利用软弱土层作为持力层时,可按下列规定执行:1)淤泥和淤泥质土,宜利用其上覆较好土层作为持力层,当上覆土层较薄,应采取避免施工时对淤泥和淤泥质土扰动的措施;2)冲填土、建筑垃圾和性能稳定的工业废料,当均匀性和密实度较好时,均可利用作为持力层;3)对于有机质含量较多的生活垃圾和对基础有侵蚀性的工业废料等杂填土,未经处理不宜作为持力层。局部软弱土层以及暗塘、暗沟等,可采用基础梁、换土、桩基或其他方法处理。在选择地基处理方法时,应综合考虑场地工程地质和水文地质条件、建筑物对地基要求、建筑结构类型和基础型式、周围环境条件、材料供应情况、施工条件等因素,经过技术经济指标比较分析后择优采用。 地基处理设计时,应考虑上部结构,基础和地基的共同作用,必要时应采取有效措施,加强上部结构的刚度和强度,以增加建筑物对地基不均匀变形的适应能力。对已选定的地基处理方法,宜按建筑物地基基础设计等级,选择代表性场地进行相应的现场试验,并进行必要的测试,以检验设计参数和加固效果,同时为施工质量检验提供相关依据。 经处理后的地基,当按地基承载力确定基础底面积及埋深而需要对地基承载力特征值进行修正时,基础宽度的地基承载力修正系数取零,基础埋深的地基承载力修正系数取1.0;在受力范围内仍存在软弱下卧层时,应验算软弱下卧层的地基承载力。对受较大水平荷载或建造在斜坡上的建筑物或构筑物,以及钢油罐、堆料场等,地基处理后应进行地基稳定性计算。结构工程师需根据有关规范分别提供用于地基承载力验算和地基变形验算的荷载值;根据建筑物荷载差异大小、建筑物之间的联系方法、施工顺序等,按有关规范和地区经验对地基变形允许值合理提出设计要求。地基处理后,建筑物的地基变形应满足现行有关规范的要求,并在施工期间进行沉降观测,必要时尚应在使用期间继续观测,用以评价地基加固效果和作为使用维护依据。复合地基设计应满足建筑物承载力和变形要求。地基土为欠固结土、膨胀土、湿陷性黄土、可液化土等特殊土时,设计要综合考虑土体的特殊性质,选用适当的增强体和施工工艺。复合地基承载力特征值应通过现场复合地基载荷试验确定,或采用增强体的载荷试验结果和其周边土的承载力特征值结合经验确定。 常用的地基处理方法有:换填垫层法、强夯法、砂石桩法、振冲法、水泥土搅拌法、高压喷射注浆法、预压法、夯实水泥土桩法、水泥粉煤灰碎石桩法、石灰桩法、灰土挤密桩法和土挤密桩法、柱锤冲扩桩法、单液硅化法和碱液法等。 1、换填垫层法适用于浅层软弱地基及不均匀地基的处理。其主要作用是提高地基承载力,减少沉降量,加速软弱土层的排水固结,防止冻胀和消除膨胀土的胀缩。

地基承载力计算.docx

地基承载力计算 5. 2.1 基础底面的压力,应符合下列规定: 1 当轴心荷载作用时 p k ≤ f a ( 5.2.1-1) 式中: p k ——相应于作用的标准组合时,基础底面处的平均压力值( f a ——修正后的地基承载力特征值( kPa )。 kPa ); 2 当偏心荷载作用时,除符合式(5.2.1-1 )要求外,尚应符合下式规定: p kmax ≤ 1.2f a ( 5.2.1-2) 式中: p kmax ——相应于作用的标准组合时,基础底面边缘的最大压力值( kPa )。 5. 2.2 基础底面的压力,可按下列公式确定: 1当轴心荷载作用时 F k G k ( 5.2.2-1) p k A 式中: F k ——相应于作用的标准组合时,上部结构传至基础顶面的竖向力值( kN ); G k ——基础自重和基础上的土重( kN ); A ——基础底面面积( m 2)。 2 当偏心荷载作用时 F k G k M k (5.2.2-2) p k max A W F k G k M k (5.2.2-3) p k min W A 式中: M k ——相应于作用的标准组合时,作用于基础底面的力矩值( kN · m ); W ——基础底面的抵抗矩( m 3); p kmin ——相应于作用的标准组合时,基础底面边缘的最小压力值( kPa )。 3 当基础底面形状为矩形且偏心距e >b/6 时(图 5.2.2 )时, p kmax 应按下式计算: 2(F k G k ) (5.2.2-4) p k max 3la 式中: l ——垂直于力矩作用方向的基础底面边长( m ); a ——合力作用点至基础底面最大压力边缘的距离( m )。

