锂离子电池固态聚合物电解质研究进展(英文)

锂离子电池固态聚合物电解质研究进展(英文)
锂离子电池固态聚合物电解质研究进展(英文)

将等:纺织陶瓷基复合材料力学性能研究进展· 123 ·

第35卷第1期

锂离子电池固态聚合物电解质研究进展

唐子龙1,胡林峰1,张中太1,粟付芃2

(1. 清华大学材料科学与工程系,新型陶瓷与精细工艺国家重点实验室,北京 100084;

2. 北京城建天宁耐火有限责任公司,北京 100053)

摘要:电解质是制备高功率密度和高能量密度、长循环寿命的锂离子电池的重要材料之一,而聚合物电解质是实现全固态锂离子电池的关键技术。总结近几年来为提高聚合物电解质电导率所作研究的新进展,并提出了今后的研究方向。

关键词:固态聚合物电解质;离子电导率;锂离子二次电池

中图分类号:TQ172 文献标识码:A 文章编号:0454–5648(2007)01–0123–06

RESEARCH PROGRESS OF SOILD POLYMER ELECTROLYTES FOR LITHIUM ION BATTERIES

TANG Zilong1,HU Linfeng1,ZHANG Zhongtai1,SU Fupeng2

(1. State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua

University, Beijing 100084; 2. Beijing Urban Construction Tianning Fire Protection Co., LTD., Beijing 100053, China) Abstract: Electrolytes are a key material for developing lithium ion batteries with high power and energy density and a long life cycle. Polymer electrolytes are one of the most important materials used in solid state lithium ion batteries. This paper presents a review of new progress in recent years in research to enhance the ionic conductivity of polymer electrolytes. The trend of this development is also reviewed.

Key words: soild polymer electrolyte; ionic conductivity; lithium secondary battery

Since the lithium secondary battery was first pro-duced by the Sony Corporation in 1990, Lithium secon-dary batteries have rapidly taken over the whole market in high performance rechargeable batteries.[1] Lithium ion secondary batteries are widely used in the electronic prod-ucts, such as mobile telephones, notebook personal com-puters (PCs), and digital cameras. Lithium ion batteries, which have high energy density and safe performance, also have excellent prospects for application in the fields of electric vehicles (EV), hybrid electric vehicles (HEV), aviation technology and high energy storage apparatuses.[2] Compared with other batteries, lithium ion batter-ies have many advantages, such as high discharge volt-age and energy density, good cyclability and no envi-ronment pollution. A schematic diagram of a lithium secondary battery is shown in Fig.1. As the public’s awareness of environmental protection has awakened, research on new green lithium batteries has grown. Electrolytes are the key component for lithium ion bat-teries. However, the application of liquid electrolytes is limited by unsatisfactory safety and cyclability and bad thermodynamic stability. In general, solid polymer elec-trolytes (SPEs) have the advantages such as no leakage of electrolytes, low density, safety, and ease of production. There has been increasing interest in the development of polymer electrolytes in recent years, which indicates the development direction of lithium battery electrolytes.

Since Fenton et al. [3] found that the complex of polyenthylene oxide (PEO) and alkaline salts had the property of ionic conductivity in 1973, there has been much research on solid-state lithium-ion electrolytes. In 1979, Armand reported that PEO-LiX based electrolyte had a high ionic conductivity of 10–5 S/cm at temperatures between 40℃ to 60℃. [4] Moreover, it was easy to be prepared as a film, this aroused a worldwide interest in polymer electrolytes(PEs). PEs should have the following

收稿日期:2006–04–28。修改稿收到日期:2006–09–25。

基金项目:国家自然科学基金(50472005,50372033);清华大学基础研究基金(JC2003040)资助项目。

第一作者:唐子龙(1966~),男,副教授。Received date:2006–04–28. Approved date: 2006–09–25. First author: TANG Zilong (1966—), male, associate professor. E-mail: tzl@https://www.360docs.net/doc/1411421616.html,

第35卷第1期2007年1月

硅酸盐学报

JOURNAL OF THE CHINESE CERAMIC SOCIETY

Vol. 35,No. 1

January,2007

锂离子电池固态聚合物电解质研究进展(英文)

