数学建模优秀论文灾情巡视路线的数学模型

数学建模优秀论文灾情巡视路线的数学模型
数学建模优秀论文灾情巡视路线的数学模型

精心整理

灾情巡视路线的数学模型

摘要

本文解决的是灾情巡视路线的设计问题。由于路线图可看成网络图因此此问题可转化为在给定的加权网络图中寻找从给定点O出发行遍所有顶点至少一次再回到点O使得总权(路程或时间)最小的问题。然后针对具体问题,采用一些启发式算法,建立模型进行求解。

对于问题一:基于设计分三组巡视时使总路程最短且各组尽可能均衡的巡视路线的要求我们采用Dijkstra算法,通过对初始圈进行二边逐次修正,处理三组的巡视路线长度,用lingo软件求解出较优方案。定义分组的均衡度系数a检验分组均衡度,在均衡度为a=0.0751时得到分三组(路)巡视时,总路程最短且各组尽可能均衡的巡视路线见附表1。

1.问题重述

1.1问题背景

今年夏天某县遭受水灾。为考察灾情、组织自救,县领导决定,带领有关部门负责人到全县各乡(镇)、村巡视。巡视路线指从县政府所在地出发,走遍各乡(镇)、村,又回到县政府所在地的路线。附录一中给出了该县的乡(镇)、村公路网示意图,公路边的数字为该路段的公里数。

1.2本文需解决的问题

问题一:若分三组(路)巡视,试设计总路程最短且各组尽可能均衡的巡视路线。

问题二:假定巡视人员在各乡(镇)停留时间T=2小时,在各村停留时间t=1小时,汽车行驶速度V=35公里/小时。要在24小时内完成巡视,至少应分几组;给出这种分组下你

认为最佳的巡视路线。

2.1

2.2

路线。

因此问题就转化为一个图论问题,即在给定的加权网络图中,寻找从给定点O出发,行遍所有顶点至少一次再回到O点,使得总权(路程或时间)最小。此即多个推销员的最佳推销员回路问题。基于以上分析,运用图论知识和图论软件包进行求解,再利用均衡度分析对得到的分组路线进行微调,均衡度越小表示路线越均衡,微调后即可得到相对较优的分组路线。可认为这样设计的分组方法和巡回路线能使总路线近似最短。

针对问题二:在问题一的基础上添加了巡视组在各乡镇停留时间T=2小时,在各村停留时间t=1小时,汽车行驶速度V=35公里/小时等条件,要求在24小时内完成巡视的最少分组数以及相应的最佳巡视路线。首先,由图中数据初步计算后判断分成四组可行,再针对分组为四组的情况进行线路设计,仍将问题转化为图论问题,运用问题一的求解方法,得到分为四组的路线,在通过均衡度分析之后得出近似最优巡视路线。

针对问题三:在问题二中关于T,t和V的假定下且巡视人员足够多时,要求在最短时间完成巡

视的要求下所得的最佳的巡视路线,此时考虑到从O点巡视H点的最短时间是所有巡视线路中用时最长的,将计算出的最长路线巡视所用的时间作为巡视路线的最短时间限定,在此限定下对路线进行设计。基于问题一二中图论的方法,从一些点的路线比较少的点开始,能够使搜素容易进行,因此选择从距离O点一些较远的点(如12101522等点)开始搜索,每次搜索时都要对该点的巡视时间进行判断,直到找到近似最优路线。

针对问题四:在巡视组数已定(如三组)的情况下,为尽快完成巡视就要求每组完成的巡视时间尽量均衡,因为总的完成巡视时间按线路最长的完成巡视时间计算,由于组数一定,T,t和V 改变,对每组内的最佳巡视路线是没有影响的,但可能会影响到各组件的均衡性,因此问题实质是讨论T,t和V对分组的影响,即在不破坏原来分组均衡的条件下T,t和V允许的最大变化范围。需要用控制单一变量的方法,分别讨论T、t、V三个量中任意两个量不变时第三个量的变化范围。从而确定T,t和V的改变对最佳巡视路线的影响。

1

O 52.9 61.1 69.9 60.3 53.5 49 43.7

21 23 24 27 Q 30 32

O 39.6 39 44.3 28.4 28 35.7 30.2

33 35 34

图错误!未指定顺序。

由上图便于在第一问分析得到分组情况。 4.2问题二数据分析

问题二中给出了巡视小组在乡(镇)村的停留时间和汽车行驶速度,分别为:巡视人员在各乡(镇)停留时间T=2小时,在各村停留时间t=1小时,汽车行驶速度V=35公里/小时。对于要在24小时内完成巡视,至少应分几组的问题,应首先求出最长路线巡视所用的时间,用停留总时间加上行走时间除以4的结果与24进行比较,以此判断最少分组能否为4组。计算如下:

(17*2+35+599.8/35)/4=21.5<24(小时)

(其中路线长度估算为599.8公里)因此最少分组可定为4组。

5.问题一的解答

本文研究的是灾情巡视路线的最优设计问题,由于路线图可看成网络图,因此此问题可转化为

5.1

=(V,E’),即

(,)x y ?⑴E’)

(,),(,)min (,)G x y E w x y d x y '?∈=

⑵输入图G’的一个初始H圈;

⑶用对角线完全算法[2]产生一个初始H圈;

⑷随机搜索出G’中若干个H圈,例如3000个;

⑸对⑵⑶⑷步所得的每个H圈用二边逐次修正法[2]进行优化,得到近似最佳H圈; ⑹在第⑸步求出的所有H圈中,找出权最小的一个,此即要找的最佳H圈的近似解。(算法程序见附录)

由于二边主次修正法的结果与初始圈有关故本算法第⑵⑶⑷步分别用三种方法,产生初始圈,以保证能得到较优的计算结果。

在此问题是多个推销员的最佳推销员回路问题,即在加权图G中求顶点集V的划分V1,V

,…,Vn 将G 分成n 个生成子图G[V1],G[V2],…,G[V n ],使得:

⒈顶点O∈Vi,i=1,2,3,…,n.

⒉1()n

i U V V G =.

,max ()()

max ()

i j i j

j w C w C w C -α≤,其中Ci 为导Vi 的导出子图G[V1]中的最佳H圈,w(C i )为C i 的权,

i ,j=1,2,3,…,n.

⒋1()min n

j w C =∑.

