AC-20沥青路面生产配合比设计报告

AC-20沥青路面生产配合比设计报告
AC-20沥青路面生产配合比设计报告

AC-20沥青混凝土

沥青路面生产配合比设计

一、概述

根据设计文件要求,结合规范及目标配合比,对我项目使用的AC-20沥青混凝土进行生产配合比设计。

二、设计依据:

1、《公路沥青路面设计规范》JTG D50-2017

2、《公路沥青路面施工技术规范》JTG F40-2004

3、《公路工程集料试验规程》JTG E42-2005

4、《公路工程沥青及沥青混合料试验规程》JTG E20-2011

5、设计图纸要求

三、生产配合比设计

1、原材产地

1)、集料铜川恒益建材有限公司

2)、矿粉、0-3mm机制砂铜川达从道建材有限公司

3)90#A道路石油沥青新疆克拉玛依炼油厂

2、生产配合比设计过程

拌和站按目标配合比设计确定各档集料的比例,经冷料仓给料、干燥筒混合加热、二次筛分、各热料仓取样筛分、合成级配、确定各热料仓的材料比例,根据目标配合比确定的最佳油石比取

4.45%的油石比基础上分别制备马歇尔试件、进行马歇尔物理及力学性能指标检验、确定出生产配合比最佳沥青用量及各仓集料的最佳配合比。

根据各热料仓矿料的筛分结果确定合成级配曲线,经过试配AC-20型沥青混合料生产配合比各热料仓矿料比例为1#仓:2#仓:3#仓:4#仓:矿粉=28%:5%:25%:38%:4%,其合成级配能够满足设计级配要求。

3、AC-20沥青混合料级配组成。

筛分及合成级配

100

4、最佳油石比确定

经过马歇尔最佳油石比试验(试验结果见相应试验记录)根据《公路沥青路面施工技术规范》 JTG F40—2004中热拌沥青混合料配合比设计方法,以及按设计的矿料级配组成,依据目标配合比确定的最佳油石比取4.45%为基础做马歇尔试件,分别测定其马歇尔指标,其试验结果见下表:

5、沥青混合料最佳沥青用量选定图

沥青最佳用量计算

OACmin=4.25,OACmax=5.15

a1=4.35, a2=4.35, a3= 4.3, a4= 4.7

OAC1=4.4,OAC2=4.7

最佳沥青用量OAC=4.4,最佳油石比4.6.

6、结论

上述试验结果表明所设计的AC-20型级配生产配合比为1#仓:2#仓:3#仓:4#仓:矿粉=28%:5%:25%:38%:4%,油石比为4.6 %。

7、说明

附:1、矿质混合料原材检测报告

2、沥青混合料试验检测报告

沥青路面设计计算

沥青混凝土路面计算书 一、交通量的计算 根据任务要求,其中与路面损坏有关的各类车俩交通量如下表 1、 计算累计当量轴次 累计当量轴次表 表2-1 车辆类型 交通量 (辆/d) 后轴 前轴 总换算系数 当量轴次 (次/d) 轴数系数C 1 轮组系数 C 2 后轴重(KN) 后轴换算系数 轴数系数C 1 轮组系数 C 2 前轴重(KN) 前轴换算系数 桑塔纳 3771 五十铃 6493 1 6.4 (18.5) 0.147 ( / ) 0.147 ( / ) 974 解放CA10B 3883 1 1.0 60.85 0.115 (0.019) 1 6.4 (18.5) 19.4 0.005 0.125 (0.019) 406 (64) 黄河JN150 1383 1 1.0 101.6 1.071 (1.135) 1 6.4 (18.5) 49.0 0.287 (0.003) 1.358 (1.138) 1881 (1579) 黄河JN162 290 1 1.0 115.0 1.836 (3.059) 1 6.4 (18.5) 59.5 0.668 (0.29) 2.50 ( 3.350) 728 (972) 交通SH361 28 2.2 1.0 2× 110.0 3.330 (6.431) 1 6.4 (18.5) 60.0 0.694 (0.311) 4.02 (6.74) 134 (186) 合计 4123 (2801) 当以设计弯沉值为指标以及验算沥青层层底拉应力时,凡轴载大于25KN 的各级轴载(包括车辆的前、后轴),均应按下式换算成标准轴载P 的当量作用次数N 。 4.35 121 k i i i P N C C n P =??= ? ??∑ 《规范》3.1.2-1 式中:

