高中数学归纳法大全数列不等式精华版

高中数学归纳法大全数列不等式精华版
高中数学归纳法大全数列不等式精华版

§数学归纳法

1.数学归纳法的概念及基本步骤

数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是:

(1)验证:n=n0 时,命题成立;

(2)在假设当n=k(k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立.

根据(1)(2)可以断定命题对一切正整数n都成立.

2.归纳推理与数学归纳法的关系

数学上,在归纳出结论后,还需给出严格证明.在学习和使用数学归纳法时,

需要特别注意:

(1)用数学归纳法证明的对象是与正整数n有关的命题;

(2)在用数学归纳法证明中,两个基本步骤缺一不可.

1.用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1.

2.当证明从k到k+1时,所证明的式子不一定只增加一项;其次,在证明命题对n=k+1成立时,必须运用命题对n=k成立的归纳假设.步骤二中,在

由k到k+1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论.关键是明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时命题

形式之间的区别与联系,若实在凑不出结论,特别是不等式的证明,还可以应用比较法、分析法、综合法、放缩法等来证明当n=k+1时命题也成立,这也是证题的常用方法.

3.用数学归纳法证命题的两个步骤相辅相成,缺一不可.尽管部分与正整数

有关的命题用其他方法也可以解决,但题目若要求用数学归纳法证明,则必须

依题目的要求严格按照数学归纳法的步骤进行,否则不正确.

4.要注意“观察——归纳——猜想——证明”的思维模式,和由特殊到一般的数学思想的应用,加强合情推理与演绎推理相结合的数学应用能力.

5.数学归纳法与归纳推理不同.(1)归纳推理是根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性.结果不一定正确,需要进行严格的证明.(2)数学归纳法是一种证明数学命题的方法,结果一定正确. 6.在学习和使用数学归纳法时,需要特别注意:

(1)用数学归纳法证明的对象是与正整数n 有关的命题,要求这个命题对所有的正整数n 都成立;

(2)在用数学归纳法证明中,两个基本步骤缺一不可.

数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步,而仅有第二步成立,命题也可能是假命题.

证明:12+122+123+…+12

n -1+12n =1-1

2n (其中n ∈N +).

[证明] (1)当n =1时,左边=12,右边=1-12=1

2,等式成立. (2)假设当n =k (k ≥1)时,等式成立,即 12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时,

左边=12+122+123+…+12k -1+12k +1

2k +1

=1-12k +12k +1=1-2-12k +1=1-1

2k +1=右边.

这就是说,当n =k +1时,等式也成立. 根据(1)和(2),可知等式对任何n ∈N +都成立.

用数学归纳法证明:1-12+13-14+…+12n -1-

1

2n

=1n +1+1n +2

+…+12n . [证明] ①当n =1时,左边=1-12=12=1

1+1=右边,

∴当n =1时,等式成立. ②假设n =k 时等式成立,即

1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k .

则当n =k +1时,

左边=1-12+13-14+…+12k -1-12k +12k +1-1

2k +2

=(1k +1+1k +2+…+12k )+12k +1-1

2k +2 =(1k +2+…+12k +12k +1)+(1k +1-12k +2) =

1k +2+…+12k +12k +1+1

2k +2

=右边. ∴n =k +1时等式成立.

由①②知等式对任意n ∈N +都成立.

[点评] 在利用归纳假设论证n =k +1等式成立时,注意分析n =k 与n =k +1的两个等式的差别.n =k +1时,等式左边增加两项,右边增加一项,而且右式的首项由

1k +1变到1k +2.因此在证明中,右式中的1k +1应与-1

2k +2

合并,才能得到所证式.因此,在论证之前,把n =k +1时等式的左右两边的结构先作一下分析是有效的.

证明不等式

用数学归纳法证明:对一切大于1的自然数n ,不等式

?

?

???1+13? ????1+15…? ???

?1+12k -1>2n +12成立. [证明] ①当n =2时,左=1+13=43,右=5

2,左>右, ∴不等式成立.

②假设n =k (k ≥2且k ∈N *)时,不等式成立,

即? ?

???1+13? ????1+15…? ????1+12k -1>2k +12, 那么当n =k +1时, ? ????1+13? ????1+15…? ??

??1+12k -1[1+1

k +

-1]>2k +12·2k +22k +1

=2k +222k +1=4k 2+8k +422k +1>4k 2+8k +3

22k +1 =

2k +3·2k +1

2·2k +1

k ++1

2

∴n =k +1时,不等式也成立.

∴对一切大于1的自然数n ,不等式成立.

[点评] (1)本题证明n =k +1命题成立时,利用归纳假设并对照目标式进行了恰当的缩小来实现,也可以用上述归纳假设后,证明不等式k +1

2k +1

k ++1

2

成立.

(2)应用数学归纳法证明与非零自然数有关的命题时要注意两个步骤: ? 第①步p (n 0)成立是推理的基础;

? 第②步由p (k )?p (k +1)是推理的依据(即n 0成立,则n 0+1成立,n 0+2成立,…,从而断定命题对所有的自然数均成立).

? 另一方面,第①步中,验证n =n 0中的n 0未必是1,根据题目要求,有时可为2,3等;第②步中,证明n =k +1时命题也成立的过程中,要作适当的变形,设法用上上述归纳假设 .

(2013·大庆实验中学高二期中)用数学归纳法证明:

1+122+132+…+1n 2<2-1

n (n ≥2).

[分析] 按照数学归纳法的步骤证明,由n =k 到n =k +1的推证过程可应用放缩技巧,使问题简单化.

[证明] 1°当n =2时,1+122=54<2-12=3

2,命题成立. 2°假设n =k 时命题成立,即1+122+132+…+1k 2<2-1k

当n=k+1时,1+1

22+

1

32+…+

1

k2+

1

k+2

<

2-1

k+

1

k+2

<2-

1

k+

1

k k+

=2-

1

k+

1

k-

1

k+1

=2-

1

k+1

命题成立.

由1°、2°知原不等式在n≥2时均成立.

证明整除问题

用数学归纳法证明下列问题:

(1)求证:3×52n+1+23n+1是17的倍数;

(2)证明:(3n+1)·7n-1能被9整除.

[分析](2)先考察:f(k+1)-f(k)=18k·7k+27·7k,因此,当n=k+1时,(3k+4)7k+1=(21k+28)·7k-1=[(3k+1)·7k-1]+18k·7k+27·7k.