0≤0α≤4表如图2:

④,⑤,⑥。

5.1.1综上所述,问题一的优化模型为: 5.2问题一的解答。

在本模型的基础上,运用lingo 软件求解出分三组巡视时近似最优的巡视路线(具体程序见附录三),如表2:

由以上分三组所得的路线结果可以看出, 第一组的巡视路线为:

5―2―O

0α0.16.16.1.1个,计各组停留时间大约为:

69/4=17.25(小时)

则每组分配在路途的时间大约为:

24-17.25=6.75(小时)

问题分析时有分三组路线时,巡视总路线最长的是599.8公里,分四组时的总路程更不会比599.8公里大太多,不妨以599.8公里来计算,路途时间约为:

(599.8/35)/4=4.25(小时)

由于4.25<6.75(小时)因此分成四组是可以办到的。 现在尝试将顶点分为四组,分组准则为:

准则一尽量使同一干枝上及其分支上的点分在同一组; 准则二应将相邻的干枝上的点分在同一组;

准则三尽量将的干枝与短的干枝分在同一组; 准则四尽量使各组的停留时间相等。 以上原则将图1中的顶点分为四组,同时计算各组的停留时间,然后用模型一中的算法算出各组的近似最佳推销员巡回,得出路线长度及行走时间,从而得出完成巡视的近似最佳时间,用模型一的算法进行计算时,初始圈的输入与分三组时的处理方式一样。

利用lingo 软件求解得出分为四组时的近近似最优巡视路线。 6.1.1综上所述,问题二的优化模型为 6.2问题二的求解

在模型二的基础上,运用lingo 软件求解出分四组巡视时近似最优的巡视路线(具体程序见附录三),如表3:

-26―第三组巡视路线为:

O-M -25-20―21―K ―18―I ―15―14―13―J ―19―L ―6―M ―O 第四组的巡视路线为:

O-2-5-6―7―E ―8―E ―9―F ―10―F ―12―H ―12―G ―11―E ―7―6-5―2―O 对以上巡视线路的巡视距离进行均衡度分析:

,0max ()()

max ()

i j i j

i w C w C w C α-=

=19.33%=0.1933

对以上巡视线路的巡视时间进行均衡度分析:

,0max ()()

max ()

i j i j

i w T w T w T α-=

=5.06%=0.0506

由距离均衡度和时间均衡度可以看出,所分组的巡视路线的距离均衡度较好,时间均衡度也较好。

因此,所得路线可以认为是分组的近似最优解巡视线路。

7.问题三的解答

7.1模型三的建立 7.1.1确定目标函数

由于巡视人员足够多,故单独巡视所花的时间要小的多,所有组中完成的巡视时间最长的可看

2),min 7.1.2 7.1.37.2i 个

的路L i

通过这种算法利用lingo 软件包处理得到分组数为23组,(具体程序见附录三)结果见表3:

此时巡5.53-5.50-0―0.90―0.93―0α8.18.1.1方法一:

正如问题三已经提到的要尽快完成巡视即要求各组巡视时间的最大值也要最小,用数学表达式就是:

这里k 是给定的分组数,,j j m n 分别是第j 组停留的乡(镇)数和村数,j C 是第j 组巡视路线的长度(j =1,2,…,k )

在上述j h 的表达式中,由于,T t 的作用完全相仿,所以为简化起见对于任意给定的,T t ,不妨记T

p t

=

,即T pt =,这里j h 可简记为()j j j j C h p m n t V =?+?+

⒈若t 增大而V 不变,为了使j h 的最大值尽可能小就要求j j p m n ?+的最大值尽可能小。但是当T 和t 的关系确定后,()j j j

p m n ?+∑是定值(等于p m n ?+,其中m 是全县的乡(镇)数17,

n 是全县的村数35)。上述要求就成为各组停留乡村数(加权之后之和)尽可能均衡,用数学式子表示即为:

这里a ????和a ????分别表示数a 的上整数和下整数,当然在调整各组的停留的乡村数使之达到均衡时,自然会给各组的路线及其长度带来影响,这时应当考虑进行适当调整。

⒉若t 不变而V 增大,这种情况下,在j h 中可能导致

j C 起主导作用。因此和1的结论类似,

更应使j j

C 的

j h 的可S i X i Y i i=1

设均衡分组的最大允许时间均衡度为α,即: 则有:

记max i T εα=?,1,2,3,.i n =L 则ε表示均衡分组所允许的最大时间误差,称为最大允许时间误差。则:

由上式我们得到

由此式可推出以下结果:

1当X i -X j >0时,要保持原均衡分组不变,T 必须满足的条件为: 2.当Y i -Y j >0时,要保持原均衡分组不变,t 必须满足的条件为: 3.当S i -S j >0时,有

(1)当0()()j i j i X X T Y Y t ε≤-?+-?≤时,有 (2)当

()

j i X X T -?+时,有 由1.2.3.

中的式子知,

当T 、t 、V 三

个变量中任意两个变量

t ,V 不变时,T 只能减小,且下界为1.25小时,上界为2小时。

T ,V 不变时,t 只能增大,且上界为1.38小时,下界为1小时。 T ,t 不变时,V 只能增大,且无上界,V 的下界为35公里/小时。

(2)当实际均衡度0α=4.8%,小于最大允许均衡度α=9.6%时,要保持原均衡分组,当: t ,V 不变时,T 的变化上界为0.51小时,下界为2.74小时。 T ,V 不变时,t 的变化上界为0.63小时,下界为1.75小时。 T ,t 不变时,V 无上界,V 的下界为17.3公里/小时。

9.模型的评价、改进及推广

9.1模型评价

优点:

(1)本文提出的分组准则简便易行,可操作性强,且可逐步调整使分组达到均衡。

(2)引用均衡度的概念定量的刻画了分组的均衡性。

(3)再用近似法求解最佳推销员回路时采用了三种不同的方法产生初始圈,使得算法比较完善,得到了误差很小的而近似最优解。

(4)从理论上定量的讨论了T,t和V的变化对均衡分组灵敏度的影响,得到了很好的结果。

缺点:使用的方法不能求得最优解,只能求得近似最优解。

9.2模型改进

(1)求解时可建立将多组路线转化为一组路线来求解的思想,如果能够找出一种准则,使三个代表县城点之间的距离尽量大,则在最好的情况下,将使两个县城点均分整个一条路线,这种改进将简化问题的求解,并可以得到较好的解。

最短路径算法

%求两点间最短路的Dijkstra算法

function[dindex1index2]=Dijkf(a) %a表示图的权值矩阵;d表示所求最短路的权和

%index1表示标号顶点顺序;index2表示标号顶点索引

%参数初始化

M=max(max(a));

pb(1:length(a))=0;

pb(1)=1;

index1=1;

index2=ones(1,length(a));

d(1:length(a))=M;

d(1)=0;temp=1;

%更新1(v),同时记录顶点顺序和顶点索引

whilesum(pb)

end

end

d;

SETS:

!

w

0010000

19.8100000100001000014.212.010000100001000010000100001000010000100001000010000100 0010000

1000010.51000001000010.5100001000010000100001000010000100001000010000100001000010 0007.8

1000012.1100001000001000010000100001000010000100001000010000100001000010000100001 00007.9

100001000014.210.5100008.81000010000100001000010000100001000010000100001000010000 7.913.2

100001000012.010*********.806.5100001000010000100001000010000100007.8100001000010 000

1000010000100001000010000100006.50100001000010000100001000010000100007.9100001000 010000

100001000010000100001000010000100001000008.2100001000010000100009.210000100001000 010000

10000100001000010000100001000010000100008.208.811.8100001000010000100001000010000 10000

100001000010000100001000010000100001000010000100008.80100001000010000100001000010 00010000

10000100001000010000100001000010000100001000011.81000006.810000100001000010000100 0010000

10000100001000010000100001000010000100001000010000100006.806.79.81000010000100001 0000