国内外沥青路面设计方法分析

第5期(总第118期) ■综合论述 国内外沥青路面设计方法分析 姚连军1,李丽2 (1.重庆市交通规划勘察设计院,重庆401121;2.重庆交通大学,重庆400074) 摘要基于国内外沥青路面现有设计体系,介绍了经验法、力学-经验法、基于性能设计法三大类别,并针对其代表性的设计方法的特点进行了评析;结合我国沥青路面结构设计体系,指出我国设计体系中存在的设计指标、路面材料设计参数、交通荷载等方面存在缺陷,并提出相应的建议。 关键词道路工程;沥青路面;设计方法;设计指标 Abstract:Based on current design of asphalt pavement both home and abroad,the paper has made introduction to three means of design,namely empirical method,stress empirical method and property-centered method.Moreover,it has made comments on certain representative features of designs.Taking structure design of asphalt pavement in China into account,the paper presents some demerits in design target,parameter of pavement materials,traffic capacity and the like and finally proposes solutions to such problems. Keywords:highway engineering,asphalt pavement,means of design,design target 沥青路面是在柔性基层、半刚性基层上,铺筑一定厚度的沥青混合料作面层的路面结构。沥青路面设计的任务是根据使用要求及气候、水文、土质等自然条件,密切结合当地实践经验,设计经济合理的路面结构使之能起到承受交通荷载和环境因素的作用,在预定的使用期限内满足各级公路相应的承载能力、耐久性、舒适性和安全性的要求。以沥青路面为主的柔性路面设计理论与方法研究已有近百年的历史,其发展历程经历了经验法和力学-经验法、基于性能的设计方法等类型。 1国外沥青路面设计方法 1.1经验法 经验法主要通过对试验路或使用道路的实验观测,建立路面结构(结构层组合、厚度和材料性质)、荷载(轴载大小和作用次数)和路面性能三者间的经验关系。最为著名的经验设计方法有CBR法和AASHTO法。 CBR法[1~2]以CBR值作为路基土和路面材料(主要是粒料)的性质指标。通过对已损坏或使用良好的路面的调查和CBR测定,建立起路基土CBR轮载~路面结构层厚度(以粒料层总厚度表征)三者间的经验关系。利用此关系曲线,可以按设计轮载和路基土CBR值确定所需的路面层总厚度。路面各结构层次的厚度,按各层材料的CBR值进行当量厚度换算。不同轮载的作用按等弯沉的原则换算为设计轮载的当量作用。此方法设计过程简单,概念明确,适用于重载、低等级的路面设计;但CBR值仅是一种经验性的指标,并不是材料承载力的直接度量指标,它与弹性变形量的关系很小。而路基土应工作在弹性范围内的应力状态下,因而,路面结构设计对路基土的抗剪强度并无直接兴趣,更关心的是路基土的回弹性质(回弹模量)及其在重复荷载作用下的塑性应变。 AASHTO法[3~4]是在AASHO试验路的基础上建立的,整理试验路的试验观测数据,得到的路面结构-轴载-使用性能三者间的经验关系式。AASHTO方法提出了现时服务能力指数(PSI)的概念,以反映路面的服务质量。不同轴载的作用,按等效损坏(PSI)的原则进行转换。路面使用性能指标PSI,主要受平整度的影响,与裂缝、车辙、修补等损坏的关系很小。因此,这是一项反映路面功能性能的指标,而不是表征路面结构性损坏的指标。此外,这个方法源于一条试验路的数据,仅反映一种路基土和一种环境条件,推广应用于其它地区或国家时便存在着很大的局限性。但AASHO试验路的测定数据得到了良好的整理和保存,为许多力学-经验法的设计指标和参数验证提供了丰富的依据[5]。AASHO法提出了轴载换算的概念和公式,考虑了结构的可靠度和排水条件的影响,这些思想对后来世界各国的设计思想产生了很大的影响。1.2力学-经验法 力学-经验法利用在力学反应量与路面性能(各种损坏模式)之间建立的性能模型,按设计要求设计路面结构。从20世纪60年代初开始,各国科技人员致力于研制和实施沥青路面的力学-经验设计法,著名的有AI法和Shel1法。 Shell法[6]是由英、荷壳牌石油公司研究所研究、发展和完善起来的。在该设计方法中,混合料的粘弹性性质以其劲度模量体现,其值取决于沥青含量、沥青劲度和沥青混合料的空隙率。路基模量受应力影响,路基动态模量可以通过现场的动态弯沉试验在道路实际湿度条件和荷载条件下测定,也可在室内通过三轴仪测定。此方法中交通荷载以标准双轮轴载次数为代表,设计年限内的累计轴次即为设计寿命。临界荷位的应力应变由计算机程序BISAR计算。Shell设计法考虑了控制疲劳开裂的沥青层底面的容许水平拉应变ε fat 和控 制永久变形的路基顶面的容许竖向压应变ε z 两项主要设计标准和水泥稳定类材料底面的弯拉应力和路表面的永久变 3 ··

AC-13沥青混合料配合比设计报告

试验报告 样品名称:AC- 13C沥青混合料目标配合比设计与试验 检验类别:委托试验 委托单位:中建五局土木工程有限公司 试验单位:湖南省交通建设质量监督试验检测中心

批准日期:2010年5月21日

湖南省交通建设质量监督试验检测中心 试验报告 主检:审核:审批: 湖南省交通建设质量监督试验检测中心

主检: 审核: 审批:

设计说明 1.沥青混合料的级配采用AC-13C型级配。根据JTG F40-2004《公路沥青路面 施工技术规范》要求,并结合刚果(布)国家1 号公路:施工地点为热带雨淋气候,常年平均气温为35C左右,最高气温40C-45 C,年降雨量大于1000mm勺具体情况,确定了相应的工程级配。 2.AC-13沥青混合料所用原材料均为委托单位来样,其组成为: (1)集料:取样地点为萨哈采石场。碎石规格和数量:0/0.3mm3.4kg, 0/2.36mm13kg,0/4.75mm22kg,0/16mm19kg,9.5mm20kg, 16mm29kg。 (2)沥青:道路石油沥青60/70,重量5kg。 ( 3) 沥青抗剥离剂:江西省上饶市恒大建材化工有限公司。 3.按规范要求,沥青混合料理论最大相对密度采用真空实测法。 4.室内试验的拌和温度为160C,试件的击实成型温度为145C。 5.配合比设计试验及计算参数均以“JTG F40-2004《公路沥青路面施工技术规范》 中附录B 热拌沥青混合料配合比设计方法”中的程序及公式计算。 6.试验结果:经室内配合比设计试验与相关验证,确定AC-13沥青混合料目标配 合比设计的最佳油石比为%,在进行生产配合比设计与试验时,其合成级配尽可能与目标 配合比级配曲线接近。目标配合比的各级材料比例见相关设计图表。 7.建议在混合料中添加2%的硅酸盐水泥,以提高混合料的水稳定性。 湖南省交通建设质量监督试验检测中心 2010 年5 月21 日 原材料试验

沥青路面设计范例

路基路面课程设计(沥青路面设计)例 1.1道路等级确定 根据调查资料,基年交通量组成如下: 表3.1 基年交通量组成 由于路线为县级公路,因此道路等级为一级公路以下,则由预测年限规定:具有集散功能的一级公路及二、三级公路的规划交通量应按15年预测,则由公式: N d =N (1+8%)n-1 (式1-1) 其中:N d —规划年交通量(辆/日) N —基年平均日交通量(辆/日) —年平均增长率(%) n—预测年限(年) 即:规划年交通量为: Nd=[(150+80+100+120)×1.5+150×2.0+(120+110)×3.0]×(1+8%)15-1 =[345+150+300+180+360+330] ×(1+8%)15-1 =4890辆/日 由《公路工程技术标准》(JTG B01—2003)(以下简称《标准》),双车道三级公路应能适应将各种车辆折合成小客车的年平均日交通量为2000~6000辆,综合考虑选定道路等级为三级。