[证明](1)当n=1时,3×53+24=391=17×23是17的倍数.

假设3×52k+1+23k+1=17m(m是整数),

则3×52(k+1)+1+23(k+1)+1=3×52k+1+2+23k+1+3

=3×52k+1×25+23k+1×8

=(3×52k+1+23k+1)×8+17×3×52k+1

=8×17m+3×17×52k+1

=17(8m+3×52k+1),

∵m、k都是整数,∴17(8m+3×52k+1)能被17整除,

即n=k+1时,3×52n+1+23n+1是17的倍数.

(2)令f(n)=(3n+1)·7n-1

①f(1)=4×7-1=27能被9整除.

②假设f(k)能被9整除(k∈N*),

∵f(k+1)-f(k)=(3k+4)·7k+1-(3k+1)·7k=7k·(18k+27)=9×7k(2k+3)能被9整除,

∴f(k+1)能被9整除.

由①②可知,对任意正整数n,f(n)都能被9整除.

[点评]用数学归纳法证明整除问题,当n=k+1时,应先构造出归纳假设的条件,再进行插项、补项等变形整理,即可得证.

(2014·南京一模)已知数列{a n}满足a1=0,a2=1,当n ∈N+时,a n+2=a n+1+a n.求证:数列{a n}的第4m+1项(m∈N+)能被3整除.

[证明](1)当m=1时,a4m+1=a5=a4+a3=(a3+a2)+(a2+a1)=(a2+a1)+2a2+a1=3a2+2a1=3+0=3.

即当m=1时,第4m+1项能被3整除.故命题成立.

(2)假设当m=k时,a4k+1能被3整除,则当m=k+1时,

a4(k+1)+1=a4k+5=a4k+4+a4k+3=2a4k+3+a4k+2

=2(a4k

+2+a4k

+1

)+a4k+2=3a4k+2+2a4k+1.

显然,3a4k

+2能被3整除,又由假设知a4k

+1

能被3整除.

∴3a4k

+2+2a4k

+1

能被3整除.

即当m=k+1时,a4(k

+1)+1

也能被3整除.命题也成立.

由(1)和(2)知,对于n∈N

,数列{a n}中的第4m+1项能被3整除.

几何问题

平面内有n个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点.求证:这n个圆把平面分成n2-n+2个部分.[分析]用数学归纳法证明几何问题,主要是搞清楚当n=k+1时比n=k时,分点增加了多少,区域增加了几块.本题中第k+1个圆被原来的k个圆分成2k条弧,而每一条弧把它所在的部分分成了两部分,此时共增加了2k个部分,问题就容易得到解决.

[解析] ①当n=1时,一个圆把平面分成两部分,12-1+2=2,命题

成立.

②假设当n=k时命题成立(k∈N*),k个圆把平面分成k2-k+2个部

分.当n=k+1时,这k+1个圆中的k个圆把平面分成k2-k+2个部分,第k+1个圆被前k个圆分成2k条弧,每条弧把它所在部分分成了两个

部分,这时共增加了2k个部分,即k+1个圆把平面分成( k2-k+2)+2k

=(k+1)2-(k+1)+2个部分,即命题也成立.由①、②可知,对任意

n∈N*命题都成立.

[点评]利用数学归纳法证明几何问题应特别注意语言叙述准确清楚,一定要

讲清从n=k到n=k+1时,新增加量是多少.一般地,证明第二步时,常用的

方法是加一法.即在原来k的基础上,再增加1个,也可以从k+1个中分出1

个来,剩下的k个利用假设.

[分析] 找到从n =k 到n =k +1增加的交点的个数是解决本题的关键.

[证明] (1)当n =2时,两条直线的交点只有一个. 又f (2)=1

2×2×(2-1)=1, ∴当n =2时,命题成立.

(2)假设n =k (k ≥2)时,命题成立,即平面内满足题设的任何k 条直线交点个数f (k )=1

2k (k -1),

那么,当n =k +1时,

任取一条直线l ,除l 以外其他k 条直线交点个数为f (k )=1

2k (k -1), l 与其他k 条直线交点个数为k . 从而k +1条直线共有f (k )+k 个交点,

即f (k +1)=f (k )+k =12k (k -1)+k =12k (k -1+2)=12k (k +1)=1

2(k +1)[(k +1)-1],

∴当n =k +1时,命题成立.

由(1)(2)可知,对n ∈N +(n ≥2)命题都成立.

[点评] 关于几何题的证明,应分清k 到k +1的变化情况,建立k 的递推关系.

探索延拓创新 归纳—猜想—证明

(2014·湖南常德4月,19)设a >0,f (x )= ax

a +x

,令a 1=1,a n +1=f (a n ),n ∈N +. (1)写出a 2,a 3,a 4的值,并猜想数列{a n }的通项公式; (2)用数学归纳法证明你的结论.

[解析] (1)∵a 1=1,∴a 2=f (a 1)=f (1)=a 1+a ;a 3=f (a 2)=a

2+a

;a 4=f (a 3)

平面内有n (n ∈N +,n ≥2)条直线,其中任何两条不平行,任何三条不过同一点,证明交点的个数f (n )=n (n -1)

2.

a 3+a

. 猜想 a n =

a n -

+a

(n ∈N +).

(2)证明:(ⅰ)易知,n =1时,猜想正确. (ⅱ)假设n =k 时猜想正确,

即a k =a

k -+a

a k

1

=f (a k )=a ·a k

a +a k

a ·a k -

+a

a +

a k -

+a =

a k -

+a +1

a k +

-1]+a

.

这说明,n =k +1时猜想正确. 由(ⅰ)(ⅱ)知,对于任何n ∈N +,都有a n =

a n -

+a

已知数列{x n }满足x 1=12,x n +1=1

1+x n

,n ∈N +.

(1)猜想数列{x 2n }的单调性,并证明你的结论; (2)证明:|x n +1-x n |≤16 ? ??

??25n -1

.

[解析] (1) 解: 由x 1=12及x n +1=11+x n ,得x 2=23,x 4=58,x 6=13

21.