010000

000

00

000

9018.8

18.80

@

@

);

u

c ity/1,3,4,5,6,10,11,12,13,14,22,23,48,49,50,51,52,53/:u;

l ink(city,city):w,x;

ENDSETS

DATA:

!w=@FILE('C:\Users\Administrator\Desktop\data51.txt');

w=

0 12.9 6 11.5 9.2 10000 10000 10000 10000 10000 10000 10000

10000 10000 10000 10000 10000 10000

12.9 0 10000 10000 10000 7.9 9.2 8.8 10000 10000 10000 10000 10000

10000 10000 10000 10000 10000

6 10000 0 11.2 10000 10000 10000 10.3 5.9 10000 10000 10000

10000 10000 10000 10000 10000 10000

11.5 10000 11.2 0 10000 10000 10000 10000 11 7.9 10000 10000

10000 10000 10000 10000 10000 10000

9.2 10000 10000 10000 0 10000 10000 10000 10000 4.8 10000 10000

10000 10000 10000 10000 10000 10000

10000 7.9 10000 10000 10000 0 10000 10000 10000 10000 10000 10000

7.2 10000 10000 10000 10000 10000

10000 9.2 10000 10000 10000 10000 0 10000 10000 10000 10000 10000 10000 10000 8.1 7.3 10000 10000

10000 8.8 10.3 10000 10000 10000 10000 0 10000 10000 10000 10000 10000 10000 10000 7.4 10000 11.5

@

@SUM(city(j)|j#ne#k:x(k,j))=1;

);

@FOR(link(i,j)|i#gt#1#and#j#gt#1#and#i#ne#j:

u(i)-u(j)+n*x(i,j)<=n-1);

第三组路径的程序

SETS:

c ity/1,6,15,19,20,21,24,25,26,27,28,29,30,31,32,33,34,35,36/:u;

l ink(city,city):w,x;

ENDSETS

DATA:

!w=@FILE('C:\Users\Administrator\Desktop\data51.txt');

w=09.2100001000010000100001000010000100001000010000100001000010000100001000010000 1000010000

9.208.310001000010000100001000010000100001000010000100001000010000100001000010000 10000

100008.30100009.7100011.310000100001000010000100001000010000100001000010000100001 0000

100001000010000011.814.5100001000010000100001000010000100001000010000100001000010 0007.2

1000010009.711.807.31000010000100001000010000100001000010000100001000010000100001 0000

100001000010000100007.30100007.21000010000100001000010000100001000010000100001000 010000

000

010000

010000

010000

210000

0000

0000

0000

008.1

1000010000100007.2100001000010000100001000010000100001000010000100001000010000100 008.10;

ENDDATA

n=@SIZE(city);

MIN=@SUM(link:w*x);

@FOR(city(k):

@SUM(city(i)|i#ne#k:x(i,k))=1;

@SUM(city(j)|j#ne#k:x(k,j))=1;

);

@FOR(link(i,j)|i#gt#1#and#j#gt#1#and#i#ne#j:

u(i)-u(j)+n*x(i,j)<=n-1);

@FOR(link:@BIN(x));

全国数学建模竞赛一等奖论文

交巡警服务平台的设置与调度 摘要 由于警务资源有限,需要根据城市的实际情况与需求建立数学模型来合理地确定交巡警服务平台数目与位置、分配各平台的管辖范围、调度警务资源。设置平台的基本原则是尽量使平台出警次数均衡,缩短出警时间。用出警次数标准差衡量其均衡性,平台与节点的最短路衡量出警时间。 对问题一,首先以出警时间最短和出警次数尽量均衡为约束条件,利用无向图上任意两点最短路径模型得到平台管辖范围,并运用上下界网络流模型优化解,得到A区平台管辖范围分配方案。发现有6个路口不能在3分钟内被任意平台到达,最长出警时间为5.7分钟。 其次,利用二分图的完美匹配模型得出20个平台封锁13个路口的最佳调度方案,要完全封锁13个路口最快需要8.0分钟。 最后,以平台出警次数均衡和出警时间长短为指标对方案优劣进行评价。建立基于不同权重的平台调整评价模型,以对出警次数均衡的权重u和对最远出警距离的权重v 为参数,得到最优的增加平台方案。此模型可根据实际需求任意设定权重参数和平台增数,由此得到增加的平台位置,权重参数可反映不同的实际情况和需求。如确定增加4个平台,令u=0.6,v=0.4,则增加的平台位置位于21、27、46、64号节点处。 对问题二,首先利用各区平台出警次数的标准差和各区节点的超距比例分析评价六区现有方案的合理性,利用模糊加权分析模型以城区的面积、人口、总发案次数为因素来确定平台增加或改变数目。得出B、C区各需改变2个平台的位置,新方案与现状比较,表明新方案比现状更合理。D、E、F区分别需新增4、2、2个平台。利用问题一的基于不同权重的平台调整评价模型确定改变或新增平台的位置。 其次,先利用二分图的完美匹配模型给出80个平台对17个出入口的最优围堵方案,最长出警时间12.7分钟。在保证能够成功围堵的前提下,若考虑节省警力资源,分析全市六区交通网络与平台设置的特点,我们给出了分阶段围堵方案,方案由三阶段构成。最多需调动三组警力,前后总共需要29.2分钟可将全市路口完全封锁。此方案在保证成功围堵嫌疑人的前提下,若在前面阶段堵到罪犯,则可以减少警力资源调度,节省资源。 【关键字】:不同权重的平台调整评价模糊加权分析最短路二分图匹配

葡萄酒的评价_全国数学建模大赛优秀论文

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):重庆工商大学 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期: 2012 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

葡萄酒的评价 摘要 酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定的程度上反映葡萄酒和葡萄的质量。本论文主要研究葡萄酒的评价、酿酒葡萄的分级以及酿酒葡萄与葡萄酒的理化指标之间的相互关系问题。 对于问题一:我们从假设检验的角度出发分析,对两组的评分进行均值和方差运算,并在零假设成立的前提下通过使用Matlab 做T 检验,得出两组评酒员对于红葡萄酒的评价结果无显著性差异,而对于白葡萄酒的评价结果存在显著性差异的结果。再建立可信度模型 = H ,计算结果如下表, 对于问题二:根据葡萄酒质量的综合得分,将其划分为优、良、合格、不合格四个等级,并对酿酒葡萄的理化指标进行主成分分析,得出对葡萄影响较大的 到了它们的偏相关系矩阵。利用通径方法建立了数学模型,得出了它们之间的线性回归方程: 11231123=2.001x 0.0680.015x +........=0.0540.7580.753x ......... y x y x x ----+红红红红白白白白 对于问题四:在前面主成分分析和葡萄酒分级的基础上,建立Logistic 回归模型,并利用最大似然估计法求出线性回归方程的参数,得出线性回归方程。运用SPSS 软件,通过matlab 编程运算,求出受它们综合影响的线性回归方程。在验证时,随机从上面选取理化指标,将它们带入P 的计算式中,通过所求P 值判断此时葡萄酒质量所属级别,得出了不能用葡萄和葡萄酒的理化指标来评价葡萄酒的质量的结论。