1.2结构设计 6.2.1轴载分析 路面设计以双轮组单轴轴载100kN为标准轴载。 6.2.1.2.1轴载换算(基本参数见表6.1) 轴载换算公式如下: N= 35 .4 i i k 1 i 2 1p p N C C?? ? ? ? ? ∑ = (式6-1) 式中:N—标准轴载的当量轴次,(次/日); N i —被换算车辆的各级轴载,(KN); P—标准轴载,(KN); P i —被换算车辆的各级轴载,(KN); K—被换算车型的轴载级别; C 1—轴载系数,C 1 =1+1.2×(m-1),m是轴数。当轴间距大于3m时,按单独 的一个轴载计算,当轴轴间距小于3m时,应考虑轴数系数;C 2 —轮组系数,单轮组为6.4,双轮组为1,四轮组为0.38。 表6-1 标准轴载计算参数 表6-2 预测交通量组成

AC20沥青混凝土配合比报告(20201212212632).docx

-+ 亚雪公路 G015 线至滑雪场段 C16 标段 AC-20沥青混凝土配合比报告 编制单位亚雪公路C16标段项目经理部 负责人年月日 编制年月日 审核年月日 龙建路桥股份有限公司 二 OO七年六月

总说明 一、工程概况 亚雪公路 G015线至滑雪场段,连接着绥满高速公路和亚布力滑雪 场,是一条重要的旅游线路。亚雪公路起于K4+500即亚布力管理所门 前,经景阳村、尚礼村、红房子村、青山村至青云滑雪场场部终点 K24+965,路线全长20.465km,原有公路为单幅两车道二级公路,原有 路面为沥青混凝土路面。亚雪公路G015线至滑雪场段改扩建工程C16 标段,承担全线沥青混凝土路面的施工任务,设计上加宽部分路面为 两层沥青混凝土,上面层为厚6cm密级配中粒式沥青混凝土AC-20;上 面层为厚5cm改性沥青密级配中粒式沥青混凝土AC-16;旧路部分半幅 铺筑 AC-20 密级配中粒式沥青混凝土,将双向路拱找成单向路拱后, 用AC-16改性沥青混凝土罩面,全线平均厚度为 7.8cm。全线密级配中粒 式沥青混凝土 AC-20 设计用量为 12873 立方米,改性沥青密级配中粒式沥 青混凝土 AC-16 设计用量为 18000 立方米。 AC-20 密级配中粒式沥青混 凝土各种单质材料的选定、配合比的组成设计严执行亚雪公路《施工图设计》和《公路沥青路面施工技术规范》(JTG F40—2004)的技术标准,采用计算机进行数据处理及配合比设计,具体结果如下: 二、单质材料的技术指标 1、沥青 根据亚雪公路《施工图设计》的要求,下面层AC-20 密级配中粒式 沥青混凝土采用 110 号 A 级重交通道路石油沥青,经过我们的对比 检测最终确定使用辽宁盘锦北方沥青股份有限公司生产的AH-110 沥

沥青混凝土配合比设计过程

热拌沥青混合料配合比设计方法 1.矿质混合料组成设计 (1)根据道路等级、路面结构层位及结构层厚度等方面要求,按照上述方法,选择适用的沥青混合料类型,并按照表8-22和表8-23(现行规范)或8-24和表8-25(新规范稿)的内容确定相应矿料级配范围,经技术经济论证后确定。 (2)矿质混合料配合比计算 1)组成材料的原始数据测定 按照规定方法对实际工程使用的材料进行取样,测试粗集料、细集料及矿粉的密度,并进行筛分试验,测定各种规格集料的粒径组成。 2)确定各档集料的用量比例 根据各档集料的筛分结果,采用计算法或图解法,确定各规格集料的用量比例,求得矿质混合料的合成级配。矿质混合料的合成级配曲线必须符合设计级配范围的要求,不得有过多的犬牙交错。当经过反复调整仍有两个以上的筛孔超出设计级配范围时,必须对原材料进行调整或更换原材料重新设计。 通常情况下,合成级配曲线宜尽量接近设计级配中限,尤其应使0.075mm、2.36mm、4.75mm等筛孔的通过量尽量接近设计级配范围的中限。对于交通量大、轴载重的道路,合成级配可以考虑偏向级配范围的下限,而对于中小交通量或人行道路等,合成级配宜偏向级配范围的上限。

2.沥青混合料马歇尔试验 沥青混合料马歇尔试验的主要目的是确定最佳沥青用量(以OAC表示)。沥青用量可以通过各种理论公式计算得到,但由于实际材料性质的差异,计算得到的最佳沥青用量,仍然要通过试验进行修正,所以采用马歇尔试验是沥青混合料配合比设计的基本方法。 (1)制备试样 1)马歇尔试件制备过程是针对选定混合料类型,根据经验确定沥青大致用量或依据表4-10推荐的沥青用量范围,在该用量范围内制备一批沥青用量不同、且沥青用量等差变化的若干组(通常为五组)马歇尔试件,并要求每组试件数量不少于4个。 2)按已确定的矿质混合料级配类型,计算某个沥青用量条件下一个马歇尔试件或一组试件中各种规格集料的用量(实践中大多是一个标准马歇尔试件矿料总量1200g左右)。 3)确定一个或一组马歇尔试件的沥青用量(通常采用油石比),按要求将沥青和矿料拌制成沥青混合料,并按上节表8-7(现行规范要求)或表8-9(新规范要求)规定的击实次数和操作方法成型马歇尔试件。 (2)测定试件的物理力学指标 首先,测定沥青混合料试件的密度,并计算试件的理论最大密度、空隙率、沥青饱和度、矿料间隙率等参数。在测试沥青混合料密度时,应根据沥青混合料类型及密实程度选择测试方法。在工程中,吸水率小于0.5%的密实型沥青混合料试件应采用水中重法测定;较密实的沥青混合料试件应采用表干法测定;吸水