由x 2>x 4>x 6,猜想数列{x 2n }是单调递减数列. 下面用数学归纳法证明:

①当n =1时,已证明x 2>x 4,命题成立. ②假设当n =k 时,命题成立,即x 2k >x 2k +2. 易知x n >0,那么,当n =k +1时, x 2k +2-x 2k +4=11+x 2k +1-1

1+x 2k +3=

x 2k +3-x 2k +1

+x 2k +1+x 2k +3

x 2k -x 2k +2

+x 2k

+x 2k +1+x 2k +2

+x 2k +3

>0,

即x 2(k +1)>x 2(k +1)+2.也就是说,当n =k +1时命题也成立. 综合①和②知,命题成立.

(2)证明:当n =1时,|x n +1-x n |=|x 2-x 1|=1

6,结论成立.

当n ≥2时,易知0

>1

2.

∴(1+x n )(1+x n -1)=? ????1+11+x n -1(1+x n -1)=2+x n -1

≥52. ∴|x n +1-x n |=

??????1

1+x n -11+x n -1=

|x n -x n -1|

+x n +x n -1

≤25|x n -x n -1|≤? ????

252|x n -1-x n -2|≤…≤

? ????25n -1

|x 2-x 1|=16? ????25n -1.

易错辨误警示

判断2+4+…+2n =n 2+n +1对大于0的自然数n 是否都

成立?若成立请给出证明

[误解] 假设n =k 时,结论成立,即2+4+…+2k =k 2+k +1,那2+4

+…+2k +2(k +1)=k 2+k +1+2(k +1)=(k +1)2+(k +1)+1. 即当n =k +1时,等式也成立.

因此,对大于0的自然数n,2+4+…+2n =n 2+n +1都成立.

[误解] 假设n =k 时,结论成立,即2+4+…+2k =k 2+k +1,那2+4+…+2k +2(k +1)=k 2+k +1+2(k +1)=(k +1)2+(k +1)+1. 即当n =k +1时,等式也成立.

因此,对大于0的自然数n,2+4+…+2n =n 2+n +1都成立. ? [正解] 不成立.当n =1时,左边=2,右边=12+1+1=3,左边≠右边,所以不成立. [点评] 用数学归纳法证明命题的两个步骤是缺一不可的.特别是步骤(1),往往十分简单,但却是不可忽视的步骤.本题中,虽然已经证明了:如果n =k 时等式成立,那么n =k +1时等式也成立.但是如果仅根据这一步就得出等式对任何n ∈N +都成立的结论,那就错了.事实上,当n =1时,上式左边=2,右边=12+1+1=3,左边≠右边.而且等式对任何n 都不成立.这说明如果缺少步骤(1)这个基础,步骤(2)就没有意义了.

用数学归纳法证明

1

2×4

1

4×6

1

6×8

+…+

1

2n(2n+2)

n

4(n+1)

(n∈N+).

[误解](1) 略.

(2) 假设当n=k(k≥1,k∈N+)时等式成立,那么当n=k+1时,直接使用裂项相减法求得

1

2×4+

1

4×6+

1

6×8+…+

1

2k k+

1

k+k+

=1

2??

?

?

?

??

?

?

?

?

1

2-

1

4+?

?

?

?

?

1

4-

1

6+…+?

?

?

?

?

1

2k-

1

2k+2+?

?

?

?

?

1

2k+2

1

2k+4

=1

2?

?

?

?

?

1

2-

1

2k+4=

k+1

k++1]

,即n=k+1时命题成立.

[正解](1)当n=1时,左边=1

2×4=

1

8,右边=

1

8,等式成立.

(2)假设当n=k(k≥1,k∈N+)时,

1 2×4+

1

4×6

1

6×8

+…+

1

2k(2k+2)

k

4(k+1)

成立.

那么当n=k+1时,

1 2×4+

1

4×6

1

6×8

+…+

1

2k(2k+2)

1

(2k+2)(2k+4)

k

4(k+1)

1

4(k+1)(k+2)

k(k+2)+1 4(k+1)(k+2)

(k+1)2

4(k+1)(k+2)

k+1

4(k+2)

k+1

4[(k+1)+1]

.

所以当n=k+1时,等式成立.

由(1)(2)可得对一切n∈N

等式都成立.

[点评]这里没有用归纳假设,是典型的套用数学归纳法的一种伪证.

用数学归纳法证明1+1

2+

1

3+…+

1

2n>

n+1

2(n∈N+).

[误解] (1)当n =1时,左边=1+12=3

2,右边=1+12=1.显然左边>右边,即n =1时命题成立.

(2)假设当n =k (k ≥1,k ∈N +)时命题成立,即1+12+13+…+12k >k +1

2. [正解] (1)略.

(2)假设当n =k (k ≥1,k ∈N +)时不等式成立,即1+12+13+…+12k >k +1

2, 则当n =k +1时,

1+12+13+…+12k +12k +1+12k +2+…+12k +1>k +12+12k +1+12k +2+…

+1

2k +1>k +12+12k +1+12k +1+…+1

2

k +1 =k +12+2k 2

k +1=k +12+12=(k +1)+12,

即n =k +1时不等式也成立.由(1)(2)可得对一切n ∈N +不等式都成立. [点评] 从n =k 到n =k +1时,增加的不止一项,应为12k +1+1

2k +2

+…+12k +2k ,共有2k

项,并且k +12+12k +1>k +12

+12也是错误的.

高二数学归纳法证明不等式

第四讲:数学归纳法证明不等式 数学归纳法证明不等式是高中选修的重点内容之一,包含数学归纳法的定义和数学归纳法证明基本步骤,用数学归纳法证明不等式。数学归纳法是高考考查的重点内容之一,在数列推理能力的考查中占有重要的地位。 本讲主要复习数学归纳法的定义、数学归纳法证明基本步骤、用数学归纳法证明不等式的方法:作差比较法、作商比较法、综合法、分析法和放缩法,以及类比及猜想、抽象及概括、从特殊到一般等数学思想方法。 在用数学归纳法证明不等式的具体过程中,要注意以下几点: (1)在从n=k 到n=k+1的过程中,应分析清楚不等式两端(一般是 左端)项数的变化,也就是要认清不等式的结构特征; (2)瞄准当n=k+1时的递推目标,有目的地进行放缩、分析; (3)活用起点的位置; (4)有的试题需要先作等价变换。 例题精讲 例1、用数学归纳法证明 n n n n n 212111211214131211+++++=--++-+- 分析:该命题意图:本题主要考查数学归纳法定义,证明基本步骤 证明: 1 当n=1时,左边=1-21=21,右边=111+=21 ,所以等式成立。