2013全国数学建模大赛a题优秀论文

车道被占用对城市道路通行能力的影响 摘要 随着城市化进程加快,城市车辆数的增加,致使道路的占用现象日益严重,同时也导致了更多交通事故的发生。而交通事故发生过程中,路边停车、占道施工、交通流密增大等因素直接导致车道被占用,进而影响了城市道路的通行能力。本文在视频提供的背景下通过数据采集,利用数据插值拟合、差异对比、车流波动理论等对这一影响进行了分析,具体如下: 针对问题一,首先根据视频1中交通事故前后道路通行情况的变化过程运用物理观察测量类比法、数学控制变量法提取描述变量(如事故横断面处的车流量、车流速度以及车流密度)的数据,从而通过研究各变量的变化,来分析其对通行能力的影响。而视频1中有一些时间断层,我们可根据现有的数据先用统计回归对各变量数据插值后再进行拟合,拟合过程中利用残差计算值的大小来选择较好的模型来反应各变量与事故持续时间的关系,进而更好地说明事故发生至撤离期间,事故所处横断面实际通行能力的变化过程。 针对问题二:沿用问题一中的方法,对视频2中影响通行能力的各个变量进行数据采集,同样使用matlab对时间断层处进行插值拟合处理,再将所得到的的变化图像与题一中各变量的变化趋势进行对比分析,其中考虑到两视频的时间段与两视频的事故时长不同,从而采用多种对比方式(如以事故发生前、中、后三时段比较差值、以事故相同持续时间进行对比、以整个事故时间段按比例分配时间进行对比)来更好地说明这一差异。由于小区口的位置不同、时间段是否处于车流高峰期以及1、2、3道车流比例不同等因素的影响,采用不同的数据采集方式使采集的变量数据的实用性更强,从而最后得到视频1中的道路被占用影响程度高于视频2中的影响程度,再者从差异图像的变化波动中得到验证,使其合理性更强。 针对问题三:运用问题1、2中三个变量与持续时间的关系作为纽带,再根据附件5中的信号相位确定出车流量的测量周期为一分钟,测量出上游车流量随时间的变化情况,而事故横断面实际通行能力与持续时间的关系已在1、2问中由拟合得到,所以再根据波动理论预测道路异常下车辆长度模型的结论,结合采集数据得到的函数关系建立数学模型,最后得出事故发生后,车辆排队长度与事故横断面实际通行能力、事故持续时间以及路段上游车流量这三者之间的关系式。 针对问题四:在问题3建立的模型下,利用问题4中提供的变量数据推导出其它相关变量值,然后代入模型,估算出时间长度,以此检验模型的操作性及可靠性。 关键词:通行能力车流波动理论车流量车流速度车流密度

数学建模中的图论方法

数学建模中的图论方法 一、引言 我们知道,数学建模竞赛中有问题A和问题B。一般而言,问题A是连续系统中的问题,问题B是离散系统中的问题。由于我们在大学数学教育内容中,连续系统方面的知识的比例较大,而离散数学比例较小。因此很多人有这样的感觉,A题入手快,而B题不好下手。 另外,在有限元素的离散系统中,相应的数学模型又可以划分为两类,一类是存在有效算法的所谓P类问题,即多项式时间内可以解决的问题。但是这类问题在MCM中非常少见,事实上,由于竞赛是开卷的,参考相关文献,使用现成的算法解决一个P类问题,不能显示参赛者的建模及解决实际问题能力之大小;还有一类所谓的NP问题,这种问题每一个都尚未建立有效的算法,也许真的就不可能有有效算法来解决。命题往往以这种NPC问题为数学背景,找一个具体的实际模型来考验参赛者。这样增加了建立数学模型的难度。但是这也并不是说无法求解。一般来说,由于问题是具体的实例,我们可以找到特殊的解法,或者可以给出一个近似解。 图论作为离散数学的一个重要分支,在工程技术、自然科学和经济管理中的许多方面都能提供有力的数学模型来解决实际问题,所以吸引了很多研究人员去研究图论中的方法和算法。应该说,我们对图论中的经典例子或多或少还是有一些了解的,比如,哥尼斯堡七桥问题、中国邮递员问题、四色定理等等。图论方法已经成为数学模型中的重要方法。许多难题由于归结为图论问题被巧妙地解决。而且,从历年的数学建模竞赛看,出现图论模型的频率极大,比如: AMCM90B-扫雪问题; AMCM91B-寻找最优Steiner树; AMCM92B-紧急修复系统的研制(最小生成树) AMCM94B-计算机传输数据的最小时间(边染色问题) CMCM93B-足球队排名(特征向量法) CMCM94B-锁具装箱问题(最大独立顶点集、最小覆盖等用来证明最优性) CMCM98B-灾情巡视路线(最优回路) 等等。这里面都直接或是间接用到图论方面的知识。要说明的是,这里图论只是解决问题的一种方法,而不是唯一的方法。 本文将从图论的角度来说明如何将一个工程问题转化为合理而且可求解的数学模型,着重介绍图论中的典型算法。这里只是一些基础、简单的介绍,目的在于了解这方面的知识和应用,拓宽大家的思路,希望起到抛砖引玉的作用,要掌握更多还需要我们进一步的学习和实践。

数学建模国家一等奖优秀论文

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写):B 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3.

指导教师或指导教师组负责人(打印并签名): ?(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 2014 年 9 月15日 赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):

灾情巡视路线地数学模型

最优灾情巡视路线 摘要 关键字 1问题重述 下图为某县的乡(镇)、村公路网示意图,公路边的数字为该路段的公里数。今年夏天该县遭受水灾。为考察灾情、组织自救,县领导决定,带领有关部门负责人到全县各乡(镇)、村巡视。巡视路线指从县政府所在地出发,走遍各乡(镇)、村,又回到县政府所在地的路线。 问题一:若分三组(路)巡视,试设计总路程最短且各组尽可能均衡的巡视路线。 问题二:假定巡视人员在各乡(镇)停留时间T=2小时,在各村停留时间t=1小时,汽车行驶速度v=35公里/小时。要在24小时内完成巡视,至少应分几组;给出这种分组下你认为最佳的巡视路线。 问题三:在上述关于T , t和v的假定下,如果巡视人员足够多,完成巡视的最短时间是多少;给出在这种最短时间完成巡视的要求下,你认为最佳的巡视路线。 问题四:若巡视组数已定(如三组),要求尽快完成巡视,讨论T,t和v改变对最佳巡视路线的影响。 2问题假设与符号说明 2.1问题假设 假设一:假设在巡视过程中不考虑天气、故障等因素的影响 假设二:假设路线上的公路没有被洪水冲断,可以供巡视工作使用。假设三:假设在巡视工程中,经过邻县村时,不做任何时间的耽搁。 2.2符号说明