AC-20沥青混合料配合比设计报告

设计说明 1.AC-20C沥青混合料的级配范围来自于“路面技术交底文件”。 2.AC-20C沥青混合料所用原材料均为委托单位来样,其组成为: (1)集料:**碎石场石灰石碎石。按9.5mm~19mm(1#)、4.75mm~9.5mm (2#)、2.36mm~4.75mm(3#)、0mm~2.36mm(4#)备料。 (2)沥青:**70号A级道路石油沥青。 (3)矿粉:拌合站自制石灰石矿粉。 3.按规范要求,混合料理论最大相对密度采用实测法。 4.室内试验的拌和温度为165(℃),试件的击实成型温度为140-145(℃)。5.配合比设计试验及计算参数均以“JTG F40-2004《公路沥青路面施工技术规范》中附录B 热拌沥青混合料配合比设计方法”中的程序及公式计算。6.试验结果:经室内配合比设计试验与相关验证,确定AC-20C沥青混合料目标配合比设计的最佳油石比为4.1%,在进行生产配合比设计与试验时,其合成级配应尽可能与目标配合比级配曲线接近。目标配合比的各级材料比例见相关设计图表。

一.原材料试验 1.沥青试验结果 2.集料试验 (1)集料原材料来样筛分试验结果

(3)各级粒径集料的相对密度试验结果

(5)细集料试验结果 二.AC-20C沥青混合料技术要求 1.AC-20C型沥青混合料设计级配范围 2.AC-20C沥青混合料技术指标要求 孔隙率不是整数时,由内插确定要求的矿料间隙率最少值。

三.AC-20C型沥青混合料配合比试验 1.各级集料在混合料中的比例及合成级配 AC-20C混合料矿料合成级配曲线如下图所示:

2.目标配合比马歇尔试验结果 AC-20C型沥青混合料沥青用量确定图

AC20沥青混凝土配合比报告

亚雪公路G015线至滑雪场段C16标段AC-20沥青混凝土配合比报告 龙建路桥股份有限公司 二OO七年六月

总说明 一、工程概况 亚雪公路G015线至滑雪场段,连接着绥满高速公路和亚布力滑雪场,是一条重要的旅游线路。亚雪公路起于K4+500即亚布力管理所门前,经景阳村、尚礼村、红房子村、青山村至青云滑雪场场部终点K24+965,路线全长20.465km,原有公路为单幅两车道二级公路,原有路面为沥青混凝土路面。亚雪公路G015线至滑雪场段改扩建工程C16标段,承担全线沥青混凝土路面的施工任务,设计上加宽部分路面为两层沥青混凝土,上面层为厚6cm密级配中粒式沥青混凝土AC-20;上面层为厚5cm改性沥青密级配中粒式沥青混凝土AC-16;旧路部分半幅铺筑AC-20密级配中粒式沥青混凝土,将双向路拱找成单向路拱后,用AC-16改性沥青混凝土罩面,全线平均厚度为7.8cm。全线密级配中粒式沥青混凝土AC-20设计用量为12873立方米,改性沥青密级配中粒式沥青混凝土AC-16设计用量为18000立方米。AC-20密级配中粒式沥青混凝土各种单质材料的选定、配合比的组成设计严执行亚雪公路《施工图设计》和《公路沥青路面施工技术规范》(JTG F40—2004)的技术标准,采用计算机进行数据处理及配合比设计,具体结果如下: 二、单质材料的技术指标 1、沥青 根据亚雪公路《施工图设计》的要求,下面层AC-20密级配中粒式沥青混凝土采用110号A级重交通道路石油沥青,经过我们的对比检测最终确定使用辽宁盘锦北方沥青股份有限公司生产的AH-110沥

青,其技术指标如下: 重交通量道路石油沥青技术指标对照表 从上表可以看出,辽宁盘锦北方沥青股份有限公司生产的AH-110石油沥青其各项技术指标符合图纸及规范的要求。 2、粗集料 粗集料应选用锤式破碎机生产的机轧碎石,以保证骨料的质量。粗集料应具备良好的抗压、抗磨耗功能,整体应洁净、干燥、表面粗糙、无风化、无杂质。由于AC-20密级配沥青混凝土公称最大粒径为19mm,因此粗集料使用10~20mm和5~10mm两种碎石。经过我们的对比检测最终确定使用亚布力镇虎峰石场出产的玄武岩反击破碎石,其技术指标如下:

沥青混凝土配合比设计过程

热拌沥青混合料配合比设计方法 1 .矿质混合料组成设计 (1)根据道路等级、路面结构层位及结构层厚度等方面要求,按照上述方 法,选择适用的沥青混合料类型,并按照表8-22和表8-23 (现行规范)或8 -24和表8-25 (新规范稿)的内容确定相应矿料级配范围,经技术经济论证后确定。 (2)矿质混合料配合比计算 1)组成材料的原始数据测定 按照规定方法对实际工程使用的材料进行取样,测试粗集料、细集料及矿粉的密度,并进行筛分试验,测定各种规格集料的粒径组成。 2)确定各档集料的用量比例 根据各档集料的筛分结果,采用计算法或图解法,确定各规格集料的用量比例,求得矿质混合料的合成级配。矿质混合料的合成级配曲线必须符合设计级配范围的要求,不得有过多的犬牙交错。当经过反复调整仍有两个以上的筛孔超出设计级配范围时,必须对原材料进行调整或更换原材料重新设计。 通常情况下,合成级配曲线宜尽量接近设计级配中限,尤其应使0.075mm 2.36mm 4.75mm等筛孔的通过量尽量接近设计级配范围的中限。对于交通量大、轴载重的道路,合成级配可以考虑偏向级配范围的下限,而对于中小交通量或人 行道路等,合成级配宜偏向级配范围的上限。 2.沥青混合料马歇尔试验 沥青混合料马歇尔试验的主要目的是确定最佳沥青用量(以OAC表示)。沥青用量可以通过各种理论公式计算得到,但由于实际材料性质的差异,计算得到