浅基础地基承载力验算部分计算题

一、计算题 图示浅埋基础的底面尺寸为6.5m×7m,作用在基础上的荷载如图中所示(其中竖向力为主要荷载,水平力为附加荷载)。持力层为砂粘土,其容许承载力[ ]=240kPa。试检算地基承载力、偏心距、倾覆稳定性是否满足要求。 (提示:要求倾覆安全系数K0≥1.5) [本题15分] 参考答案: 解:

(1) 代入后,解得: ,满足要求 (2),满足要求 (3), 满足要求 二、图示浅埋基础,已知主要荷载的合力为N=5.0×103kN,对应的偏心距e=0.3m。持力层的容许承载力为420kPa,现已确定其中一边的长度为4.0m (1)试计算为满足承载力的要求,另一边所需的最小尺寸。 (2)确定相应的基底最大、最小压应力。 [本题12分] 参考答案:

解:由题,应有 (2) 三、图示浅埋基础的底面尺寸为6m×3m,已知作用在基础上的主要荷载为:竖向力N=6×1 03kN,弯矩M=1.5×102kNm。此外,持力层的容许承载力。试计算: (1)基底最大及最小压应力各为多少?能否满足承载力要求? (2)其偏心距是否满足e≤ρ的要求? (3)若N不变,在保持基底不与土层脱离的前提下,基础可承受的最大弯矩是多少?此时基底的最大及最小压应力各为多少? [本题12分] 参考答案:

解:(1) (2) (3) 四、某旱地桥墩的矩形基础,基底平面尺寸为a=7.5m,b=7.4m,四周襟边尺寸相同,埋置深度h=2m,在主力加附加力的组合下,简化到基底中心,竖向荷载N=6105kN,水平荷载H=273.9kN,弯矩M=3770.67kN.m。试根据图示荷载及地质资料进行下列项目的检算: (1)检算持力层及下卧层的承载力; (2)检算基础本身强度; (3)检算基底偏心距,基础滑动和倾覆稳定性。

地基承载力计算.docx

图5.2.2 偏心荷载(e> b/6)下基底压力计算示意 b —力矩作用方向基础底面边长 5. 2. 3地基承载力特征值可由载荷试验或其它原位测试、公式计算、并结合工程实践经验等 方法综合确定。 5. 2. 4当基础宽度大于3m 或埋置深度大于0.5m 时,从载荷试验或其它原位测试、经验值等 方法确定的 地基承载力特征值,尚应按下式修正: fa= fak+ n b Y( b ?3 ) + q d Y m(d-0.5) ik 地基承载力特征值(kPa ),按本规范第5.2.3条的原则确定; n ——基础 宽度和埋深的地基承载力修正系数,按基底下土的类别查表 Y ——基础底面以下土的重度(kN/mb ,地下水位以下取浮重度; b ——基础底面宽度(m ),当基础底面宽度小于 3m 时按3m 取值,大于6m 时按6m 取值; 丫一一基础 底面以上土的加权平均重度( kN/mb ,位于地下水位以下的土层取有效重度; m d ——基础埋置深度(m ),宜自室外地面标高算起。在填方整平地区,可自填土地面标高 算起,但填上在上部结构施工后完成时,应从天然地面标高算起。对于地下室,如采 用箱形基础或筏基时,基础埋置深度自室外地面标高算起;当采用独立基础或条形基 础时,应从室内地面标高算起。 式屮: fa --- 修正后的地基承载力特征值( kPa ); (5.2.4) n 、 5.2.4取值;

表承载力修正系数

注:1强风化和全风化的岩石,可参照所风化成的相应土类取值,其他状态下的岩石不修正; 2地基承载力特征值按本规范附录 D 深层平板载荷试验确定时 n d 取0; 3含水比是指土的天然 含水量与液限的比值; 4大面积压实填土是指填土范围大于两借基础宽度的填土。 5. 2. 5当偏心距(e )小于或等于0.033倍基础底面宽度时,根据土的抗剪强度指标确定地基 承载力特征值可按下式计算,并应满足变形要求: b 基础底面宽度(m ),大于6m 时按6m 取值,对于砂土小于 3m 时按3m 取值; Ck ——基底下一倍短边宽度的深度范围内土的粘聚力标准值( 仇=Mb Y b+Md Y md+McCk (525) 式屮:fa 由土的抗剪强度指标确定的地基承载力特征值( kPa); Mb ? Md 、 Me 承载力系数,按表5.2.5确定; kPa) o

相关文档
最新文档