3问题分析 本题给出了某县的道路交通网络图,要求的是在不同条件下,灾情巡视的最佳分组方案和路线。这是一类图上的点的遍历性问题,也就是要用若干条闭链覆盖图上所有的顶点,并使某些指标达到最优。点的遍历性问题在图论中属于哈密顿问题和旅行推销员问题类似。如果巡视人员只分一组,巡视路线是指巡视人员从县政府O 出发,走遍各乡(镇)、村最后又回到县政府。我们可以把该题抽象为图论的赋权连通问题,即有一赋权无向连通图(,)G V E ,且O V ∈。两村之间的公路长度即为无向图的边权()w e 。寻找最佳巡视路线,即在图(,)G V E 中找到一条包含O 点的回路,它至少经过所有的顶点一次且使得总路程(总时间) 最短。 针对问题一:如果将巡视人员分成三组,每组考察全县的一个区域,使所有乡(镇)、村都考察到,实际上就是将图(,)G V E 分为三个连通的子图i G ,且每个子图都与O 点相连,然后在每个子图中寻找到一条含O 点的最佳回路。针 对三组巡视成员,需对该县分为三个区域。我们采用Prim 算法通过++C 编程求 出G 图的最小树形图,然后将树形图分成三个区域,最后,采用哈密顿回路法求解每个子图内的最佳巡视路线。 针对问题二: 完成巡视的时间应是各组巡视中最长的时间,要想提高巡视的效率则应尽量使各组的巡视时间接近,反映在G 图分块时应尽量均衡。 4数据的分析与处理 5问题一的解答 5.1模型一的准备 现要分三组巡视,则需要把图G 分成三个子图(1,2,3)i G i =,在每个子图i G 中寻 找最佳回路(1,2,3)i L i =。因为最小生成树中能包含图G 中所有的顶点E ,而且最小

SARS传播的数学模型 数学建模全国赛优秀论文

SARS传播的数学模型 (轩辕杨杰整理) 摘要 本文分析了题目所提供的早期SARS传播模型的合理性与实用性,认为该模型可以预测疫情发展的大致趋势,但是存在一定的不足.第一,混淆了累计患病人数与累计确诊人数的概念;第二,借助其他地区数据进行预测,后期预测结果不够准确;第三,模型的参数L、K的设定缺乏依据,具有一定的主观性. 针对早期模型的不足,在系统分析了SARS的传播机理后,把SARS的传播过程划分为:征兆期,爆发期,高峰期和衰退期4个阶段.将每个阶段影响SARS 传播的因素参数化,在传染病SIR模型的基础上,改进得到SARS传播模型.采用离散化的方法对本模型求数值解得到:北京SARS疫情的预测持续时间为106天,预测SARS患者累计2514人,与实际情况比较吻合. 应用SARS传播模型,对隔离时间及隔离措施强度的效果进行分析,得出结论:“早发现,早隔离”能有效减少累计患病人数;“严格隔离”能有效缩短疫情持续时间. 在建立模型的过程中发现,需要认清SARS传播机理,获得真实有效的数据.而题目所提供的累计确诊人数并不等于同期累计患病人数,这给模型的建立带来不小的困难. 本文分析了海外来京旅游人数受SARS的影响,建立时间序列半参数回归模型进行了预测,估算出SARS会对北京入境旅游业造成23.22亿元人民币损失,并预计北京海外旅游人数在10月以前能恢复正常. 最后给当地报刊写了一篇短文,介绍了建立传染病数学模型的重要性.

1.问题的重述 SARS (严重急性呼吸道综合症,俗称:非典型肺炎)的爆发和蔓延使我们认识到,定量地研究传染病的传播规律,为预测和控制传染病蔓延创造条件,具有很高的重要性.现需要做以下工作: (1) 对题目提供的一个早期模型,评价其合理性和实用性. (2) 建立自己的模型,说明优于早期模型的原因;说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够信息的模型,并指出这样做的困难;评价卫生部门采取的措施,如:提前和延后5天采取严格的隔离措施,估计对疫情传播的影响. (3) 根据题目提供的数据建立相应的数学模型,预测SARS 对社会经济的影响. (4) 给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性. 2.早期模型的分析与评价 题目要求建立SARS 的传播模型,整个工作的关键是建立真正能够预测以及能为预防和控制提供可靠、足够的信息的模型.如何结合可靠、足够这两个要求评价一个模型的合理性和实用性,首先需要明确: 合理性定义 要求模型的建立有根据,预测结果切合实际. 实用性定义 要求模型能全面模拟真实情况,以量化指标指导实际. 所以合理的模型能为预防和控制提供可靠的信息;实用的模型能为预防和控制提供足够的信息. 2.1早期模型简述 早期模型是一个SARS 疫情分析及疫情走势预测的模型, 该模型假定初始时刻的病例数为0N , 平均每病人每天可传染K 个人(K 一般为小数),K 代表某种社会环境下一个病人传染他人的平均概率,与全社会的警觉程度、政府和公众采取的各种措施有关.整个模型的K 值从开始到高峰期间保持不变,高峰期后 10天的范围内K 值逐步被调整到比较小的值,然后又保持不变. 平均每个病人可以直接感染他人的时间为L 天.整个模型的L 一直被定为20.则在L 天之内,病例数目的增长随时间t (单位天)的关系是: t k N t N )1()(0+?= 考虑传染期限L 的作用后,变化将显著偏离指数律,增长速度会放慢.采用半模拟循环计算的办法,把到达L 天的病例从可以引发直接传染的基数中去掉. 2.2早期模型合理性评价 根据早期模型对北京疫情的分析与预测,其先将北京的病例起点定在3月1日,经过大约59天在4月29日左右达到高峰,然后通过拟合起点和4月20日以后的数据定出高峰期以前的K =0.13913.高峰期后的K 值按香港情况变化,即10天范围内K 值逐步被调整到0.0273.L 恒为20.由此画出北京3月1日至5月7日疫情发展趋势拟合图像以及5月7日以后的疫情发展趋势预测图像,如图1.

灾情巡视路线最优化的方案(刘)