邵 将等:纺织陶瓷基复合材料力学性能研究进展· 123 · 第35卷第1期 锂离子电池固态聚合物电解质研究进展 唐子龙1,胡林峰1,张中太1,粟付芃2 (1. 清华大学材料科学与工程系,新型陶瓷与精细工艺国家重点实验室,北京 100084; 2. 北京城建天宁耐火有限责任公司,北京 100053) 摘要:电解质是制备高功率密度和高能量密度、长循环寿命的锂离子电池的重要材料之一,而聚合物电解质是实现全固态锂离子电池的关键技术。总结近几年来为提高聚合物电解质电导率所作研究的新进展,并提出了今后的研究方向。 关键词:固态聚合物电解质;离子电导率;锂离子二次电池 中图分类号:TQ172 文献标识码:A 文章编号:0454–5648(2007)01–0123–06 RESEARCH PROGRESS OF SOILD POLYMER ELECTROLYTES FOR LITHIUM ION BATTERIES TANG Zilong1,HU Linfeng1,ZHANG Zhongtai1,SU Fupeng2 (1. State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084; 2. Beijing Urban Construction Tianning Fire Protection Co., LTD., Beijing 100053, China) Abstract: Electrolytes are a key material for developing lithium ion batteries with high power and energy density and a long life cycle. Polymer electrolytes are one of the most important materials used in solid state lithium ion batteries. This paper presents a review of new progress in recent years in research to enhance the ionic conductivity of polymer electrolytes. The trend of this development is also reviewed. Key words: soild polymer electrolyte; ionic conductivity; lithium secondary battery Since the lithium secondary battery was first pro-duced by the Sony Corporation in 1990, Lithium secon-dary batteries have rapidly taken over the whole market in high performance rechargeable batteries.[1] Lithium ion secondary batteries are widely used in the electronic prod-ucts, such as mobile telephones, notebook personal com-puters (PCs), and digital cameras. Lithium ion batteries, which have high energy density and safe performance, also have excellent prospects for application in the fields of electric vehicles (EV), hybrid electric vehicles (HEV), aviation technology and high energy storage apparatuses.[2] Compared with other batteries, lithium ion batter-ies have many advantages, such as high discharge volt-age and energy density, good cyclability and no envi-ronment pollution. A schematic diagram of a lithium secondary battery is shown in Fig.1. As the public’s awareness of environmental protection has awakened, research on new green lithium batteries has grown. Electrolytes are the key component for lithium ion bat-teries. However, the application of liquid electrolytes is limited by unsatisfactory safety and cyclability and bad thermodynamic stability. In general, solid polymer elec-trolytes (SPEs) have the advantages such as no leakage of electrolytes, low density, safety, and ease of production. There has been increasing interest in the development of polymer electrolytes in recent years, which indicates the development direction of lithium battery electrolytes. Since Fenton et al. [3] found that the complex of polyenthylene oxide (PEO) and alkaline salts had the property of ionic conductivity in 1973, there has been much research on solid-state lithium-ion electrolytes. In 1979, Armand reported that PEO-LiX based electrolyte had a high ionic conductivity of 10–5 S/cm at temperatures between 40℃ to 60℃. [4] Moreover, it was easy to be prepared as a film, this aroused a worldwide interest in polymer electrolytes(PEs). PEs should have the following 收稿日期:2006–04–28。修改稿收到日期:2006–09–25。 基金项目:国家自然科学基金(50472005,50372033);清华大学基础研究基金(JC2003040)资助项目。 第一作者:唐子龙(1966~),男,副教授。Received date:2006–04–28. Approved date: 2006–09–25. First author: TANG Zilong (1966—), male, associate professor. E-mail: tzl@https://www.360docs.net/doc/1411421616.html, 第35卷第1期2007年1月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 35,No. 1 January,2007

全固态锂电池的技术研究进展

全固态锂电池的技术研究进展 根据近期流传的技术趋势预测,全固态锂电池,可能在2030年之前实现固态电解质技术突破,单体能量密度超过500Wh/kg的目标,并且达到量产能力。今天关注一下全固态电解质锂电池。 1锂电池的种类 锂电池的分类方法比较多,可以按照正极材料类型划分,负极材料类型划分,电解液类型划分等等,我们常说的三元材料还是磷酸铁锂或者锰酸锂,就是按照正极材料划分的结果。在锂电池当前发展阶段上,锂电池性能上的差异主要表现在正极材料的差异上,因此人们习惯于用正极材料的名称给一个技术路线命名。 今后两年,高镍三元将成为量产可能性最高的一种技术路线,而含镍量的不同,又成了技术路线的名字,622、811,这是镍钴锰在三元正极材料中的占比关系。这仍然是一种针对正极材料差异的提法。 欧阳明高院士最近给出的技术路线预测中,高镍以后,能量密度达到400Wh/kg的希望,很大程度上寄托在全固态电池的身上。固态电池,相对于传统锂电池的液态电解液而言的,电解质为导电率很高的纯固态物质,这是一种针对电解液形态的命名方式。 与固态电池平行的另外两种技术路线应该可以叫做液态电解液锂电池和半固态电解液锂电池。液态电解液锂电池,传统称呼中三元、磷酸铁锂、锰酸锂都属于液态电解液锂电池范围。半固态电解液,电解质是介于固态和液态之间的状态,现在常见的材料是聚合物电解质,在常温下为凝胶态。 2全固态锂电池的优缺点 优点 1)安全性好,电解质无腐蚀,不可燃,也不存在漏液问题; 2)高温稳定性好,可以在60℃-120℃之间工作; 3)有望获得更高的能量密度。固态电解液,力学性能好,有效抑制锂单质直径生长造成

锂离子电池固态电解质制备及性能研究【开题报告】

开题报告 应用化学 锂离子电池固态电解质制备及性能研究 一、选题的背景与意义 锂无机固态电解质(ion conductor)又称锂快离子导体(super ion conductor),按其晶体结构分为晶态电解质和非晶态电解质。晶态电解质又称导电陶瓷,目前已研究的有钙钛矿(ABO3)型结构锂离子电解质、NASICON型结构锂离子电解质、LISICON型结构锂离子电解质等;非晶态电解质又称玻璃态电解质,目前已研究的有氧化物玻璃态锂离子电解质、硫化物玻璃态锂离子电解质等[1-5]。其导电机制是,锂无机固态电解质具有载流子,在导电过程中伴随着Li+的迁移,并且导电能力跟温度有密切关系。图1.列举了部分重要的晶态和非晶态无机固态电解质的离子电导率[3]。 图1. 部分重要的晶态和非晶态无机固态电解质的离子电导率的Arrhenius曲线Fig. 1. Arrhenius plot of ionic conductivity of important crystalline and amorphous inorganic solid lithium ion conductor. NaA(PO)(A =Ge, Ti and Zr)发现于1968年。这个结构被描述成AO6 NASICON晶体结构IV 243 正八面体和PO4正四面体组成的共价键结构[A2P3O12]-,形成3D相互联系通道和两种分布导电离子间隙位置(M·和M··)。导电离子越过瓶颈从一个位置移动到另一个位置,瓶颈的大小取决于两种间隙位置(M·和M··)的骨架离子性质和载体浓度。结果是,NASICON类型化合物的结构和电化学性质随着骨架组成的不同而变化。比如,在化学通式为LiA’IV2-x A’’IV x(PO4)3的化合物,晶胞参数a 和 LiGe(PO)。通过三价阳离子(Al, Cr, Ga, Fe, c取决于A’IV和A’’IV阳离子大小。已获得的最小晶胞是 243 Sc, In, Lu, Y, La)取代八面体中的Ti4+位置,可以提高陶瓷的烧结性能,降低晶粒边界电阻,提高材