2假设当n=k 时,等式成立, 即 k k k k k 212111211214131211+++++=--++-+- 。 那么,当n=k+1时, 221121211214131211+-++--++-+- k k k k 221121212111+-+++++++=k k k k k )2 2111(1212131214131211+-+++++++++=++-+-k k k k k k )1(21 121213121+++++++++= k k k k k 这就是说,当n=k+1时等式也成立。 综上所述,等式对任何自然数n 都成立。 点评: 数学归纳法是用于证明某些及自然数有关的命题的一种方法.设要证命题为P (n ).(1)证明当n 取第一个值n 0时,结论正确,即验证P (n 0)正确;(2)假设n=k (k ∈N 且k≥n 0)时结论正确,证明当n=k+1时,结论也正确,即由P (k )正确推出P (k+1)正确,根据(1),(2),就可以判定命题P (n )对于从n 0开始的所有自然数n 都正确. 要证明的等式左边共2n 项,而右边共n 项。f(k)及f(k+1)相比较,左边增加两项,右边增加一项,并且二者右边的首项也不一样,因此 在证明中采取了将11+k 及221 +k 合并的变形方式,这是在分析了f(k) 及f(k+1)的差异和联系之后找到的方法。 练习: 1.用数学归纳法证明3k ≥n 3(n≥3,n∈N)第一步应验证( )

2019年高考数学二轮复习试题:专题六 第4讲 用数学归纳法证明数列问题(带解析)

第4讲用数学归纳法证明数列问题 选题明细表 知识点·方法巩固提高A 巩固提高B 数学归纳法的理解1,2,5 1 数学归纳法的第一步3,7 2,7 3,4,5,6,8, 数学归纳法的第二步4,6,10,12 9,12 类比归纳8,9,11 10,11 数学归纳法的应用13,14,15 13,14,15 巩固提高A 一、选择题 1.如果命题P(n)对n=k成立,则它对n=k+2也成立,若P(n)对n=2也成立,则下列结论正确的是( B ) (A)P(n)对所有正整数n都成立 (B)P(n)对所有正偶数n都成立 (C)P(n)对所有正奇数n都成立 (D)P(n)对所有正整数n都成立 解析:由题意n=k时成立,则n=k+2时也成立,又n=2时成立,则P(n)对所有正偶数都成立.故选B. 2.设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≤k2成立时,总可推出f(k+1)≤(k+1)2成立.”那么,下列命题总成立的是( D )

(A)若f(2)≤4成立,则当k≥1时,均有f(k)≤k2成立 (B)若f(4)≤16成立,则当k≤4时,均有f(k)≤k2成立 (C)若f(6)>36成立,则当k≥7时,均有f(k)>k2成立 (D)若f(7)=50成立,则当k≤7时,均有f(k)>k2成立 解析:若f(2)≤4成立,依题意则应有当k≥2时,均有f(k)≤k2成立,故A不成立; 若f(4)≤16成立,依题意则应有当k≥4时,均有f(k)≤k2成立,故B不成立; 因命题“当f(k)≤k2成立时,总可推出f(k+1)≤(k+1)2成立”?“当f(k+1)>(k+1)2成立时,总可推出f(k)>k2成立”;因而若f(6)>36成立,则当k≤6时,均有f(k)>k2成立 ,故C也不成立; 对于D,事实上f(7)=50>49,依题意知当k≤7时,均有f(k)>k2成立,故D成立. 3.若f(n)=1+++…+(n∈N*),则f(1)为( C ) (A)1 (B) (C)1++++(D)非以上答案 解析:注意f(n)的项的构成规律,各项分子都是1,分母是从1到6n-1的正整数, 故f(1)=1++++.故选C. 4.用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·…·(2n-1)(n∈N*),从k到k+1时,左端需增乘的代数式为( B ) (A)2k+1 (B)2(2k+1) (C)(D) 解析:n=k时左边为(k+1)(k+2)…(k+k),n=k+1时左边为(k+2)(k+3)…(k+k+2),

高中数学竞赛专题讲座---数列与和式不等式(1)

数列与和式不等式 数列与和式不等式的解题方法需要同学们深入了解,在解题过程中,往往要利用一些恒等式、变换法等方法对数列和式进行变形,并结合数列求和等相关知识,灵活运用各种技巧.尤其当涉及到整数命题的证明,有时候也可以考虑用归纳法进行证明,当然在证明过程中,解题方法并非千篇一律,而是灵活多变,根据具体题意可以寻找恰当的解法,二者之间的紧密结合,也在竞赛中作为考察学生的重要题型之一,下面通过例题简要介绍几种解题方法与技巧: 例1 已知i x R ∈(1,2,,,2)i n n =≥ ,满足 1 1 ||1,0n n i i i i x x ====∑∑.求证: 1 1122n i i x i n =≤-∑ 证:设 1 1 ,n n i i i i x x A B a b i ===+=+∑∑ ,其中,A a 为正项之和,,B b 为负项之和,由题意知, 0,1A B A B +=-=,得12A B =-= ,因为,A B a A B b n n ≤≤≤≤,所以A B B a b A n n +≤+≤+, 即111 11()2222n i i x n i n =--≤≤- ∑,也就是11122n i i x i n =≤-∑ 说明:本题通过设元,将数列拆分成正负两部分,然后运用不等式相关知识,很自然过渡到绝对值不 等式. 例2 设1112n a n =+ ++ ,*n N ∈,求证:对2n ≥,有2 322()23n n a a a a n >+++ . 证:22 2212 2211111111(1)(1)2(1)22121 1211 ()2.n n n n a a n n n n n a a n n n n n --=+++-+++=+?+++--=+-=?- 故22 321222111 2( )()2323n n a a a a a n n -=+++-+++ .所以 2 332222233221111112( )(1)2()(1)2323231223(1)1 2()2(). 2323n n n n n a a a a a a a n n n n n a a a a a a n n n =++++---->++++----??-=++++>+++ 说明:本题若通过n a 表达式来证明将非常复杂,可以考虑通过建立递推关系,使问题很容易得到解决. 例3 无穷正实数列{}n x 有以下性质:011,(0)i i x x x i +=≤≥ (1) 试证:对具有上述性质的任一数列,总能找到一个1n ≥,使下式成立22 201112 3.999n n x x x x x x -+++≥ (2) 寻找这样一个数列,使得下列不等式22 2011124n n x x x x x x -+++< 对任一n 成立. 证:(1)