的最佳沥青用量,仍然要通过试验进行修正,所以采用马歇尔试验是沥青混合料配 合比设计的基本方法。 (1)制备试样 1)马歇尔试件制备过程是针对选定混合料类型,根据经验确定沥青大致用量或依据表4-10 推荐的沥青用量范围,在该用量范围内制备一批沥青用量不同、且沥青用量等差变化的若干组(通常为五组)马歇尔试件,并要求每组试件 数量不少于 4 个。 2)按已确定的矿质混合料级配类型,计算某个沥青用量条件下一个马歇尔试件或一组试件中各种规格集料的用量(实践中大多是一个标准马歇尔试件矿料 总量1200g 左右)。 3)确定一个或一组马歇尔试件的沥青用量(通常采用油石比),按要求将沥青和矿料拌制成沥青混合料,并按上节表8-7(现行规范要求)或表8-9(新规范要求)规定的击实次数和操作方法成型马歇尔试件。 (2)测定试件的物理力学指标 首先,测定沥青混合料试件的密度,并计算试件的理论最大密度、空隙率、 沥青饱和度、矿料间隙率等参数。在测试沥青混合料密度时,应根据沥青混合料类型及密实程度选择测试方法。在工程中,吸水率小于0.5%的密实型沥青混合 料试件应采用水中重法测定;较密实的沥青混合料试件应采用表干法测定;吸水率大于2%的沥青混合料、沥青碎石混合料等不能用表干法测定的试件应采用蜡 封法测定;空隙率较大的沥青碎石混合料、开级配沥青混合料试件可采用体积法 测定。 随后,在马歇尔试验仪上,按照标准方法测定沥青混合料试件的马歇尔稳定 度和流值。 3.最佳沥青用量的确定

AC-20沥青路面生产配合比设计报告

AC-20沥青混凝土 沥青路面生产配合比设计 一、概述 根据设计文件要求,结合规范及目标配合比,对我项目使用的AC-20沥青混凝土进行生产配合比设计。 二、设计依据: 1、《公路沥青路面设计规范》JTG D50-2017 2、《公路沥青路面施工技术规范》JTG F40-2004 3、《公路工程集料试验规程》JTG E42-2005 4、《公路工程沥青及沥青混合料试验规程》JTG E20-2011 5、设计图纸要求 三、生产配合比设计 1、原材产地 1)、集料铜川恒益建材有限公司 2)、矿粉、0-3mm机制砂铜川达从道建材有限公司 3)90#A道路石油沥青新疆克拉玛依炼油厂 2、生产配合比设计过程 拌和站按目标配合比设计确定各档集料的比例,经冷料仓给料、干燥筒混合加热、二次筛分、各热料仓取样筛分、合成级配、确定各热料仓的材料比例,根据目标配合比确定的最佳油石比取

4.45%的油石比基础上分别制备马歇尔试件、进行马歇尔物理及力学性能指标检验、确定出生产配合比最佳沥青用量及各仓集料的最佳配合比。 根据各热料仓矿料的筛分结果确定合成级配曲线,经过试配AC-20型沥青混合料生产配合比各热料仓矿料比例为1#仓:2#仓:3#仓:4#仓:矿粉=28%:5%:25%:38%:4%,其合成级配能够满足设计级配要求。 3、AC-20沥青混合料级配组成。 筛分及合成级配 100

4、最佳油石比确定 经过马歇尔最佳油石比试验(试验结果见相应试验记录)根据《公路沥青路面施工技术规范》 JTG F40—2004中热拌沥青混合料配合比设计方法,以及按设计的矿料级配组成,依据目标配合比确定的最佳油石比取4.45%为基础做马歇尔试件,分别测定其马歇尔指标,其试验结果见下表: 5、沥青混合料最佳沥青用量选定图 沥青最佳用量计算 OACmin=4.25,OACmax=5.15 a1=4.35, a2=4.35, a3= 4.3, a4= 4.7 OAC1=4.4,OAC2=4.7 最佳沥青用量OAC=4.4,最佳油石比4.6.

沥青路面设计范例

路基路面课程设计(沥青路面设计)范例 1.1 道路等级确定 根据调查资料,基年交通量组成如下: 表3.1 基年交通量组成 由于路线为县级公路,因此道路等级为一级公路以下,则由预测年限规定:具有集散功能的一级公路及二、三级公路的规划交通量应按15年预测,则由公式: N d =N (1+8%)n-1 (式1-1) 其中:N d —规划年交通量(辆/日) N —基年平均日交通量(辆/日) —年平均增长率(%) n—预测年限(年) 即:规划年交通量为: Nd=[(150+80+100+120)×1.5+150×2.0+(120+110)×3.0]×(1+8%)15-1 =[345+150+300+180+360+330] ×(1+8%)15-1 =4890辆/日 由《公路工程技术标准》(JTG B01—2003)(以下简称《标准》),双车道三级公路应能适应将各种车辆折合成小客车的年平均日交通量为2000~6000辆,综合考虑选定道路等级为三级。

1.2 结构设计 6.2.1轴载分析 路面设计以双轮组单轴轴载100kN为标准轴载。 6.2.1.2.1轴载换算(基本参数见表6.1) 轴载换算公式如下: N= 35 .4 i i k 1 i 2 1p p N C C?? ? ? ? ? ∑ = (式6-1) 式中:N—标准轴载的当量轴次,(次/日); N i —被换算车辆的各级轴载,(KN); P—标准轴载,(KN); P i —被换算车辆的各级轴载,(KN); K—被换算车型的轴载级别; C 1—轴载系数,C 1 =1+1.2×(m-1),m是轴数。当轴间距大于3m时,按单独 的一个轴载计算,当轴轴间距小于3m时,应考虑轴数系数;C 2 —轮组系数,单轮组为6.4,双轮组为1,四轮组为0.38。 表6-1 标准轴载计算参数 表6-2 预测交通量组成