大容量高功率锂离子电池研究进展_毕道治

收稿日期:2007-05-20 作者简介:毕道治(1926-),男,河北省人,教授级高工。 Biography:BIDao-zhi(1926-),male,professor. 大容量高功率锂离子电池研究进展 毕道治 (天津电源研究所,天津300381) 摘要:发展电动车是解决能源危机和环境污染的有效手段之一。大容量高功率锂离子蓄电池是电动车的理想储能电源,因为它具有单体电压高、循环及使用寿命长、比能量高和良好的功率输出性能等优点。介绍了国内外大容量高功率锂离子蓄电池的研究进展,包括关键材料、技术性能和安全问题,并以作者的观点提出了大容量高功率锂离子蓄电池的发展前景和近期研究内容。关键词:锂离子蓄电池;电极活性材料;电解液;电动车;混合电动车中图分类号:TM912.9 文献标志码:A 文章编号:1008-7923(2008)02-0114-06 Researchprogressofhighcapacityandhighpower Li-ionbatteries BIDao-zhi (TianjinPowerSourceInstitute,Tianjin300381,China) Abstract:Developmentofelectricvehicleisoneoftheeffectivemeanstoovercomeproblemsofenvironmentpollutionandenergycrisis.HighcapacityandhighpowerLi-ionstoragebatteryisanappropriatepowersourceforelectricvehicleduetoitshighcellvoltage,longercyclelife,higherenergydensityandhighpowercharacteristics.ThedevelopmentstatusofhighcapacityandhighpowerLi-ionstoragebatteries,includingkeymaterials,technicalperformanceandsafetyproblemsarereviewedinthispaper.ThetechnicalissuesandthefutureofhighcapacityandhighpowerLi-ionbatteriesarefinalllydescribedinwriter'spointofview. Keywords:Li-ionstoragebattery;electrodeactivematerial;electrolyte;EV;HEV 环境污染和能源危机是目前人类面临的两大课题,而燃油汽车的大量普及则是造成上述问题的主要原因之一。发展电动车是有效解决上述问题的重要手段,因为电动车具有能源多样化、污染排放少和能源利用效率高的优点。发展电动车的技术瓶颈问题是迄今为止还没有哪种电池使电动车的性价比能与燃油汽车相比。通过比较各类动力电池的典型性 能,可以看出锂离子电池具有单体电压高、比能量大和自放电小的优点,但也存在安全性差、 成本高和长期循环和贮存后性能下降的问题。为了充分利用并发挥锂离子电池的优势,克服其存在的缺点,世界各主要国家的政府、汽车制造商和相关科技人员都对大容量、高功率动力用锂离子蓄电池的研究非常重视。纷纷制定发展计划、投入大量人力、物力、财力积极进行研制。文章对大容量、高功率锂离子蓄电池的关键材料、性能水平和安全性等方面的研究进展进行综合评述,并探讨了今后的研发方向。

聚合物电解质

课名:能源材料及技术工程基础 题目:聚合物全固态锂离子电池研究现状与应用 姓名:崔辉 学号: 2220160681 签名:

摘要 传统液态锂离子电池易泄露、易腐蚀、服役寿命短,具有安全隐患,逐渐不能满足大容量储能元件、电池薄膜化以及电动汽车的需求。聚合物全固态锂离子电池有望解决安全性问题,越来越受到设计者们的青睐并将得到广泛应用。本文对固态聚合物电解质的发展历程及研究现状进行了简要的概述,并阐述了聚合物全固态锂离子电池的应用及发展方向。 关键词:固态聚合物电解质;全固态锂电池 一、引言 能源和环境是人类进入21世纪必须面对的两个严峻问题,新能源和清洁可再生能源的不断开发是人类社会可持续发展的重要基础。锂离子电池以其高能量密度、高工作电压、长循环寿命、可快速充放电和环境友好等诸多优点,在手机、笔记本电脑、电动工具、电动自行车等中小型电池领域应用广泛,已经成为21世纪能源经济中一个不可或缺的组成部分[1,2]。但传统的液态锂二次电池中含有大量有机电解液,具有易挥发、易燃、易爆等缺点,会造成重大安全隐患。与传统的液态电解质锂二次电池相比,基于聚合物电解质的全固态锂电池除了具有液态有机电解质锂离子电池的特点外,还在几何形状、容量、充放电、循环寿命和环保性能等方面更具优势[3]。同时,不存在液态电解质电池所存在的漏液污染和燃烧爆炸,从根本上解决安全隐患。本文就结合相关文献对全固态聚合物电解质进行简要介绍,并讨论了全固态锂离子电池的相关应用。 二、全固态聚合物电解质简介 1、发展历程 聚合物电解质的研究起源于1973年,当时Wright首次测量了聚氧乙烯(PEO)与碱金属盐(M x)络合的电导率,报道了聚氧化乙烯(PEO)-碱金属盐复合物具有较高的离子导电性[4]。1983年,Berthier等利用核磁共振技术表明固态聚合物电解质中PEO低室温电导率的主要原因是由于其很高结晶度的缘故。随后,Cheradame等利用交联与共聚的合成方法,获得了室温电导率达 5×10-5S·cm-1的固态聚合物电解质,从此揭开了固体聚合物电解质研究的序幕。20世纪90年代,Gozdz等利用P(VDF—HFP)共聚物制备了多孔型聚合物电解质最先实现了聚合物锂离子电池的产业化[5]。经过20余年的开发与研究,目前已经出现了众多固态聚合物电解质体系。 2、全固态聚合物电解质的分类[6] 根据基体的不同,可将全固态聚合物电解质(ASPEs)分为以下几类:

(完整版)全固态锂电池技术的研究进展与展望

全固态锂电池技术的研究进展与展望 周俊飞 (衢州学院化学与材料工程学院浙江衢州324000) 摘要:现有电化学储能锂离子电池系统采用液体电解质,易泄露、易腐蚀、服役寿命短,具有安全隐患。薄膜型 全固态锂电池、大容量聚合物全固态锂电池和大容量无机全固态锂电池是一类以非可燃性固体电解质取代传统锂离 子电池中液态电解质,锂离子通过在正负极间嵌入-脱出并与电子发生电荷交换后实现电能与化学能转换的新型高 安全性锂二次电池。作者综述了各种全固态锂电池的研究和开发现状,包括固态锂电池的构造、工作原理和性能特 征,锂离子固体电解质材料与电极/电解质界面调控,固态整电池技术等方面,提出并详细分析了该技术面临的主要 科学与技术问题,最后指出了全固态锂电池技术未来的发展趋势。 关键词:储能;全固态锂离子电池;固体电解质;界面调控 1 全固态锂电池概述 全固态锂二次电池,简称为全固态锂电池,即电池各单元,包括正负极、电解质全部采用固态材料的锂二次电池,是从20 世纪50 年代开始发展起来的[10-12]。全固态锂电池在构造上比传统锂离子电池要简单,固体电解质除了传导锂离子,也充当了隔膜的角色,如图 2 所示,所以,在全固态锂电池中,电解液、电解质盐、隔膜与黏接剂聚偏氟乙烯等都不需要使用,大大简化了电池的构建步骤。全固态锂电池的工作原理与液态电解质锂离子电池的原理是相通的,充电时正极中的锂离子从活性物质的晶格中脱嵌,通过固体电解质向负极迁移,电子通过外电路向负极迁移,两者在负极处复合成锂原子、合金化或嵌入到负极材料中。放电过程与充电过程恰好相反,此时电子通过外电路驱动电子器件。目前,对于全固态锂二次电池的研究,按电解区分主要包括两大类[13]:一类是以有机聚合物电解质组成的锂离子电池,也称为聚合物全固态锂电池;另一类是以无机固体电解质组成的锂离子电池,又称为无机全固态锂电池,其比较见表1。通过表1 的比较可以清楚地看到,聚合物全固态锂电池的优点是安全性高、能够制备成各种形状、通过卷对卷的方式制备相对容易,但是,该类电池作为大容量化学电源进入储能领域仍有一段距离,主要存在的问题包括电解质和电极的界面不稳定、高分子固体电解质容易结晶、适用温度范围窄以及力学性能有提升空间;以上问题将导致大容量电池在使用过程中因为局部温度升高、界面处化学反应面使聚合物电解质开貌发生变化,进而增大界面电阻甚至导致断路。同时,具有隔膜作用的电解质层的力学性能的下降将引起电池内部发生短路,从面使电池失效[14-15]。无机固体电解质材料具有机械强度高,不含易燃、易挥发成分,不存在漏夜,抗温度性能好等特点;同时,无机材料处理容易实现大规模制备以满足大尺寸电池的需要,还可以制备成薄膜,易于将锂电池小型化,而且由无机材料组装的薄膜无机固体电解质锂电池具有超长的储存寿命和循环性能,是各类微型电子产品电源的最佳选择[10]。采用有机电解液的传统锂离子电池,因过度充电、内部短路等异常时电解液发热,有自燃甚至爆炸的危险(图3)。从图 3 可以清楚地看到,当电池因为受热或短路情况下导致温度升高后,传统的锰酸锂或钴酸锂液体电解质锂离子电池存在膨胀起火的危险,而基于纯无机材料的全固态锂电池未发生此类事故。这体现了无机全固态锂电池在安全性方面的独特优势。以固体电解质替代有机液体电解液的全固态锂电池,在解决传统锂离子电池能量密度偏低和使用寿命偏短这两个关键问题的同时,有望彻底解决电池的安全性问题,符合未来大容量新型化学储能技术发展的方向。正是被全固态锂电池作为电源所表现出来的优点所吸引,近年来国际上对全固态锂电池的开发和研究逐渐开始活跃[10-12] 2 全固态锂电池储能应用研究进展 在社会发展需求和潜在市场需求的推动下,基于新概念、新材料和新技术的化学储能新体系不断涌现,化学储能技术正向安全可靠、长寿命、大规模、低成本、无污染的方向发展。目前已开发的化学储能装置,包括各种二次电池(如镍氢电池、锂离子电池等)、超级电容器、可再生燃料电池(RFC:电解水制氢-储氢-燃料电池发电)、钠硫电池、液流储能电池等。综合各种因素,考虑用于大规模化学储能的主要是锂二次电池、钠硫电池及液流电池,而其中大容量储能用锂二次电池更具推广前景。。 全固态锂电池、锂硫电池、锂空气电池或锂金属电池等后锂离子充电电池的先导性研究在世界各地积极地进行着,计划在2020 年前后开始商业推广。在众多后锂离子充电电池中,包括日本丰田汽车、韩国三星电子和德国KOLIBRI 电池公司对全固态锂电池都表现出特别的兴趣。图 4 为未来二十年大容量锂电池的发展路径,从图 4 可以看出,全固态电

