第7讲 二次函数与特殊三角形(教师版)

第7讲 二次函数与特殊三角形(教师版)
第7讲 二次函数与特殊三角形(教师版)

知识导航经典例题

知识导航经典例题

周长最小时点的坐标.

,在抛物线的对称轴上是否存在点,使得为等腰三角的坐标.若不存在,请说明理由.

的最小值,

周长最小,此时点的坐标为.

的坐标.

于点,点从点出发,以每(秒),当(秒)为何值时,

二次函数与三角形综合

二次函数综合提升卷 【类型一】二次函数之面积最值 求与函数图像相关的三角形的面积: (1)结合方程组用待定系数法求函数的解析式; (2)根据坐标求出三角形面积; ①公式法:三角形一边与坐标轴平行或重合时可以直接根据三角形面积公式求解; ②割补法:公式法无法使用是,把三角形补成矩形或梯形或直角三角形,然后根据矩形或梯形或直角三角形的面积公式解决; ③等积转化法; ④铅锤法;利用S=铅垂高?水平宽÷2,可以避免求一些比较复杂的点的坐标; ⑤特殊情况下可以利用反比例函数的几何意义进行解答。 *遇到动点最值问题时,需要利用未知数将实际问题中的情形代数化,利用二次函数性质解答 1.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从 这些边角料上截取矩形(阴影部分)铁皮备用,当截取的矩形面积最大时,矩形两边长x,y应分别为() A.x=10,y=14 B.x=14,y=10 C.x=12 ,y=15 D.x=15 ,y=12 (第1题)(第2题) 2.如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4). (1)求过O、B、A三点的抛物线的解析式.

(2)在第一象限的抛物线上存在点M ,使以O 、A 、B 、M 为顶点的四边形面积最大,求点M 的坐标. (3)作直线x=m 交抛物线于点P ,交线段OB 于点Q ,当△PQB 为等腰三角形时,求m 的值. 3. 如图,在平面直角坐标系中,点A 的坐标为(m ,m ),点B 的坐标为(n ,﹣n ),抛物线 经过A 、O 、B 三点,连接OA 、OB 、AB ,线段AB 交y 轴于点C .已知实数m 、n (m <n )分别是方程x 2﹣2x ﹣3=0的两根. (1)求抛物线的解析式; (2)若点P 为线段OB 上的一个动点(不与点O 、B 重合),直线PC 与抛物线交于D 、E 两点 (点D 在y 轴右侧),连接OD 、BD . ①当△OPC 为等腰三角形时,求点P 的坐标; ②求△BOD 面积的最大值,并写出此时点D 的坐标. 【类型二】二次函数与全等三角形 在实际考试中会出现全等三角形点的存在性问题,解题的关键在于全等三角形对应边相等或对应角相等,利用某一个特殊角度角展开分类讨论,将所有的情形都讨论到位. 4. ★如图,在第一象限内作射线OC,与x 轴的夹角为?30,在射线OC 上取一点A,过点A 作AH ⊥ x 轴于点H.在抛物线2x y =)0(>x 上取点P,在y 轴上取点Q,使得以P,O,Q 为顶点的三角形与?AOH 全等,则符合条件的点A 的坐标是_____. 5. (1)求b 、c 的值; (2)过C 作CE x //轴交抛物线于点E,直线DE 交x 轴于点F,且F )0,4(,求抛物线的解析式; (3)在(2)条件下,抛物线上是否存在点M,使得?CDM ??CEA 若存在,求出点M 的坐标;若不存在,请说明理由. 6. 如图,抛物线)0(2≠+=a c ax y 与y 轴交于点A,与x 轴交于B,C 两点(点C 在x 轴正半轴上), ?ABC 为等腰直角三角形,且面积为4,现将抛物线沿BA 方向平移,平移后的抛物线过点C 时,与x 轴的另一点为E,其顶点为F,对称轴与x 轴的交点为H.

二次函数与等腰三角形

以二次函数与等腰三角形问题为背景的解答题 【学习目标】 这类问题主要是以一点(或以一条线段)为依托,动点和函数思想相结合以几何图形为背景,以动点为元素,构造动态型几何问题。解此类题目,应从相关图形的性质和数量关系分类讨 论来解决。此类问题较多地关注学生对图形性质的理解,用动态的观点去看待一般函数和图形结合的问题,具有较强的综合性. 【教学过程】解题思路:等腰三角形的存在性的解题方法:①几何法三步:先分类;再画图;后计算.② 代数法三步:先罗列三边;再分类列方程;后解方程、检验.再以二次函数与等腰三角形问题为背景的解答题中,这两种方法往往结合使用. 一、考点突破 12 例1、如图,已知抛物线y=﹣x2+bx+4 与x 轴相交于A、B两点,与y 轴相交于点C,若 4 已知 A 点的坐标为(﹣2,0). (1)求抛物线的解析式; 2)连接AC、BC,求线段BC 所在直线的解析式; P,使△ACP为等腰三角形?若存在,求出符合条件的(3)在抛物线的对称轴上是否存在 点P 点坐标;若不存在,请说明理