AC沥青砼配合比设计

AC-13型沥青混凝土配合比设计报告(K691+000沥青混凝土拌合厂) 工程名称:G214线清水河至结古段二级公路路面工程 监理单位:内蒙古交通建设监理咨询有限责任公司 施工单位:青海省公路工程建设总公司 施工桩号:K675+000—K705+000 报告日期:2005—7—6

AC-13型沥青混凝土配合比设计报告 一.前言 本工程位于G214线清(水河)至结(古)段,地处规范规定的寒区。施工段落K675+000-K705+000段,共计30公里。面层设计厚度5㎝,规格采用AC-13型。 二.原材料 .沥青 沥青由业主统购,为新疆克拉玛依生产的重交A-130A石油沥青。沥青进场后即进行了抽检,经检验沥青三大指标符合规范要求,详细数据如表1。 表1 沥青质量试验结果 根据中国气象站1961-2000年气温统计资料显示,56034号区站(清水河地区)7天平均高气温为18℃,极端最低气温为-43℃。根据计算,该地区路面预计高温度T20㎜=℃,路面表面预计低温度T SURF=℃.该沥青经试验计算分析,属溶凝胶型沥青,当量软化点T800=℃,当量脆点=℃,当量脆点距路面表面预计低温度尚有℃的差值,只能在配合比设计中尽可能地提高沥青用量,尽最大限度地避免路面低温裂缝。 .粗集料 采用大型反击式联合破碎机破碎,破碎机生产三种矿料,S10碎石,S12碎石和S15石屑。10-15㎜碎石㎜筛上筛余量偏多,不符合S10规格,但不影响使用。5-10㎜碎石符合S12规格,0-5㎜石屑符合S15规格。各种材料筛分结果如表2。 表2 各种粗集料的筛分结果 按规范对碎石质量的检验结果如表3,各项指标均符合规范要求,可以使用。

SMA沥青混合料路面特点及配合比设计

SMA路面特点 沥青玛蹄脂碎石(SMA)是一种由沥青、纤维稳定剂、矿粉及少量的细集料组成的沥青玛蹄脂填充间断级配的粗集料骨架间隙组成一体的沥青混合料,其混合料具有以下特点: 1)粗集料多在SMA的组成中,矿料是间断级配,粗集料占到70%以上,粗集料颗料之间有良好的嵌挤作用。沥青混合料产生非常好的抵抗荷载变形的能力,即使在高温条件下,沥青玛蹄脂的粘度下降时,这种抵抗能力的影响也不会减小,因而有较强的高温抗车辙能力。AC-13 AC-16 SMA-13 SMA-16 4.75mm通过率38~68 34~62 20~34 20~322)矿粉和沥青用量高,采用纤维稳定剂SMA使用矿粉高达8%~12%,沥青用量高达5.7%~6.5%,比一般AC-13/AC-16高1%左右。同时要使用纤维作稳定剂,由此组成的沥青玛蹄脂包裹在粗集料表面,充分填充集料间隙,在温度下降、混合料收缩变形时,玛蹄脂有较好的粘结作用,它的韧性和柔性使混合料有较好的低温变形性能,低温抗裂性能得到大大提高。 2)AC-13 AC-16 SMA-13 SMA-16 0.075mm通过率4~8 4~8 8~12 8~123) 空隙率小SMA混合料的内部空隙率很小(3%~4%),混合料渗水很少或几乎不渗水,混合料内部的水属毛细水形态,不易成为大的动力水,再加上玛蹄脂与集料的粘结力好,混合料的水稳定性也有较多改善。同时由于密水性好,对下面的沥青层和基层有较强的保护作用和隔水作用,使路面能保持较高的整体强度和稳定性。 3) 路面表面粗糙,构造深度大SMA一方面要求采用坚硬的、耐磨的优质石料;另一方面矿料采用间断级配,粗集料含量高,路面压实后表面形成

国内外沥青路面设计方法综述

国内外沥青路面设计方法综述 周利,蔡迎春,杨泽涛 (郑州大学环境与水利学院,郑州450002) 摘要:当前世界各国众多的沥青路面设计方法,可概括地分为2类:一类是以经验或试验为依据的经验法;一类是以力学分析为基础,考虑环境、交通条件以及材料特性为依据的力学-经验法。简要介绍目前国内外典型设计方法(CBR法、A ASHT O法、S HEL L法、A I法及国内方法),并比较其优缺点,针对现行设计方法,特别是我国设计方法,提出改进意见。 关键词:沥青路面;设计方法;综述 文章编号:1009-6477(2007)04-0036-04中图分类号:U416.217文献标识码:B S ummary of Dome stic&Overseas Asphalt Paveme nt Design M ethod Zhou Li,Cai Y ingc hun,Y ang Zetao 沥青路面是在柔性基层、半刚性基层上,铺筑一定厚度的沥青混合料作为面层的路面结构。以沥青路面为主的柔性路面设计理论与方法研究已有近百年的历史,其发展历程经历了古典法、经验法和力学-经验法3个阶段。当前世界各国众多的沥青路面设计方法大体为后面2种,即以工程使用经验或试验为依据的经验法和以力学分析为基础,考虑环境、交通条件以及材料特性为依据的力学-经验法。为了更好地借鉴前人的研究成果,有助于指导今后设计方法的研究,本文简要介绍目前国内外几种典型的设计方法:(1)经验法的代表方法:CBR法和A AS HTO法;(2)力学-经验法的典型代表:AI法和SHEL L法;(3)我国2004规范(报批稿)采用的设计方法,并作简单评价。 1国外沥青路面设计方法 国外的沥青路面设计方法,可分为经验法和力学-经验法2大类[1]。 1.1经验法 经验法主要通过对试验路或使用道路的实验观测,建立路面结构、荷载和路面性能三者间的经验关系。最为著名的经验设计方法有美国加州承载比(CBR)法和美国各州公路和运输工作者协会(AA SHT O)柔性路面设计法。 1.1.1CBR法[2-3] CBR法是以CBR值作为路基土和路面材料(主要是粒料)的性质指标,通过对已损坏或使用良好的路面的调查和CBR测定,建立起路基土CBR-轮载-路面结构层厚度3者之间的经验关系。利用此关系曲线,可以按设计轮载和路基土CBR值确定所需的路面层总厚度。路面各结构层的厚度,按各层材料的CBR值进行当量厚度换算。不同轮载的作用按等弯沉的原则换算为设计轮载的当量作用。此方法设计过程简单、概念明确,适用于重载、低等级的路面设计,所提出的C BR指标已作为路面材料的一种参数指标得到了广泛应用。如日本的路面设计经验法(T A法)就是以CB R法为基础制定的。 1.1.2AA SHT O法[2,4-5] A AS HTO法是在1958)1962年间A AS HO试验路的基础上建立的。整理试验路的试验观测数据,得到了路面结构-轴载-使用性能三者间的经验关系式。路面结构中的路基土采用回弹模量表征其性质,路面结构层按各层材料性质的不同转换为用一个结构数(S N)表征。AAS HT O方法提出了现时服务能力指数(PSI)的概念,以反映路面的服务质量。PS I是一个由评分小组进行主观评定后得到的指标,它与路面实际状况(坡度变化、裂缝面积、车辙深度、修补面积)之间建立经验关系式,提出了轴载换算的概念和公式,考虑了结构的可靠度和排水条件的影响,这些思想对后来世界各国的设计思想产生了很大的影响。 1.2力学-经验法 力学-经验法首先分析路面结构在荷载和环境作用下的力学响应(应力、应变、位移),利用在力学 公路交通技术2007年8月第4期Technology of Highw ay and Transport Aug.2007No.4 收稿日期:2007-01-10