凝胶聚合物电解质的组成

凝胶聚合物电解质主要由聚合物、增塑剂,以及锂盐几部分组成。它具有液体电解质聚合物锂电池体系中的隔膜与离子导电载体的功能。 1、聚合物 聚合物在GPE中主要起骨架支撑作用。固体SPE中的聚合物都可以用作凝胶聚合物电解质的聚合物。对用作骨架材料的聚合物的要求是成膜性能好,膜强度高,电化学稳定窗口宽,在有机电解液中不分解等。比较好的聚合物骨架材料是Feuilladec首先采用的聚丙烯腈(Polyacrylonitrile,PAN)等高分子,除此之外还有聚氧乙烯(Polyethylene Oxide,PEO),聚氧丙烯(Polypropylene Oxide,PPO),聚氯乙烯(Polyvinyl Chloride,PVC),聚偏氟乙烯(Polyvinylidene Fluoride,PVdF)等高分子。 为了提高凝胶聚合物的机械性及导电能力,通常采用共聚、嫁接等方法生成交链聚合物。如偏氟乙烯(Vinylidene Fluoride,VdF)与六氟丙烯(Hexafluoride Propylene,HFP)形成的共聚物P(VdF-HFP),PAN经常是与甲基丙烯酸甲酯(MethylMethacrylate,MMA)交链而形成共聚物P(AN—MMA),PEO的共聚物结构中,氧乙烯基(OCH2CHz)与氧亚甲基(OCH2)相互交错,由于氧亚甲基的插入而抑制了聚合物PEO的结晶性,从而可以提高聚合物的导电性。PEO共聚物的结构式如下: 2、增塑剂

增塑剂的作用是造孔。一般是将增塑剂混溶于聚合物溶液中,成膜后将它除去,留下微孔用以吸附电解液。要求增塑剂与高聚物混溶性好,增塑效率高,物理化学性能稳定,挥发性小且无毒,不与聚合物电池材料发生反应。一般应选择沸点高,粘度低的低分子溶剂或能与高聚物混合的低聚体。例如,邻苯二甲酸二丁酯(DBP,沸点340℃)为增塑剂时,当DBP在聚合物溶液含量为40%(质量分数)时,经抽提后,聚合物膜的强度大幅提高,孔率50%。大于一般膜的40%孔率大于。因此,添加DBP40%~50%时,可以达到膜的要求。 凝胶聚合物电解质的增塑剂类似液体电解质体系的溶剂。 为了达到以上要求,通常采用混合碳酸酯溶剂。当然溶剂的混合比例不同,所得的电解质的导电性也不同。PC含量高则导电性高,因为PC常温下为液体,比常温下为固体的EC粘度要低。不同的溶剂混合也会影响电解质的导电性。 3、锂盐 电解质盐是指无机阴离子或有机阴离子与锂离子形成的锂盐。在锂离子电池中作为电解质盐使用的主要有LiCl04,LiBF4,LiF6,LiPFs,LiCF3SO。电解质盐对电解质的导电性的影响也很大,以LiPF6,LiAsF6的离子导电性最好,LiCl04及LiN(CF3S02)2的导电性次之 文章出处:https://www.360docs.net/doc/1411421616.html,

固体电解质

来源:仲恺农业工程学院绿色化工研究所作者:黄金辉等 提要:介绍了聚合物锂离子电池的关键材料聚合物电解质。叙述了聚合物电解质的发展、组成、分类,离子在聚合物中的传导机理以及国内外的研究进展和今后的研究重点及方向。信息、能源和环保是21 世纪人类社会关心的主要课题。二次电池对3 个问题的解决都起着关键作用。锂离子电池是最新型的二次电池,近10年来得到迅速发展。到2008 年,全球锂离子电池的销售额已远远超过镉镍(Ni-Cd)和氢镍电池(Ni-MH)。锂离子电池以其他电池所不可比拟的优势迅速占领了许多领域,从信息产业(移动电话、PDA、笔记本电脑)到能源交通(电网调峰、电动车辆),从太空(卫星、飞船)到水下(潜艇、水下机器人),锂离子电池在本世纪作为主要的二次电池,进入了人类社会的各个领域,为人类造福。 电解质作为锂离子电池的关键材料影响甚至决定着电池的比能量、寿命、安全性能、充放电性能和高低温性能等多种宏观电化学性质。现在的电解质已经从以前的液态电解发展到固态电解质也就是聚合物电解质。以聚合物电解质取代液态电解质,是锂离子电池发展的一个重大进步,其显著特点就是提高了电池的安全性能,易于加工成膜,可以做成全塑结构,从而可制造超薄和各种形状的电池;能够很好的适应电池冲放电过程中电极的体积变化,同时又有较好的化学和电化学稳定性能。因此在新型高能锂电池及电化学的应用上显示出很大的优越性。 1 聚合物电解质 聚合物电解质也就是高分子电解质,它是由极性聚合物和金属盐络合形成的一类在固态下具有离子导电性的功能高分子材料,实际上就是锂盐的聚合物溶液,广义的说是指具有离子传导性的导电聚合物材料,即在外加电场驱动力作用下,负载电荷的离子定向移动来实现导电过程的聚合物,它的溶剂无论是液体高分子还是固体高分子都具有能够和锂离子配位的基团,而且这些基团与锂离子配位能力越强,锂盐在聚合物中的溶解度就越大,相应的聚合物电解质电性能就越强。 作为各种电池等需要化学能与电能转换场合中的离子导电介质,它在工业和科研工作中的各种电解和电分析过程中有重要的用途,在锂离子电池中它作为锂离子的传输介质必须具备这些条件:工作温度下的电导率较高,一般要大于1 mS/cm,以保证组装成的电池电阻降较低;锂离子迁移数大,以防止产生浓差极化;对电子传输几乎绝缘,因而能够有效地隔离正负电极,以防止电池内部短路;对锂电极的化学和电化学稳定性高,以保证电解质-Li 界面性质稳定性良好;制造成本低廉,以利于市场开发;温和的化学成分,不会污染环境。基于对这种新型电解质的这些特点与要求,许多科研工作者进行了不懈地努力。从最开始的导电聚合物,到有机聚合物再到无机聚合物,再到有机-无机共混聚合物等等,进行了大量的理化性质、常温下的导电率和成膜强度的研究和测试。 电解质的发展到今,已形成了一定的体系,可以分成不同的类型。标准不同其分类也不同,根据导电离子不同,可分为单离子和双离子聚合物电解质;根据聚合形态不同,可分为固体