约束最优路线的模拟退火解法 说明:以98年全国大学生数模竞赛中的B 题(即“灾情巡视路线”)为例,介绍能解一类较广泛的约束最优路线问题的方法??模拟退火法[1] 。该法对“灾情巡视路线”这类有约束以及“(一般)旅行推销员”、“中国邮递员”等无约束组合优化问题均能求得较好的近似解,具有适用范围广和可拓展的优点。 一、问题描述 对于最短路、最大流、中国邮递员、旅行推销员等最优路线问题,常采用各自不同的方法求解。若在这些问题中再加入一些约束条件,则原方法往往不再有效,如98年大学生数模竞赛中的B 题就是如此。我们设计的方法较好地解决了这一问题。现以98年B 题为例,介绍该法及其实现。下面为该题文字部分,并称其四问分别为问题1至问题4: 下图(略)为某县的乡(镇)、村公路网示意图,公路边的数字为该路段的公里数。 今年夏天该县遭受水灾。为考察灾情、组织自救,县领导决定,带领有关部门负责人到全县各乡(镇)、村巡视。巡视路线指从县政府所在地出发,走遍各乡(镇)、村,又回到县政府所在地的路线。 1.若分三组(路)巡视,试设计总路程最短且各组尽可能均衡的巡视路线。 2.假定巡视人员在各乡(镇)停留时间T=2小时,在各村停留时间t=1小时,汽车行驶速度V=35公里/小时。要在24小时内完成巡视,至少应分几组;给出这种分组下你认为最佳的巡视路线。 3.在上述关于T ,t 和V 的假定下,如果巡视人员足够多,完成巡视的最短时间是多少;给出在这种最短时间完成巡视的要求下,你认为最佳的巡视路线。 4.若巡视组数已定(如三组),要求尽快完成巡视,讨论T ,t 和V 改变对最佳巡视路线的影响。 二、问题分析及模型的建立 因为是分组巡视(不妨设分N 组),要直接确定一个组巡视哪些地点是困难的。由于将各组巡视的路线连接起来可看成一条N 次相继从县城出发又回到县城的路线,这样,多组巡视就化成了单组巡视。经分析,我们认为前3问及第4问计算部分都是组合规划中的约束优化问题,均属以模型 ()()()n j x g m i x h st x f j i ,,2,1,0,,2,1,0.min ?=≥?== (I ) 为基础的约束最优路线模型。下面根据各问的要求,分别对4个问题进行具体讨论。 对于问题1,如果选取总路程最短的所有巡视路线中最均衡的,一般这一路线仍会很不均衡。故除了要总路程短,另需“均衡”提出一定的要求,即组间巡视路线的长度差不大于某给定值L 。还有路线能够分成3次从县城O 出发再回到O 、各组经过地点的并集为所有顶点的集合只之约束。模型如下: () A P L f f N n st f f F n i i =≤-=-+≤≤ 1min max min max .min λ (II) 其中F 为巡视总路程,N 为要求的分组数(本问N=3),n 是优化过程中路线的实际分组数,f max 和f min 分别为n 组中最长和最短组的巡视路程,P i 为第i 组巡视地点的集合,A 是所有顶点的集合。约束条件(f max -f min )≤L 用来保证各组路程基本均衡,

美国大学生数学建模竞赛优秀论文翻译

优化和评价的收费亭的数量 景区简介 由於公路出来的第一千九百三十,至今发展十分迅速在全世界逐渐成为骨架的运输系统,以其高速度,承载能力大,运输成本低,具有吸引力的旅游方便,减少交通堵塞。以下的快速传播的公路,相应的管理收费站设置支付和公路条件的改善公路和收费广场。 然而,随着越来越多的人口密度和产业基地,公路如花园州公园大道的经验严重交通挤塞收费广场在高峰时间。事实上,这是共同经历长时间的延误甚至在非赶这两小时收费广场。 在进入收费广场的车流量,球迷的较大的收费亭的数量,而当离开收费广场,川流不息的车辆需挤缩到的车道数的数量相等的车道收费广场前。因此,当交通繁忙时,拥堵现象发生在从收费广场。当交通非常拥挤,阻塞也会在进入收费广场因为所需要的时间为每个车辆付通行费。 因此,这是可取的,以尽量减少车辆烦恼限制数额收费广场引起的交通混乱。良好的设计,这些系统可以产生重大影响的有效利用的基础设施,并有助于提高居民的生活水平。通常,一个更大的收费亭的数量提供的数量比进入收费广场的道路。 事实上,高速公路收费广场和停车场出入口广场构成了一个独特的类型的运输系统,需要具体分析时,试图了解他们的工作和他们之间的互动与其他巷道组成部分。一方面,这些设施是一个最有效的手段收集用户收费或者停车服务或对道路,桥梁,隧道。另一方面,收费广场产生不利影响的吞吐量或设施的服务能力。收费广场的不利影响是特别明显时,通常是重交通。 其目标模式是保证收费广场可以处理交通流没有任何问题。车辆安全通行费广场也是一个重要的问题,如无障碍的收费广场。封锁交通流应尽量避免。 模型的目标是确定最优的收费亭的数量的基础上进行合理的优化准则。 主要原因是拥挤的

2011年全国数学建模大赛A题获奖论文

城市表层土壤重金属污染分析 摘要 本文旨在对城市土壤地质环境的重金属污染状况进行分析,建立模型对金属污染物的分布特点、污染程度、传播特征以及污染源的确定进行有效的描述、评价和定位。 对于重金属空间分布问题,首先基于克里金插值法,应用Surfer 8软件对各数据点的分布情况进行模拟,得到了直观的重金属污染空间分布图形;随后,分别用内梅罗综合污染指数以及模糊评价标准和模型对城区内不同区域重金属的污染程度进行了评判。 对于金属污染的主要原因分析问题,基于因子分析法、问题一的结果和对各个金属污染物的来源分析等因素,判断出金属污染的主要原因有:工业生产、汽车尾气排放、石油加工并推测该区域是镍矿富集区。随后讨论了污染源之间的相互关系和不同金属的污染贡献率。 针对污染源位置确定问题,我们建立了两个模型:模型一以流程图的形式出现,基于污染传播的一般规律建立模型,求取污染源范围,模型作用更倾向于确定污染源的位置;模型二基于最小二乘法原理,建立了拟合二次曲面方程,在有效确定污染源的同时也反映了其传播特征,模型更加清楚,理论性也更强。 在研究城市地质环境的演变模式问题中,我们对针对污染源位置确定问题所建模型的优缺点进行了评价,同时建立了考虑了时间,地域环境和传播媒介的污染物传播模型,从而反映了地质的演变。 综上所述,本文模型的特点是从简单的模型建立起,强更准确的数学模型发展,逐步达到目标期望。 关键词:重金属污染,克里金插值最小二乘法因子分析流程图

一、问题重述 1.1问题背景 随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。评价和研究城市土壤重金属污染程度,讨论土壤中重金属的空间分布,研究城市土壤重金属污染特征、污染来源以及在环境中迁移、转化机理,并对城市环境污染治理和城市进一步的发展规划提出科学建议,不仅有利于城市生态环境良性发展,有利于人类与自然和谐,也有利于人类社会 健康和城市可持续发展[1] 。按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,不同的区域环境受人类活动影响的程度不同。 现对某城市城区土壤地质环境进行调查。为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS 记录采样点的位置。应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。 1.2 目标任务 (1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。 (2) 通过数据分析,说明重金属污染的主要原因。 (3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。 (4) 分析所建立模型的优缺点,为更好地研究城市地质环境的演变模式,分析还应收集的信息,并进一步探索怎样利用收集的信息建立模型及解决问题。 二、 模型假设 1)忽略地下矿源对污染物浓度的影响; 2)认为海拔对污染物的分布较小,故只在少数模型中讨论其作用; 3)认为题目中的采样方式是科学的,能够客观反映污染源的分布。 三、 符号说明 3.1第一问中的符号说明 i p ——污染物i 的环境污染指数 i C ——污染物i 的实测值 i S ——污染物i 的背景值 m ax (/)i i C S ——土壤污染指数的最大值 (/)i i avg C S ——土壤污染指数的平均值

2014年数学建模国家一等奖优秀论文设计

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参 赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括、电子、网上咨询等) 与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或 其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文 引用处和参考文献中明确列出。 我们重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违 反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展 示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 2. 3.