高中数学数列公式大全(很齐全哟~!)之欧阳数创编

一、高中数列基本公式:1、一般数列的通项an与前n项和Sn的关系:an=2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。3、等差数列的前n项和公式:Sn=Sn= Sn=当d≠0时,Sn是关于n 的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。4、等比数列的通项公式:an= a1qn-1an= akqn-k (其中a1

为首项、ak为已知的第k项, an≠0)5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);当q≠1时, Sn=Sn=三、高中数学中有关等差、等比数列的结论1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。2、等差数列{an}中,若m+n=p+q,则 3、等比数列{an}中,若 m+n=p+q,则4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m-

S3m、……仍为等比数列。5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。6、两个等比数列{an}与{bn}的积、商、倒数组成的数列{an bn}、、仍为等比数列。7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法: a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个

用数学归纳法证明不等式

用数学归纳法证明不等式 在明确数学归纳法本质的基础上,我们来共同研究它在不等式证明中的应用.例1已知x>-1,且x≠0,n∈N,n≥2.求证:(1+x)n>1+nx. 证:(1)当n=2时,左边=(1+x)2=1+2x+x2,右边=1+2x,因x2>0,则原不等式成立.(在这里,一定要强调之所以左边>右边,关键在于x2>0是由已知条件x≠0获得,为下面证明做铺垫) (2)假设n=k时(k≥2),不等式成立,即(1+x)k>1+kx. 师:现在要证的目标是(1+x)k+1>1+(k+1)x,请同学考虑. 师:现将命题转化成如何证明不等式 (1+kx)(1+x)≥1+(k+1)x.显然,上式中“=”不成立.故只需证:(1+kx)(1+x)>1+(k+1)x. 提问:证明不等式的基本方法有哪些? (学生可能还有其他多种证明方法,这样培养了学生思维品质的广阔性,教师应及时引导总结) 师:这些方法,哪种更简便,更适合数学归纳法的书写格式?学生丙用放缩技巧证明显然更简便,利于书写.当n=k+1时,因为x>-1,所以1+x>0,于是左边=(1+x)k+1=(1+x)k(1+x)>(1+x)(1+kx)=1+(k+1)x+kx2;右边=1+(k+1)x.因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x.这就是说,原不等式当n=k +1时也成立. 根据(1)和(2),原不等式对任何不小于2的自然数n都成立. (通过例1的讲解,明确在第二步证明过程中,虽然可以采取证明不等式的有关方法,但为了书写更流畅,逻辑更严谨,通常经归纳假设后,要进行合理放缩,以达到转化的目的)例2证明:2n+2>n2,n∈N+. 证:(1)当n=1时,左边=21+2=4;右边=1,左边>右边.所以原不等式成立. (2)假设n=k时(k≥1且k∈N)时,不等式成立,即2k+2>k2. 现在,请同学们考虑n=k+1时,如何论证2k+1+2>(k+1)2成立. 师:将不等式2k2-2>(k+1)2,右边展开后得:k2+2k+1,由于转化目的十分明确,所以只需将不等式的左边向k2+2k+1方向进行转化,即:2k2-2=k2+2k+1+k2-2k-3.由此不难看出,只需证明k2-2k-3≥0,不等式2k2-2>k2+2k+1即成立. 师:由于使不等式不成立的k值是有限的,只需利用归纳法,将其逐一验证原命题成立,因此在证明第一步中,应补充验证n=2时原命题成立,那么,n=3时是否也需要论证? 师:(补充板书)当n=2时,左=22+2=6,右=22=4,所以左>右;当n=3时,左=23+2=10,右=32=9,所以左>右.因此当n=1,2,3时,不等式成立.(以下请学生板书) (2)假设当n=k(k≥3且k∈N)时,不等式成立.即2k+2>k2.因为2k+1+2=2·2k+2=2(2k +2)-2>2k2-2=k2+2k+1+k2-2k-3=(k2+2k+1)+(k+1)(k-3)(因k≥3,则k-3≥0,k+1>0) ≥k2+2k+1=(k+1)2.所以2k+1+2>(k+1)2.故当n=k+1时,原不等式也成立.根据(1)和(2),原不等式对于任何n∈N都成立. 师:通过例2可知,在证明n=k+1时命题成立过程中,针对目标k2+2k+1,采用缩小的手段,但是由于k的取值范围(k≥1)太大,不便于缩小,因此,用增加奠基步骤(把验证

高中数学归纳法大全数列不等式精华版

§数学归纳法 1.数学归纳法的概念及基本步骤 数学归纳法是用来证明某些与正整数n有关的数学命题的一种方法.它的基本步骤是: (1)验证:n=n0 时,命题成立; (2)在假设当n=k(k≥n0)时命题成立的前提下,推出当n=k+1时,命题成立. 根据(1)(2)可以断定命题对一切正整数n都成立. 2.归纳推理与数学归纳法的关系 数学上,在归纳出结论后,还需给出严格证明.在学习和使用数学归纳法时, 需要特别注意: (1)用数学归纳法证明的对象是与正整数n有关的命题; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 1.用数学归纳法证明命题的第一步时,是验证使命题成立的最小正整数n,注意n不一定是1. 2.当证明从k到k+1时,所证明的式子不一定只增加一项;其次,在证明命题对n=k+1成立时,必须运用命题对n=k成立的归纳假设.步骤二中,在 由k到k+1的递推过程中,突出两个“凑”:一“凑”假设,二“凑”结论.关键是明确n=k+1时证明的目标,充分考虑由n=k到n=k+1时命题 形式之间的区别与联系,若实在凑不出结论,特别是不等式的证明,还可以应用比较法、分析法、综合法、放缩法等来证明当n=k+1时命题也成立,这也是证题的常用方法. 3.用数学归纳法证命题的两个步骤相辅相成,缺一不可.尽管部分与正整数 有关的命题用其他方法也可以解决,但题目若要求用数学归纳法证明,则必须 依题目的要求严格按照数学归纳法的步骤进行,否则不正确. 4.要注意“观察——归纳——猜想——证明”的思维模式,和由特殊到一般的数学思想的应用,加强合情推理与演绎推理相结合的数学应用能力.