一种新型全固态聚合物电解质的制备和研究

一种新型全固态聚合物电解质的制备和研究 杨道均1,2,傅相锴1,2,3,龚永锋1,2 1西南大学化学化工学院应用化学研究所,重庆(400715) 2重庆市应用化学市级重点实验室,重庆(400715) 3三峡库区生态环境教育部重点实验室,重庆(400715) 摘要:以醋酸乙烯酯(V Ac)和甲基丙烯酸甲酯(MMA)为单体,采用半连续种子乳液聚合法制备了无规共聚物P(V Ac-MMA),再以四氢呋喃(THF)为溶剂,机械搅拌混入LiClO4,制备了聚合物电解质。FTIR测试表明P(V Ac-MMA)已经聚合生成,用XRD对不同单体投料比下共聚物中的无定形相进行分析;TG、力学性能和电化学交流阻抗测试表明,P(V Ac-MMA)为基体的聚合物电解质具有很好的热稳定性,机械强度和较高的电导率。在25℃不含增塑剂的条件下,离子电导率最高达到了1.2738×10-3S/cm;离子电导率随着温度的升高而迅速增加,电导率—温度曲线符合Arrhenius方程。 关键词:醋酸乙烯酯;甲基丙烯酸甲酯;聚合物电解质;离子电导率 1.引言 高分子固体电解质(Solid polymer electrolyte),又称为离子导体聚合物(Ion-conducting polymer),是从20世纪70年代起迅速发展起来的一种新型固体电解质材料。1973年英国的Wright等[1]首次报道了聚氧化乙烯(PEO)/碱金属盐络合物具有离子导电性。1979年,法国Armand等[2]报道了PEO/碱金属盐络合物在40—60℃时离子电导率达10-5 S/cm,且具有良好的成膜性,可用作锂离子电池电解质。此后,在全世界的范围都掀起了聚合物固体电解质的研究热潮。目前研究最为广泛的聚合物电解质基体主要有PEO、PAN[3]、PMMA[4]、PVdF [5]等。但迄今,电性能和力学性能具佳的聚合物电解质薄膜报道并不多。有文献报道了一系列以共混聚醋酸乙烯酯(PVAc)为基体的聚合物电解质,如PV Ac/PMMA[6]、PV Ac/PVdF[7]、PV Ac/PEO[8]和PV Ac/P(VdF-co-HFP)[9]等,它们都有较高的离子电导率和较好的机械性能。但是以V Ac共聚物为基体的聚合物电解质还未曾见报道。 本文采用半连续种子乳液聚合法[10],以V Ac和MMA为单体,聚合生成了无规共聚物P(V Ac-MMA),并将其作为基体应用于聚合物电解质,进一步提高离子电导率和力学性能。运用热重分析、交流阻抗和力学性能测试对聚合物电解质的热稳定性、离子导电性和机械性能进行表征。 2.实验 2.1 原料 醋酸乙烯酯单体(上海山浦化工有限公司)用前蒸馏,取71—73℃的馏分,甲基丙烯酸甲酯单体(成都科龙化工试剂厂)用5%的 NaOH溶液洗涤,以除去阻聚剂对苯二酚,再用去离子水洗至中性。乳化剂十二烷基硫酸钠(天津市纵横兴工贸有限公司化工试剂分公司),引发剂过硫酸铵(天津市纵横兴工贸有限公司化工试剂分公司),缓冲剂碳酸氢钠(重庆北碚化学试剂厂),溶剂四氢呋喃(宁波大川精细化工有限公司),破乳剂硫酸铝钾(成都科龙化工试剂厂),均系市售化学纯,直接使用;去离子水自制。 2.2P(V Ac-MMA)共聚物和电解质薄膜的制备 用80g去离子水溶解0.5g乳化剂十二烷基硫酸钠加入到250ml的三口烧瓶中,开启搅