指导教师或指导教师组负责人 (打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 2014 年 9 月 15日赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):

2011年数学建模大赛优秀论文

交巡警服务平台的设置与调度的数学模型 摘要 针对交巡警服务平台的设置与调度问题,本文主要考虑出警速度和各服务平台的工作量来建立合理方案。对于A区的20个交巡警服务平台分配管辖范围的问题,我们采用Dijkstra算法,分别求得在3分钟内从服务台可以到达的路口。根据就近原则,每个路口归它最近的服务台管辖。 对进出A区的13个交通要道进行快速全封锁,我们采用目标规划进行建模,运用MATLAB软件编程,先找出13个交通要道到20个服务台的所有路径。然后在保证全封锁时间最短的前提下,再考虑局部区域的封锁效率,即总封锁时间最短,封锁过程中总路程最小,从而得到一个较优的封锁方案。 为解决前面问题中3分钟内交巡警不能到达的路口问题,并减少工作量大的地区的负担,这里工作量以第一小问中20个服务台覆盖的路口发案率之和以及区域内的距离的和来衡量。对此我们计划增加四个交巡警服务台。避免有些地方出警时间过长和服务台工作量不均衡的情况。 对全市六个区交警平台设计是否合理,主要以单位服务台所管节点数,单位服务台所覆盖面积,以及单位服务台处理案件频率这些因素进行研究分析。以A 区的指标作为参考,来检验交警服务平台设置是否合理。 对于发生在P点的刑事案件,采用改进的深度搜索和树的生成相结合的方法,对逃亡的犯罪嫌疑人进行可能的逃逸路径搜索。由于警方是在案发后3分钟才接到报警,因此需知道疑犯在这3分钟内可能的路线。要想围堵嫌疑犯,服务台必须要在嫌疑犯到达某节点之前到达。用MATLAB编程,搜索出嫌疑犯可能逃跑的路线,然后调度附近的服务台对满足条件的节点进行封锁,从而实现对疑犯的围堵。 关键词:Dijkstra算法;目标规划;搜索;

建模案例:最佳灾情巡视路线

建模案例:最佳灾情巡视路线 1998年全国大学生数学模型竞赛B题中的两个问题. 一、问题 今年夏天某县遭受水灾.为考察灾情、组织自救,县领导决定,带领有关部门负责人到全县各乡(镇)、村巡视.巡视路线指从县政府所在地出发,走遍各乡(镇)、村,又回到县政府所在地的路线. 1.若分三组(路)巡视,试设计总路程最短且各组尽可能均衡的路线. 2.假定巡视人员在各乡(镇)停留时间T=2h,在各村停留时间t=1h,汽车行驶速度V=35km/h.要在24h内完成巡视,至少应分几组;给出这种分组下最佳的巡视路线. 乡镇、村的公路网示意图见图1. 图1 二、假设 1.汽车在路上的速度总是一定,不会出现抛锚等现象; 2.巡视当中,在每个乡镇、村的停留时间一定,不会出现特殊情况而延误时间;3.每个小组的汽车行驶速度完全一样; 4.分组后,各小组只能走自己区内的路,不能走其他小组的路(除公共路外). 三、模型的建立与求解 将公路网图中,每个乡(镇)或村看作图中的一个节点,各乡(镇)、村之间的公路看作图中对应节点间的边,各条公路的长度(或行驶时间)看作对应边

上的权,所给公路网就转化为加权网络图,问题就转化为在给定的加权网络图中寻找从给定点O 出发,行遍所有顶点至少一次再回到O 点,使得总权(路程或时间)最小,此即最佳推销员回路问题. 在加权图G 中求最佳推销员回路问题是NP —完全问题,我们采用一种近似算法求出该问题的一个近似最优解,来代替最优解,算法如下: 算法一 求加权图G (V ,E )的最佳推销员回路的近似算法: 1. 用图论软件包求出G 中任意两个顶点间的最短路,构造出完备图 ),(E V G '',()E y x '∈?,, ()(),,G x y mind x y ω=; 2. 输入图G '的一个初始H 圈; 3. 用对角线完全算法产生一个初始H 圈; 4. 随机搜索出G '中若干个H 圈,例如2000个; 5. 对第2、3、4步所得的每个H 圈,用二边逐次修正法进行优化,得到近似最佳H 圈; 6. 在第5步求出的所有H 圈中,找出权最小的一个,此即要找的最佳H 圈的近似解. 由于二边逐次修正法的结果与初始圈有关,故本算法第2、3、4步分别用三种方法产生初始圈,以保证能得到较优的计算结果. 问题一 若分为3组巡视,设计总路程最短且各组尽可能均衡的巡视路线. 此问题是多个推销员的最佳推销员回路问题.即在加权图G 中求顶点集V 的划分12,,,n V V V L ,将G 分成n 个生成子图[][][]12,,...,n G V G V G V ,使得 (1)顶点i V O ∈, i =1,2,3,…,n ; (2)()G V V n i i ==Y 1 ; (3)()(),max max i j i j i i C C C ωωαω-≤,其中i C 为i V 的导出子图[]i V G 中的最佳推销员回路,()i C ω为i C 的权,i ,j =1,2,3,…,n ; (4)()1n i i C ω=∑取最小. 定义 称()()() ,0max max i j i j i i C C C ωωαω-=为该分组的实际均衡度.α为最大容 许均衡度. 显然100≤≤α,0α越小,说明分组的均衡性越好.取定一个α后,0α与α满足条件(3)的分组是一个均衡分组.条件(4)表示总巡视路线最短. 此问题包含两方面:第一,对顶点分组;第二,在每组中求最佳推销员回路,即为单个推销员的最佳推销员问题. 由于单个推销员的最佳推销员回路问题不存在多项式时间内的精确算法,故多个推销员的问题也不存在多项式时间内的精确算法.而图中节点数较多,为53个,我们只能去寻求一种较合理的划分准则,对图1进行粗步划分后,求出各部

数学建模B题优秀论文

2010高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的 资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规 则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 王静茹 2. 杨曼 3. 朱元霞 指导教师或指导教师组负责人 (打印并签名): 日期:年月日 赛区评阅编号(由赛区组委会评阅前进行编号):