5.数学归纳法与归纳推理不同.(1)归纳推理是根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性.结果不一定正确,需要进行严格的证明.(2)数学归纳法是一种证明数学命题的方法,结果一定正确. 6.在学习和使用数学归纳法时,需要特别注意: (1)用数学归纳法证明的对象是与正整数n 有关的命题,要求这个命题对所有的正整数n 都成立; (2)在用数学归纳法证明中,两个基本步骤缺一不可. 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步,而仅有第二步成立,命题也可能是假命题. 证明:12+122+123+…+12 n -1+12n =1-1 2n (其中n ∈N +). [证明] (1)当n =1时,左边=12,右边=1-12=1 2,等式成立. (2)假设当n =k (k ≥1)时,等式成立,即 12+122+123+…+12k -1+12k =1-12k , 那么当n =k +1时, 左边=12+122+123+…+12k -1+12k +1 2k +1 =1-12k +12k +1=1-2-12k +1=1-1 2k +1=右边. 这就是说,当n =k +1时,等式也成立. 根据(1)和(2),可知等式对任何n ∈N +都成立. 用数学归纳法证明:1-12+13-14+…+12n -1- 1 2n

2019高考数学二轮复习专题三数列与不等式第1讲等差数列与等比数列学案

第1讲 等差数列与等比数列 [考情考向分析] 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.等差、等比数列的判定及综合应用也是高考考查的重点,注意基本量及定义的使用,考查分析问题、解决问题的综合能力. 热点一 等差数列、等比数列的运算 1.通项公式 等差数列:a n =a 1+(n -1)d ; 等比数列:a n =a 1·q n -1 . 2.求和公式 等差数列:S n = n (a 1+a n ) 2 =na 1+ n (n -1) 2 d ; 等比数列:S n =????? a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1),na 1(q =1). 3.性质 若m +n =p +q , 在等差数列中a m +a n =a p +a q ; 在等比数列中a m ·a n =a p ·a q . 例1 (1)(2018·全国Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5等于( ) A .-12 B .-10 C .10 D .12 答案 B 解析 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4, 得3???? ??3a 1+3×(3-1)2×d =2a 1+2×(2-1)2×d +4a 1+4×(4-1)2×d ,将a 1=2代入上式,解得d =-3, 故a 5=a 1+(5-1)d =2+4×(-3)=-10.故选B. (2)(2018·杭州质检)设各项均为正数的等比数列{a n }中,若S 4=80,S 2=8,则公比q =________,a 5=________. 答案 3 162

高中数学数列公式大全很齐全哟

高中数学数列公式大全 很齐全哟 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

一、数列基本公式: 1、一般数列的通项a n 与前n项和S n 的关系:a n = 2、等差数列的通项公式:a n =a 1 +(n-1)d a n =a k +(n-k)d (其中a 1 为首项、 a k 为已知的第k项) 当d≠0时,a n 是关于n的一次式;当d=0时,a n 是 一个常数。 3、等差数列的前n项和公式:S n =S n = S n = 当d≠0时,S n 是关于n的二次式且常数项为0;当d=0时(a 1 ≠0), S n =n a 1 是关于n的正比例式。 4、等比数列的通项公式:a n =a 1 q n-1a n =a k q n-k (其中a 1为首项、a k 为已知的第k项,a n ≠0) 5、等比数列的前n项和公式:当q=1时,S n =n a 1 (是关于n的正比例 式); 当q≠1时,S n =S n =

三、高中中有关等差、等比数列的结论 1、等差数列{a n }的任意连续m项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m -S 3m 、……仍为等差数列。 2、等差数列{a n }中,若m+n=p+q,则 3、等比数列{a n }中,若m+n=p+q,则 4、等比数列{a n }的任意连续m项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m -S 3m 、……仍为等比数列。 5、两个等差数列{a n }与{b n }的和差的数列{a n+ b n }、{a n -b n }仍为等差数列。 6、两个等比数列{a n }与{b n }的积、商、倒数组成的数列 {a n b n }、、仍为等比数列。 7、等差数列{a n }的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n }的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3 d 10、三个数成等比数列的设法:a/q,a,a q;四个数成等比的错误设法:a/q3,a/q,a q,a q3(为什么?)

归纳法证明不等式

归纳法证明不等式 数学归纳法证明不等式的本质 数学归纳法证明不等式的典型类型是与数列或数列求和有关的问题,凡是与数列或数列求和有关的问题都可统一表述成f(n)?g(n)(n?n?)的形式或近似于上述形式。 这种形式的关键步骤是由n?k时,命题成立推导n?k?1时,命题也成立。为了表示的方便,我们记?左n?f(k?1)?f(k),?右n?g(k?1)?g(k)分别叫做左增量,右增量。那么,上述证明的步骤可表述为 f(k?1)?f(k)??左k?g(k)??左k?g(k)??右k?g(k?1) 例1.已知an?2n?1,求证: 本题要证后半节的关键是证 an1a1a2n????n?(n?n?) 23a2a3an?12 2k?1?11?中k??右k即证k?2? 2?12 而此式显然成立,所以可以用数学归纳法证明。 而要证前半节的关键是证 12k?1?1?左k??中k即证?k?2 22?1 而此式显然不成立,所以不能用数学归纳法证明。如果不进行判断就用数学归纳法证前半节,忙乎半天,只会徒劳。 有时,f(n)?g(n)(n?n?)中f(n),g(n)是以乘积形式出现,且f(n)?0,g(n)?0是显然成立的。此时,可记 ?左k?f(k?1)g(k?1),?右k? f(k)g(k) 分别叫做左增倍,右增倍。那么,用数学归结法证明由n?k时,成立推导 n?k?1成立,可表述为 f(k?1)?f(k)??左k?g(k)??左k?g(k)??右k?g(k?1) 和前面所讲相似,上述四步中,两个“=”和“<”都显然成立,而“≤”是否成立,就需要判断和证明了,既“?左k??右k”若成立,既可用数学归纳法证明;若不成立,则不能用数学归纳法证明。因此,可以这样说,此时,数学归纳法证明不等式的本质是证“左增倍≤右增倍”,而判断能否用数学归纳法证明不等式的标准就是看“左增倍≤右增倍”是否成立。 第二篇:归纳法证明不等式