【例2】如图,在平面直角坐标系中,直线y=﹣2x+10与x 轴,y 轴相交于A,B 两点,点C 的坐标是(8,4),连接AC,BC. (1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状; (2)动点P从点O出发,沿OB以每秒 2 个单位长度的速度向点 B 运动;同时,动点Q 从点 B 出发,沿BC以每秒 1 个单位长度的速度向点C运动.规定其中一个动点到达端点时, 另一个动点也随之停止运动.设运动时间为t 秒,当t 为何值时,PA=QA? (3)在抛物线的对称轴上,是否存在点M ,使以A,B,M 为顶点的三角形是等腰三角形? 若存在,求出点M 的坐标;若不存在,请说明理由.

2019中考数学专题汇编全集 二次函数与特殊三角形判定

第24题 二次函数综合题 类型1 二次函数与特殊三角形判定 1. 已知二次函数y =ax 2+bx -3a (a >0)经过点A (-1,0)、C (0,3),与x 轴交于另一点B ,抛物线的顶点为D . (1)求此二次函数解析式; (2)连接DC 、BC 、DB ,求证:△BCD 是直角三角形; (3)在对称轴右侧的抛物线上是否存在点P ,使得△PDC 为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由. 第1题图 (1)解:∵二次函数y =ax 2+bx -3a 的图象经过点A (-1,0)、C (0, 3), ∴根据题意,得?????a -b -3a =0-3a =3 , 解得?????a =-1b =2 , ∴抛物线的解析式为y =-x 2+2x +3; (2)证明:由y =-x 2+2x +3=-(x -1)2+4得,点D 的坐标为(1,4),点B 的坐标为(3,0), 如解图,过点D 作DE ⊥x 轴于点E ,过点C 作CF ⊥DE 于点F , ∵D (1,4),B (3,0),C (0,3),

∴OC =OB =3,DE =4,BE =2,CF =DF =1, ∴CD 2=CF 2+DF 2=2,BC 2=OC 2+OB 2=18,BD 2=DE 2+BE 2=20, ∴CD 2+BC 2=BD 2, ∴△BCD 是直角三角形; 第1题解图 (3)解:存在. 抛物线y =-x 2+2x +3对称轴为直线x =1. i )如解图,若以CD 为底边,则P 1D =P 1C , 设点P 1的坐标为(x ,y ),根据勾股定理可得P 1C 2=x 2+(3-y )2,P 1D 2=(x -1)2+(4-y )2, ∴x 2+(3-y )2=(x -1)2+(4-y )2, 即y =4-x . 又∵P 1(x ,y )在抛物线y =-x 2+2x +3上, ∴4-x =-x 2+2x +3, 即x 2-3x +1=0, 解得x 1=3+52,x 2=3-52<1(舍去), ∴x =3+52,

二次函数与三角形综合题型

22.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P 是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C. (1)求抛物线的解析式; (2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由; (3)求△PAC为直角三角形时点P的坐标. 20.如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3). (1)求抛物线的解析式; (2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值; (3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由. 23.已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位 (h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0). (1)求抛物线C1的解析式的一般形式; (2)当m=2时,求h的值;

(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF ﹣tan∠ECP=. 22.解:(1)∵B(4,m)在直线y=x+2上, ∴m=4+2=6, ∴B(4,6), ∵A(,)、B(4,6)在抛物线y=ax2+bx+6上, ∴,解得, ∴抛物线的解析式为y=2x2﹣8x+6. (2)设动点P的坐标为(n,n+2),则C点的坐标为(n,2n2﹣8n+6), ∴PC=(n+2)﹣(2n2﹣8n+6), =﹣2n2+9n﹣4, =﹣2(n﹣)2+, ∵PC>0, ∴当n=时,线段PC最大且为.

二次函数综合(动点与三角形)问题方法与解析

二次函数综合(动点与三角形)问题 一、知识准备: 抛物线与直线形的结合表现形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊三角形,有以下常见的基本形式。 (1)抛物线上的点能否构成等腰三角形; (2)抛物线上的点能否构成直角三角形; (3)抛物线上的点能否构成相似三角形; 解决这类问题的基本思路:假设存在,数形结合,分类归纳,逐一考察。 二、例题精析 ㈠【抛物线上的点能否构成等腰三角形】 例一.(2013?地区)如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c 经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合). (1)求抛物线的解析式; (2)求△ABC的面积; (3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标. 分析:(1)根据直线解析式求出点A及点B的坐标,然后将点A及点B的坐标代入抛物线解析式,可得出b、c的值,求出抛物线解析式; (2)由(1)求得的抛物线解析式,可求出点C的坐标,继而求出AC的长度,代入三角形的面积公式即可计算; (3)根据点M在抛物线对称轴上,可设点M的坐标为(﹣1,m),分三种情况讨论, ①MA=BA,②MB=BA,③MB=MA,求出m的值后即可得出答案. 解:(1)∵直线y=3x﹣3分别交x轴、y轴于A、B两点, ∴可得A(1,0),B(0,﹣3), 把A、B两点的坐标分别代入y=x2+bx+c得:,