沥青路面结构设计

沥青路面结构设计-CAL-FENGHAI.-(YICAI)-Company One1

第四章 路面结构设计 设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为米,全长5km ,结合近几年济南经济增长及人口增长的情况,根据近期的交通量预测该路段的年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构,设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温℃,无霜期178天,最高月均温℃(7月),最低月均温℃(1月),年平均降水量685毫米。道路沿线土质路基稠度 c ω=;因此该路基处于 干燥状态,根据公路自然区划可知济南绕城高速处于5Ⅱ 区,根据【JTG D50- 2006】《公路沥青路面设计规范》中表可确定工程所在地土基回弹模量设计值为46MPa 。 (3)交通资料

交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN 为标准轴载,以BZZ-100表示。标准轴载的计算参数按表1-2确定。 ○ 1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN 的各级轴载Pi 的作用次数Ni 按下式换算成标准轴载P 的当量作用次数N 的计算公式 为: 35 .4121∑=? ?? ??=k i i i P P N C C N 式中:N ——标准轴载当量轴次数(次/d ); Ni ——被换算的车型各级轴载作用次数(次/d ); P ——标准轴载(kN ); Pi ——被换算车型的各级轴载(kN ); C1——被换算车型的各级轴载系数,当其间距大于3m 时,按单独的一个轴 计算,轴数系数即为轴数m ,当其间距小于3m 时,按双轴或多轴计算,轴数系数为C1=1+(m-1); C2——被换算车型的各级轴载轮组系数,单轮组为,双轮组为,四轮组为。 沥青路面营运第一年双向日平均当量轴次为: 35 .41 21∑=? ?? ??=k i i i P P N C C N = (次/d ) ○ 2当以半刚性层底拉应力为设计指标时,标准轴载当量轴次数N ': 8 121 k i i i P N C C N P =?? '''= ? ??∑ 式中: 1C ' ——轴数系数 2C '——轮组系数,单轮组为,双轮组为,四轮组为。 注:轴载小于50KN 的特轻轴重对结构的影响可以忽略不计,所以不纳入当量 换算。 沥青路面营运第一年双向日平均当量轴次:

新公路沥青路面设计规范解读

新公路沥青路面设计规范解读 (沥青路面设计规范2017) 新的沥青路面设计规范2017年9月1日正式实施。公路路基和路面的所有设计规范至此全部更新完毕,系统基本形成。这次新的沥青路面设计规范改动很大,下面把一些问题和重点提出来。 1、明确了路面结构层和功能层的概念。路面结构层里没有垫层这一说法,路面结构层就由三部分组成:面层、基层和底基层。以前一直说的垫层,可归为功能层或路基处置层。 2、设计引入可靠度设计方法。 3、调整了交通荷载等级的划分方法,用设计年限内累计的大客车和货车交通量来确定。 4、标准轴载依然为单轴双轮100KN。但是轴载换算方法进行了很大调整。 5、最大的变动是沥青路面设计指标,摈弃了使用几十年的设计弯沉。设计指标采用了与路面使用性能相关的沥青混合料疲劳开裂、无机结合料稳定层疲劳开裂、沥青混合料永久变形、路基顶面竖向压应变等。

不同的路面结构类型,设计指标不同,比如对于常见的半刚性基层沥青路面,设计指标为半刚性基层疲劳开裂和沥青面层永久变形。这是和不同的结构类型的力学特性相关的,对于半刚性基层沥青路面,沥青面层主要受压力,当然就不会出现疲劳开裂,所以没有必要验算面层了。具体验算时,计算各结构层疲劳寿命不能小于承受的累计当量轴次。 弯沉作为设计指标取消了,但是在路基和路面交(竣)工验收时,要检测验收弯沉。 路基顶面竖向压应变对于半刚性基层沥青路面而言,不是设计指标,但它是路基的设计指标,这就跟路基设计规范统一起来了。 6、4.1.4条明确指明:沥青结合料类材料层与其他材料层间应设置封层。4.6.3条又说:无机结合料稳定类材料层与沥青结合料结构层之间宜设置封层。“应”和“宜”?为何两个条文用词前后不统一呢? 7、沥青路面结构类型调整为四种:无机结合料稳定类基层沥青路面(半刚性基层沥青路面)、粒料类基层沥青路面(柔性基层沥青路面)、沥青结合料类基层沥青路面(柔性基层沥青路面)和水泥砼基层沥青路面(刚性基层沥青路面)。这是按照基