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

2017高考数列与不等式

2017高考数列与不等式 1.【2017课标1,文7】设x,y满足约束条件 33, 1, 0, x y x y y +≤ ? ? -≥ ? ?≥ ? 则z=x+y的最大值为 A.0 B.1 C.2 D.3 2.【2017课标II,文7】设,x y满足约束条件 2+330 2330 30 x y x y y -≤ ? ? -+≥ ? ?+≥ ? ,则2 z x y =+的最小值是 A.15 - B.9- C.1 D 9 3.【2017课标3,文5】设x,y满足约束条件 3260 x y x y +-≤ ? ? ≥ ? ?≥ ? ,则z x y =-的取值范围是() A.[–3,0] B.[–3,2] C.[0,2] D.[0,3] 4.【2017北京,文4】若,x y满足 3, 2, , x x y y x ≤ ? ? +≥ ? ?≤ ? 错误!未找到引用源。则2 x y +的最大值为 (A)1(B)3 (C)5 (D)9 5.【2017山东,文3】已知x,y满足约束条件 250 30 2 x y x y -+≤ ? ? +≥ ? ?≤ ? ,则z=x+2y的最大值是 A.-3 B.-1 C.1 D.3 6.【2017浙江,4】若x,y满足约束条件 30 20 x x y x y ≥ ? ? +-≥ ? ?-≤ ? ,则y x z2 + =的取值范围是 A.[0,6] B.[0,4] C.[6,)∞ +D.[4,)∞ + 7.【2017浙江,6】已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4 + S6>2S5”的A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件

高中数学数列公式及结论总结

高中数学数列公式及结论总结 一、高中数列基本公式: 1、一般数列的通项a n与前n项和S n的关系:a n= 2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。 3、等差数列的前n项和公式: S n=S n=S n= 当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n 的正比例式。 4、等比数列的通项公式:a n= a1 q n-1 a n= a k q n-k (其中a1为首项、a k为已知的第k项,a n≠0) 5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n的正比例式); 当q≠1时,S n=S n= 三、高中数学中有关等差、等比数列的结论 1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。 2、等差数列{a n}中,若m+n=p+q,则 3、等比数列{a n}中,若m+n=p+q,则 4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。 5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。 6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列 {a n b n}、、仍为等比数列。 7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d 10、三个数成等比数列的设法:a/q,a,aq;

选修4-5学案§4.1.1数学归纳法证明不等式

选修4-5学案 §4.1.1数学归纳法证明不等式 姓名 ☆学习目标:1. 理解数学归纳法的定义、数学归纳法证明基本步骤; 2. 会运用数学归纳法证明不等式 重点:应用数学归纳法证明不等式. ?知识情景: 关于正整数n 的命题(相当于多米诺骨牌),我们可以采用下面方法来证明其正确性: 10. 验证n 取 时命题 ( 即n =n 时命题成立) (归纳奠基) ; 20. 假设当 时命题成立,证明当n=k +1时命题 (归纳递推). 30. 由10、20知,对于一切n ≥n 的自然数n 命题 !(结论) 要诀: 递推基础 , 归纳假设 , 结论写明 . ☆ 数学归纳法的应用: 例1. 用数学归纳法证明不等式sin sin n n θθ≤. 例2已知x > -1,且x ≠0,n ∈N*,n ≥2.求证:(1+x )n >1+nx .

例3 证明: 如果(n n 为正整数)个正数12,,,n a a a 的乘积121n a a a = , 那么它们的和12n a a a n +++ ≥. 例4 证明:2 2 2 111112(,2).2 3 ≥n N n n n + + +?+ <- ∈

例5.当2n ≥时,求证:1 + +++ > 选修4-5练习 §4.1.1数学归纳法证明不等式(1) 姓名 1、已知f(n)=(2n+7)·3n +9,存在自然数m,使得对任意n ∈N,都能使m 整除f(n),则最大的m 的 值为( ) A.30 B.26 C.36 D.6 2、.观察下列式子:2 2 2 2 2 1311511171, 1, 1222 3 32 3 4 4 + < + +< + ++<

数学归纳法解题

2012届高考数学难点 数学归纳法解题 数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法. ●难点磁场 (★★★★)是否存在a 、b 、c 使得等式1·22+2·32+…+n (n +1)2=12 )1(+n n (an 2+bn +c ). ●案例探究 [例1]试证明:不论正数a 、b 、c 是等差数列还是等比数列,当n >1,n ∈N *且a 、b 、c 互不相等时,均有:a n +c n >2b n . 命题意图:本题主要考查数学归纳法证明不等式,属★★★★级题目. 知识依托:等差数列、等比数列的性质及数学归纳法证明不等式的一般步骤. 错解分析:应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况. 技巧与方法:本题中使用到结论:(a k -c k )(a -c )>0恒成立(a 、b 、c 为正数),从而a k +1+c k +1>a k ·c +c k ·a . 证明:(1)设a 、b 、c 为等比数列,a =q b , c =bq (q >0且q ≠1) ∴a n +c n =n n q b +b n q n =b n (n q 1+q n )>2b n (2)设a 、b 、c 为等差数列,则2b =a +c 猜想2n n c a +>(2 c a +)n (n ≥2且n ∈N *) 下面用数学归纳法证明: ①当n =2时,由2(a 2+c 2)>(a +c )2,∴222)2 (2c a c a +>+ ②设n =k 时成立,即,)2 (2k k k c a c a +>+ 则当n =k +1时,4 1211=+++k k c a (a k +1+c k +1+a k +1+c k +1) >41(a k +1+c k +1+a k ·c +c k ·a )=4 1(a k +c k )(a +c ) >(2c a +)k ·(2c a +)=(2 c a +)k +1 [例2]在数列{a n }中,a 1=1,当n ≥2时,a n ,S n ,S n -2 1成等比数列. (1)求a 2,a 3,a 4,并推出a n 的表达式; (2)用数学归纳法证明所得的结论; (3)求数列{a n }所有项的和. 命题意图:本题考查了数列、数学归纳法、数列极限等基础知识. 知识依托:等比数列的性质及数学归纳法的一般步骤.采用的方法是归纳、猜想、证明. 错解分析:(2)中,S k =-3 21-k 应舍去,这一点往往容易被忽视.