固态电解质能从根本上解决电池安全问题

固态电解质能从根本上解决电池安全问题 导读:全固态锂离子电池采用固态电解质替代传统有机液态电解液,有望从根本上解决电池安全性问题,是电动汽车理想的化学电源。 2019年,对新能源汽车产业链企业而言,都是颇为艰难的一年。补贴退坡、降本压力大、资金链紧张,不少企业在阵痛中挣扎求生。 由于受整体销售状况持续不佳的影响,新能源汽车行业部分整车及动力电池厂商的资金周转出现了压力,一些企业因客户未能按约支付货款,大幅增加计提对其应收账款的坏账准备,对企业的经营业绩产生不利影响。 在此背景下,2月10日工信部发布了“关于修改《新能源汽车生产企业及产品准入管理规定》的决定(征求意见稿)”。 此次征求意见稿主要取消了原规定中的“设计开发能力”要求,把此部分调整为了“技术保障能力”要求,要求企业应具备与生产的新能源汽车产品相适应的技术保障能力;还能够对整车和自制部件有测试能力,能够评价、确认与技术保障能力相关的技术要求。 从技术保障能力来看,要求企业在生产过程中的技术把控能力,主要确保的是生产品质和一致性,测试能力也是为了保障生产出来的产品符合汽车产品所需的技术要求。 此次意见稿的调整,意味着新能源汽车生产企业可以不具备自有的设计开发能力,只要保证生产所需的技术保障能力就行。 01 动力电池是新能源电动汽车的核心零部件,新能源汽车产业的不景气,动力电池产业自然不能幸免。从这一点来看,征求意见稿对新能源汽车行业的要求,同样适用于动力电池行业。 把握市场方向,顺应时代发展,核心技术革新,才是硬道理。技术质量过硬,始终是企业发展的保障,市场的导向。 电池技术发展到今天,可以说相对已经比较成熟了,但也同样遇上了瓶颈,急需新一代技术的诞生,尤其是新能源领域。

全固态锂离子电池的研究进展

全固态锂离子电池的研究进展 杨玉梅/文 【摘要】全固态锂离子电池因其容量更大、质量更轻、安全性能更高而受到广泛关注。全固态锂离子电池技术开发的难点和重点在于固态电解质,要解决的首要问题是提高电导率,这也是全固态锂离子电池迄今还没有能够大规模应用的主要原因。本文将介绍近年来全固态锂离子电池的一些研究情况。 【关键词】锂离子电池;全固态;研究进展 锂离子电池因其能量密度高、寿命长等优异的性能,自1991年投入市场以来一直备受瞩目,已成为21世纪能源经济中一个不可或缺的组成部分。 不过锂离子电池在汽车、储能等大型电池领域的应用中还存在一些亟待解 决的问题,比如安全问题。 锂离子电池的有机电解液易挥发易 燃易爆,是导致锂离子电池安全问题的 主要元素。[1] 全固态锂离子电池从根源上解决了 这一问题,并且还有容量大、质量轻等 优点,研究可实现产业化的全固态锂离 子电池迫在眉睫。 全固态锂电池是相对液态锂电池而言,是指结构中不含液体,所有材料都以固态形式存在的储能器件。具体来说,它由正极材料+负极材料和电解质组成,而液态锂电池则由正极材料+负极材料+电解液和隔膜组成。 作为全固态锂离子电池的核心组成 部分——锂离子固体电解质材料,是 实现其高性能的核心材料,也是影响其 实用化的瓶颈之一。固体电解质的发展 历史已经超过一百年,被研究的固体电 解质材料有几百种,而固体电解质只有 在室温或不太高的温度下的电导率大于 10-3S/cm才有可能应用于电化学电源 体系,而绝大多数材料的电导率值要比 该值低几个数量级,这就使具有实际应 用价值的固体电解质材料很少。[2] 1.全固态锂离子电池概述 2.固态电解质研究进展 电解质作为电池中一个至关重要的组成部分,其性能很大程度上决定了电池的功率密度、循环稳定性、安全性能、 高低温性能和使用寿命。评判电解质的 指标一般有: (1)离子导电率:离子导电率会 中国粉体工业 2018 No.4 22