沥青路面设计

7.1沥青路面设计 7.1.1设计资料 本公路等级为高速公路,经调查得,近期交通量如下表所示。交通量年平均增长率为5.5%,设计年限为15年,拟定建成通车时间为2016年末,该路段处于IV6区。 7.1.2公路等级确定 1)交通量(pcu/d)确定:2014年初始交通量如表7.1.2-1。 表7.1.2-1 2011年初始交通 2)交通量年增长率:5.5% 3)公路等级确定: 由《公路工程技术标准》(JTG B01-2003)表7.1.2-2进行车型换算 表7.1.2-2 各汽车代表车型与车辆折算系数

换算成小客车为12500+1500×1.5+1000×1.5+900×2.0+1000×2.0+500×3.0=21550PCU/d 换算成通车时间2016年末的年平均交通量约为25305辆。 由《公路工程技术标准》(JTG B01-2003)四车道高速公路应能适应将各种汽车折合成小客车的年平均日交通量25000~55000辆,为高速公路。 7.1.3交通分析: 轴载分析路面设计以BZZ-100为标准轴载。 1)以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次 (1)轴载换算见表7.1.3-1。 表7.1.3-1 轴载换算1

2 黄海DD680 前轴 49 6.4 1 1174.241 33 7.513 后轴 91.5 1 1 1174.241 797.883 东风SP9250 前轴 50.7 6.4 1 587.121 195.746 后轴 113.3 1 1 587.121 1010.712 后轴 113.3 1 1 587.121 1010.712 后轴 113.3 1 1 587.121 1010.712 6258.853 表7.1.3-1 轴载换算1 (2)累计当量轴次 根据公路沥青路面设计规范,高速公路沥青路面的设计年限取15年,双车道的车道系数η取0.4~0.5,取0.45。交通量平均增长率为5.5%。 γγ365]1)1([?-+=t e N η1N 055 .0365]1)055.01([15?-+=853.625845.0?? =23036478次 2)验算半刚性基层层底拉应力中的累计当量轴次 (1)轴载换算见表7.1.3-2。 表7.1.3-2 轴载换算2 车型 i P (KN) C1 C2 i N (次/ 日) 8 21?? ? ??''P P n C C i i

普通沥青混合料路面配合比设计

普通沥青混合料路面配合比设计 戚锁海 【江苏省恒基路桥总公司常州213002】 摘要:沥青混合料的物理力学性质在很大程度上取决于组成材料之间的比例。文章对材料的性质、级配曲线和沥青用量的选择作详细阐述。 关键词:沥青混合料材料性质配合比设计 1 前言 随着交通量的不断增长,车辆对路面的要求也越来越高,不仅要求沥青路面坚实、平整,具有足够的力学强度和耐久性,同时还要求沥青路面能具有良好的高温稳定性、低温抗裂性和抗滑性能。而沥青混合料的物理力学性质在很大程度上取决于组成材料本身的性质及它们之间的配合比。 2原材料的选择 沥青路面中、下面层一般采用AC-25I和AC-20I这两种类型的密实型沥青混合料。原材料的质量直接影响到沥青混合料的质量。如何选取沥青路面用的原材料?一般可以通过以下试验确定所用的原材料是否符合要求。 2.1在调查原材料质量过程中了解材料的规格及检测原材料中含有方解石等软石的含量是否超过5%。由于方解石表面光滑,与沥青粘结能力不强,另外这种原材料的高温稳定性不好,经高温加热后易碎,材料强度不高,含量过多将会降低沥青混合料的稳定度及内部结构,因此应对材料供应商做出严格要求,从源头控制材料质量、规格。 2.2用铁锤敲开粗集料,通过观察粗集料的破裂面辨别其属于何种结构类型。如果该材料属于碱性砂岩,则尽量避免选用。虽然该种材料的常温压碎值一般为25~27%,视密度一般为2.72~2.74g/m3,吸水率小于1%,洛杉矶磨耗值一般为27~29%,符合现行试验规范要求,但是通过浸水马歇尔试验(将试件在60℃水浴中保持48h后进行试验)发现该种材料经高温加热后材料的性质有本质的变化,通过掰开浸水马歇尔试件发现该种石料已成粉末状,影响沥青混合料的残留稳定度,抗水损害能力不好,容易造成沥青路面的早期破坏。 2.3在对原材料各项试验检测合格后,通过残留稳定度试验和粘附性试验决定该沥青原材料是否需掺加抗剥落剂。以提高沥青混合料的抗水损害能力。例如:我们在浙江省杭宁高速公路长兴段施工时,发现当地石灰岩中含有5~10%的红色石料。该石料有一部分属于碱性石料,而有一部分则属于中性石料,粘附性只有2~3级左右。经研究决定在沥青混合料中掺占沥青的0.3%的抗剥落剂以提高矿料的粘附性。抗剥落剂是采用江苏扬中文盛牌TW-1型抗剥落剂。通过试验检验发现:矿料粘附性由原来的2~3级提高到4~5级,残留稳定度由78%提高到85%~90%左右,满足规范要求。 3沥青混合料配合比设计 3.1 目标配合比中集料的组成设计 沥青混合料配合比设计中级配的选择是一个非常重要的内容,直接决定着沥青路面的使用性能。本文介绍AC-20I沥青混合料施工过程中使用过的集料组成设计级配,见表1。其中级配1是江苏宁靖盐高速公路W标中面层普通沥青AC-20I设计级配,级配2是杭宁高速公路浙江长兴十六合同段中面层普通沥青AC-20I设计级配,级配3是江苏宁杭高速公路NH-LS-22标中面层国产改性沥青AC-20I(改进型)设计级配;三种级配的马歇尔指标和最佳油

相关文档
最新文档