2010高教社杯全国大学生数学建模竞赛 编 号 专 用 页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号): 2010年上海世博会经济影响力的定量评估 摘要 本文选取2010年上海世博会对上海经济的影响作为研究对象,首先,我们选择了 五届影响力较大的世博会与上海世博会进行了定量的纵向评估。 利用互联网的相关数据,运用层次分析法确定了各级评价指标的相对权重,然后 利用模糊综合评判法给这六届世博会的经济影响力进行了定量评估,利用MATLAB 计算出了1933年芝加哥世博会以来六届综合性世博会的经济影响力的综合评分依次为 75.12、80.01、80、11、77.35、79.35、80.75,由表我们可以肯定上海世博会的经济影响力是继1851年伦敦世博会以来较强的。 其次我们采用投入——产出模型模型的核心思想,以年份与GDP 的对数值的二次 相关关系和上海市社会固定资产总投入与GDP 的对数值的线性关系,利用上海统计年鉴发布的数据,分别建立无世博影响的表达式i i i x x x e Q 21210904.01117.00032.06278.81-++=,与有世博影响的表达式i i i x x x e Q 21212955.00176.00019.01211.82+-+=,两式的预测误差均在1.1%以内。与 2008年真实值比较,用表达式1Q 预测2008年的GDP 的值可以得出世博会对2008年上海市经济贡献率达到20.9%。并且在得知申办世博会后第i 年上海市固定投入总额的前提下由%1002 12?-=Q Q Q η可求出世博会对上海地区经济的持续性积极影响。如假设2011年市固定资产总投资为5600亿元,则世博会对上海经济有16%的积极影响。 最后,经过对2010年上海世博会的经济影响力的两方面的评估,我们得知上海世博 会在历届世博会的经济影响力的综合评分中是最高的。由此得出,上海世博会对上海经济的影响力是非常大的,此次世博会除了对上海的直接收益影响明显外, 世博会对上海地区经济的持续性积极影响。 关键词:层次分析 模糊综合评判 投入——产出模型 回归模型 一、问题重述 2010年上海世博会是首次在中国举办的世界博览会。从1851年伦敦的“万国工业博览会”开始,世博会正日益成为各国人民交流历史文化、展示科技成果、体现合作精神、展望未来发展等的重要舞台。请你们选择感兴趣的某个侧面,建立数学模型,利用互联网数据,定量评估2010年上海世博会的影响力。 二、问题分析

全国大学生数学建模竞赛b题全国优秀论文

基于打车软件的出租车供求匹配度模型研究与分析 摘要 目前城市“出行难”、“打车难”的社会难题导致越来越多的线上打车软件出现在市场上。“打车难”已成为社会热点。以此为背景,本文将要解决分析的三个问题应运而生。 本文运用主成分分析、定性分析等分析方法以及部分经济学理论成功解决了这三个问 题,得到了不同时空下衡量出租车资源供求匹配程度的指标与模型以及一个合适的补贴 方案政策,并对现有的各公司出租车补贴政策进行了分析。 针对问题一,根据各大城市的宏观出租车数据,绘制柱形图进行重点数据的对比分 析,首先确定适合进行分析研究的城市。之后,根据该市不同地区、时间段的不同特点 选择多个数据样本区,以数据样本区作为研究对象,进行多种数据(包括出租车分布、 出租车需求量等)的采集整理。接着,通过主成分分析法确定模型的目标函数、约束条 件等。最后运用spss软件工具对数据进行计算,求出匹配程度函数F 与指标的关系式, 并对结果进行分析。 针对问题二,在各公司出租车补贴政策部分已知的情况下,综合考虑出租车司机以 及顾客两个方面的利益,分别就理想情况与实际情况进行全方位的分析。在问题一的模 型与数据结果基础上,首先分别从给司机和乘客补贴两个角度定性分析了补贴的效果。 重点就给司机进行补贴的方式进行讨论,定量分析了目前补贴方案的效果,得出了如果 统一给每次成功的打车给予相同的补贴无法改善打车难易程度的结论,并对第三问模型 的设计提供了启示,即需要对具有不同打车难易程度和需求量的区域采取分级的补贴政 策。 针对问题三,在问题二的基础上我们设计了一种根据不同区域打车难易程度和需求

量来确定补贴等级的方法。设计了相应的量化指标,以极大化各区域打车难易程度降低 的幅度之和作为目标,建立该问题的规划模型。目的是通过优化求解该模型,使得通过 求得的优化补贴方案,能够优化调度出租车资源,使得打车难区域得到缓解。通过设计 启发式原则和计算机模拟的方法进行求解,并以具体案例分析得到,本文方法相对统一 的补贴方案而言的确可以一定程度缓解打车难的程度。 关键词:主成分分析法,供求匹配度,最优化模型,出租车流动平衡 1

数学建模优秀论文全国一等奖

Haozl觉得数学建模论文格式这么样设置 版权归郝竹林所有,材料仅学习参考 版权:郝竹林 备注☆ ※§等等字符都可以作为问题重述左边的。。。。。一级标题 所有段落一级标题设置成段落前后间距13磅 二级标题设置成段落间距前0.5行后0.25行 Excel中画出的折线表字体采用默认格式宋体正文10号 图标题在图上方段落间距前0.25行后0行 表标题在表下方段落间距前0行后0.25行 行距均使用单倍行距 所有段落均把4个勾去掉 注意Excel表格插入到word的方式在Excel中复制后,粘贴,word2010粘贴选用使用目标主题嵌入当前 Dsffaf 所有软件名字第一个字母大写比如E xcel 所有公式和字母均使用MathType编写 公式编号采用MathType编号格式自己定义 公式编号在右边显示

农业化肥公司的生产与销售优化方案 摘 要 要求总分总 本文针对储油罐的变位识别与罐容表标定的计算方法问题,运用二重积分法和最小二乘法建立了储油罐的变位识别与罐容表标定的计算模型,分别对三种不同变位情况推导出的油位计所测油位高度与实际罐容量的数学模型,运用matlab 软件编程得出合理的结论,最终对模型的结果做出了误差分析。 针对问题一要求依据图4及附表1建立积分数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。我们作图分析出实验储油罐出现纵向倾斜ο14.时存在三种不同的可能情况,即储油罐中储油量较少、储油量一般、储油量较多的情况。针对于每种情况我们都利用了高等数学求容积的知识,以倾斜变位后油位计所测实际油位高度为积分变量,进行两次积分运算,运用MATLAB 软件推导出了所测油位高度与实际罐容量的关系式。并且给出了罐体倾斜变位后油位高度间隔为1cm 的罐容标定值(见表1),最后我们对倾斜变位前后的罐容标定值残差进行分析,得到样本方差为4103878.2-?,这充分说明残差波动不大。我们得出结论:罐体倾斜变位后,在同一油位条件下倾斜变位后罐容量比变位前罐容量少L 243。 表 1.1 针对问题二要求对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm 的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。我们根据实际储油罐的特殊构造将实际储油罐分为三部分,左、右球冠状体与中间的圆柱体。运用积分的知识,按照实际储油罐的纵向变位后油位的三种不同情况。利用MATLAB 编程进行两次积分求得仅纵向变位时油量与油位、倾斜角α的容积表达式。然后我们通过作图分析油罐体的变位情况,将双向变位后的油位h 与仅纵向变位时的油位0h 建立关系表达式01.5(1.5)cos h h β=--,从而得到双向变位油量与油位、倾斜角α、偏转角β的容积表达式。利用附件二的数据,采用最小二乘法来确定倾斜角α、偏转角β的值,用matlab 软件求出03.3=α、04=β α=3.30,β=时总的平均相对误差达到最小,其最小值为0.0594。由此得到双向变位后油量与油位的容积表达式V ,从而确定了双向变位后的罐容表(见表2)。 本文主要应用MATLAB 软件对相关的模型进行编程求解,计算方便、快捷、准确,整篇文章采取图文并茂的效果。文章最后根据所建立的模型用附件2中的实际检测数据进行了误差分析,结果可靠,使得模型具有现实意义。 关键词:罐容表标定;积分求解;最小二乘法;MATLAB ;误差分

相关文档
最新文档