新能源汽车动力电池研究进展与展望

当代化工研究Modern Chemical R esearch 5 2019?10行业动态 新矣旨源汽车动力电池研究进展与展望 *姚乐靖 (艾青中学浙江321000) 摘耍:伴随着社会的进步,为保护环境、减少污染、开发清洁能源,发展来源丰富、环保节能的新能源汽车引起了各国的重视与研究.而开发环境友好、性能优越的动力电池是有效发展新能源汽车、提升其应用价值与前景的核心问题.本文通过对新能源汽车进行简单介绍,简要分析新能源汽车动力电池餉发展过程及各类动力电池的工作原理,并从电池性能、循环使用寿命、材料与成本等方面对各类动力电池特点与发展前景进行简要总结,对不同类型电池优势及目前存在的问题进行评述,对未来新能源汽车动力电池的发展提出前景展望与建议. 关键词:新能源汽车;动力电池;锂离子电池;应用 中图分类号:T文献标识码:A Research Progress and Prospect of Power Batteries of New Energy Vehicle Yao Lejing (Aiqing High School,Zhejiang,321000) Abstracts Along with the progress of society,in order to protect the environment,reduce pollution,develop clean energy,develop new energy vehicles with abundant sources,environmental protection and energy saving has attracted the attention and research of various countries. The development of p ower batteries with environmental production and superior performance is the core issue to effectively develop new energy vehicles and enhance their application value and prospects.This paper briefly introduces new energy vehicles,briefly analyses the development process of p ower batteries of n ew energy vehicle and the working principle of v arious power batteries,and briefly summarizes the characteristics and development p rospects of v arious power batteries f rom the aspects of b attery performance,cycle life,material and cost.This paper reviews the advantages and existing p roblems of d ifferent types of b atteries,and p uts f orward p rospects and suggestions f or the f uture development of n ew energy automotive p ower batteries. Key words i new energy vehicle^po^ver battery^lithium ion battery;application 1.前言 近年来由于环境污染和能源短缺问题的加剧,发展和利用不同类型的新型清洁能源,以替代不可再生的化石燃料及缓解环境污染问题引起了人们的广泛关注和研究。在各国政策的鼓励下,新能源汽车凭借其高能源利用率、低排放等优势迅速发展起来。按照中华人民共和国国家发展与改革委员会公告定义,新能源汽车是指采用非常规的车用燃料作为动力来源(或使用常规的车用燃料、采用新型车载动力装置),综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车切。而动力电池作为新能源汽车的重要组成部分,对新能源汽车的发展和应用起着至关重要的作用。如何开发和研究具有更高性能、更低成本的动力电池是推动新能源汽车实现更广泛市场化的重点问题之一。从材料易得的铅酸蓄电池,到容量较高的银氢电池,再到高性能的锂离子电池和燃料电池,动力电池的制备技术与性能提升方法不断地被研究升级,但是由于材料和技术等方面的不足,新能源汽车动力电池在性能的发挥和实用上还无法完全取代化石燃料。本文通过对不同类型的新能源汽车动力电池的介绍,从电池类型与结构、电池性能、循环使用寿命、材料与成本等角度分析其特点与优劣势,为设计与发展更高性能的动力电池提供建议。 2.新能源汽车的发展现状 新能源汽车主要分成纯电动汽车、混合动力汽车两大类。近几年我国在新能源汽车发展的方面已经有了很大的进步,诸多技术等已经有了巨大的突破,但在新能源汽车不断发展的过程中,一些问题不断的暴露出来,具体有以下几点:(1)新能源汽车产业发展战略不明确。(2)新能源汽车核心技术水平仍然不高。(3)政策依赖明显,用车环境有待提升孔 纯电动汽车是指以车载电源为动力,用电机驱动车轮行驶的车辆⑷。蓄电池是其唯一动力来源。纯电动汽车由于完全摆脱了对化石能源的依赖,对环境的污染较小,而且噪音小、结构简单、维修方便。但是纯电动汽车在高能量、低成本、长寿命以及安全性等方面具有较高的要求且存在需要改进提高的地方。混合动力汽车是指使用一种或多种动力源的车辆闻。混合动力汽车一般都是由内燃机和电动机组成,电力与化石燃料的结合即对环境有了一定的保护,又不影响汽车的使用,使其相对于纯电动汽车来说经济性和适应性更加强。我国现在更加注重混合动力汽车的发展,在不久的将来混合动力汽车会成为主流。 3.新能源汽车动力电池研究现状 根据汽车所用动力来源的不同,新能源汽车动力电池主要可以分为两大类,即蓄电池和燃料电池。应用在电动汽车上的储能技术主要是电化学储能技术,即铅酸、银氢、锂离子电池等储能技术。燃料电池主要利用氢能源的热值高、无副产物、环保等优势。近几年这些不同类型动力电池技术随着研究力度的增大都有了较大的提高,我们主要从电池原理技术、能量密度等电池性能、循环稳定性、成本和市场化等角度进行分析。 ⑴蓄电池 ① 铅酸蓄电池 铅酸蓄电池是目前新能源汽车中使用较为广泛的动力电

锂离子电池固态聚合物电解质材料制备及其性能改善

锂离子电池固态聚合物电解质材料制备及其性能改善 采用液态电解质的锂离子电池在使用过程中容易引发的电解液泄露,引起安全隐患。具有高离子电导率和稳定电位的固态电解质可以提高锂离子电池的能量密度和安全性。 聚偏二氟乙烯-六氟丙烯共聚物(PVDF-HFP)是一种有应用前景的聚合物材料。本研究通过掺杂无机陶瓷颗粒、共混和构造三维网络制备了聚合物电解质,并对其电导率、锂离子迁移率和电化学稳定电位进行了研究,同时组装锂离子电池, 系统分析了其充放电循环稳定性等电化学性能。 (1)本研究首先从纯PVDF-HFP基聚合物室温电导率低的特点出发,利用倒模法,通过掺杂石榴石型无机陶瓷粉末Li7L3Zr2O12制备有机-无机复合电解质并 确定了最适掺杂量(10%)。在室温下,复合聚合物电解质(CPE)具有良好的锂离子电导率3.71×1014-4 S cm-1。 复合聚合物电解质表现出更高的锂离子转移数(0.58)和较为平稳的电化学 窗口(可达4.65VvsLi/Li+)。借助复合聚合物电解质的锂离子电池电化学稳定性有所改善表现出优异的初始放电容量。 在以磷酸铁锂为正极的锂电池系统中,以0.2 C倍率下电池的放电容量达163.1 mAh g-1。评估电池的长循环过程中,通过掺杂改性的聚合物电解质表现出更稳定的电化学充放电能力,在200次充放电周期之后,库伦效率依旧可以维持 在99%以上,容量维持率可达83.8%。 (2)将含有极性很强碳酸酯基团的聚碳酸丙烯酯(PPC)通过共混的方式引入 纯PVDF-HFP聚合物体系中,高电介质基团的引入构成了稳定且低结晶的内部三 维载体,改善了锂离子传输并提高了电解质的循环稳定性。共混改性后的聚合物

相关文档
最新文档