高考数学数列不等式证明题放缩法十种方法技巧总结

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n Λ求证 .2 )1(2)1(2 +<<+n S n n n 例2 已知函数 bx a x f 211 )(?+= ,若5 4)1(= f ,且 )(x f 在[0,1]上的最小值为21,求证: .2 1 21)()2()1(1 -+ >++++n n n f f f Λ 例3 求证),1(22 1321 N n n n C C C C n n n n n n ∈>?>++++-Λ. 例4 已知222121n a a a +++=L ,222 121n x x x +++=L ,求证:n n x a x a x a +++Λ2 211≤1. 2.利用有用结论 例5 求证.12)1 21 1()511)(311)(11(+>-+++ +n n Λ 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 1211 1,(1).2 n n n a a a n n +==+ ++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828e ≈L ) 例8 已知不等式 21111 [log ],,2232 n n N n n *+++>∈>L 。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,] [log 222≥+

人教A版选修4-5 4.2用数学归纳法证明不等式举例 学案

4.2 用数学归纳法证明不等式举例 学习目标 1.理解数学归纳法证明不等式的基本思路. 2.会用数学归纳法证明贝努利不等式:(1+x )n >1+nx (x >-1,x ≠0,n 为大于1的自然数). 3.了解n 为实数时贝努利不等式也成立. 一、自学释疑 根据线上提交的自学检测,生生、师生交流讨论,纠正共性问题。 二、合作探究 思考探究 在应用贝努利不等式时应注意什么? 名师点拨: 1.对贝努利(Bernoulli)不等式的理解 当指数n 推广到任意实数α时,x >-1时, ①若0<α<1,则(1+x )α ≤1+αx . ②若α<0或α>1,则(1+x )α ≥1+αx . 当且仅当x =0时等号成立. 2.贝努利不等式的应用 贝努利不等式:如果x 是实数,且x >-1,x ≠0,n 为大于1的自然数,那么有(1+x )n >1+nx . 推论:当x 是实数,且x >-1,x ≠0,n 为不小于2的正整数时,有? ? ???1-x 1+x n >1-nx 1+x . 3.数学归纳法与其他方法的联系 数学归纳法证明不等式有它的局限性,它只能用来证明与正整数有关的不等式,其他证明不等式的方法运用比较广泛,但在具体应用时,各自又有具体的要求,如反证法,必须有严格的格式(以否定结论入手,推出矛盾),分析法也有独特的表达格式,而数学归纳法必须分两步且在第二步中,要从假设出发推证n =k +1命题正确时,也经常用到综合法、分析法、比较法、放缩法等. 4.用数学归纳法证明不等式时常用技巧

用数学归纳法证明与自然数有关的命题时,要注意初始值n 0的定位,要弄清楚n =k 和 n =k +1时的结论是什么,要有目标意识,紧盯n =k +1时的目标,对n =k +1时的结论进行 一系列的变化,变化的目标就是n =k +1时的结论形式,这种变化就是“凑假设,奔结论”.常用放缩法做辅助手段. 【例1】 求证:1n +1+1n +2+1n +3+…+13n >56 (n ≥2,n ∈N ). 【变式训练1】 用数学归纳法证明: 1+122+132+…+1n 2<2-1 n (n ≥2,n ∈N ). 【例2】 求证:当n ≥1(n ∈N )时,(1+2+…+n )? ????1+12+1 3+…+1n ≥n 2. 【变式训练2】 求证:1+12+13+…+1n ≥2n n +1(n ∈N +)

高中数学数列公式大全(很齐全哟~)

一、高中数列基本公式: 1、一般数列的通项a n与前n项和S n的关系:a n= 2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。 3、等差数列的前n项和公式:S n= S n= S n= 当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n的正比例式。 4、等比数列的通项公式: a n= a1 q n-1a n= a k q n-k (其中a1为首项、a k为已知的第k项,a n≠0) 5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n 的正比例式); 当q≠1时,S n= S n= 三、高中数学中有关等差、等比数列的结论 1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。 2、等差数列{a n}中,若m+n=p+q,则 3、等比数列{a n}中,若m+n=p+q,则

4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。 5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。 6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列 {a n b n}、、仍为等比数列。 7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d 10、三个数成等比数列的设法:a/q,a,aq; 四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?) 11、{a n}为等差数列,则 (c>0)是等比数列。 12、{b n}(b n>0)是等比数列,则{log c b n} (c>0且c 1) 是等差数列。 13. 在等差数列中: (1)若项数为,则 (2)若数为则,, 14. 在等比数列中:

利用数学归纳法解题举例

利用数学归纳法解题举例 归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。 数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n )时成立,这是递推的基础;第二步是假设在n=k时命题成立, 再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或 n≥n 且n∈N)结论都正确”。由这两步可以看出,数学归纳法是由递推实现归纳0 的,属于完全归纳。 运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。 运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。 一、运用数学归纳法证明整除性问题 例1.当n∈N,求证:11n+1+122n-1能被133整除。 证明:(1)当n=1时,111+1+1212×1-1=133能被133整除。命题成立。 (2)假设n=k时,命题成立,即11k+1+122k-1能被133整除,当n=k+1时,

高中数学:数列与不等式测试题新课标人教A版必修5

数 列 与 不 等 式 测 试 题 班级:___________ 姓名:___________ 得分:___________ 一、选择题:(每小题5分,共50分) 1、数列95 ,74,53,32, 1的一个通项公式n a 是( ) A 、12+n n B 、12-n n C 、32-n n D 、3 2+n n 2、已知等比数列{}n a 的公比为正数,且2 4282a a a =,11=a 则=2a ( ) A 、2 B 、2 C 、 2 2 D 、21 3、已知等差数列{}n a 前n 项和为n S 且0>n a 已知02 564=-+a a a 则=9S ( ) A 、17 B 、18 C 、19 D 、20 4、已知)1,0(,21∈a a ,记21a a M =,121-+=a a N 则M 与N 的大小关系( ) A 、MN C 、M=N D 、不确定 5、若011<+><+中 正确的是( ) A 、(1)(2) B 、(2)(3) C 、(1)(3) D 、(3)(4) 6、不等式 121 3≥--x x 的解集是 ( ) A 、??????≤≤243x x B 、??????<≤243x x C 、??? ? ??≤>432x x x 或 D 、{}2>b a 三个结论:①22b a b a ab +≤+,②,2 22 2b a b a +≤+ ③b a b a a b +≥+2 2,其中正确的个数是( ) A 、0 B 、1 C 、2 D 、3 9、目标函数y x z +=2,变量y x ,满足?? ? ??≥<+≤+-125530 34x y x y x ,则有 ( ) A 、3,12min max ==z z B 、,12max =z z 无最小值 C 、z z ,3min =无最大值 D 、z 既无最大值,也无最小值 10、在R 上定义运算).1(:y x y x -=??若不等式1)()(<+?-a x a x 对任意实数x 成 立,则( ) A 、11<<-a B 、20<

相关文档
最新文档