解得:. ∴抛物线解析式为:y=x2+2x﹣3. (2)令y=0得:0=x2+2x﹣3, 解得:x1=1,x2=﹣3, 则C点坐标为:(﹣3,0),AC=4, 故可得S△ABC=AC×OB=×4×3=6. (3)抛物线的对称轴为:x=﹣1,假设存在M(﹣1,m)满足题意: 讨论: ①当MA=AB时,, 解得:, ∴M1(﹣1,),M2(﹣1,﹣); ②当MB=BA时,, 解得:M3=0,M4=﹣6, ∴M3(﹣1,0),M4(﹣1,﹣6), ③当MB=MA时,, 解得:m=﹣1, ∴M5(﹣1,﹣1), 答:共存在五个点M1(﹣1,),M2(﹣1,﹣),M3(﹣1,0),M4(﹣1,﹣6),M5(﹣1,﹣1)使△ABM为等腰三角形. 点评:本题考查了二次函数的综合题,涉及了待定系数法求二次函数解析式、等腰三角形的性质及三角形的面积,难点在第三问,注意分类讨论,不要漏解. ㈡【抛物线上的点能否构成直角三角形】 例二.(2013)如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c 的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.

【精选】2020年中考考点讲练案第12讲 二次函数(教师版)

第12讲 二次函数 【考点导引】 1.理解二次函数的有关概念. 2.会用描点法画二次函数的图象,能从图象上认识二次函数的性质. 3.会运用配方法确定二次函数图象的顶点、开口方向和对称轴,并会求解二次函数的最值问题. 4.熟练掌握二次函数解析式的求法,并能用它解决有关的实际问题. 5.会用二次函数的图象求一元二次方程的近似解. 【难点突破】 1. 二次函数2 y ax bx c =++,配方为2 2424b ac b y a x a a -??=++ ??? ,顶点坐标是(2b a -,244ac b a -),对称轴是a =2b a - ,与y 轴交点坐标是(0,c ),与x 轴交点的横坐标是20ax bx c ++=的根,当a >0时,抛物线开口向上,在对称轴的左侧,y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a <0时,抛物线开口向下,在对称轴的左侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小. 2. 解答有关二次函数图象问题时,要抓住抛物线与x 轴、y 轴的交点、对称轴、顶点坐标、特殊点,解决此类题型常用的方法是从二次函数的图象性质出发,通常采用把已知点坐标代入解析式中找出a 、b 、c 关系,再结合对称轴x =a b 2- ,确定a 、b 之间等量关系,判断与x 轴交点情况则利用判别式b 2-4ac . 3. 抛物线的平移遵循“左加右减,上加下减”的原则,具体为: (1)上下平移:抛物线y =a (x -h )2+k 向上平移m (m >0)个单位,所得抛物线的解析式为y =a (x -h )2+k +m ;抛物线y =a (x -h )2+k 向下平移m (m >0)个单位,所得抛物线的解析式为y =a (x -h )2+k -m . (2)左右平移:抛物线y=a(x -h)2+k 向左平移n (n>0)个单位,所得抛物线的解析式为y=a(x -h+n)2+k ;抛物线y=a(x -h)2+k 向右平移n (n>0)个单位,所得的抛物线的解析式为y=a(x -h -n)2+k. 特别地,要注意其中的符号处理. 【解题策略】 1. (1)二次函数y =2ax bx c ++(≠0)的图象与其表达式中各项系数的符号有着十分密切的关系: ,, 的代数式 决定图象特征 说明 决定抛物线的开口方向 >0 开口向上 <0 开口向下 决定抛物线与y 轴交点 的位置,交点坐标为 >0 与y 轴交点在轴上方 =0 抛物线过原点

二次函数和三角形的存在性问题的解法

二次函数与三角形的存在性问题 一、预备知识 1、坐标系中或抛物线上有两个点为P( x1,y),Q(x2,y) x 1x 2 x 2 (1) 线段对称轴是直线 (2)AB 两点之间距离公式:PQ(x1x2 ) 2( y1 y2 )2 中点公式:已知两点P x 1 , y 1 x1 x 2 , y 1y2 ,Q x2 ,y 2,则线段 PQ的中点 M为22。 Q P G O 2 、两直线的解析式为y k 1 x b 1 与y k 2 x b2 如果这两天两直线互相垂直,则有k1k21 3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1L2 :y=k2x+b2 (1)当 k1=k2, b1≠b2,L1∥ L2 (2)当 k1≠ k2,,L1 与 L2 相交 (3)K1×k2= -1时,L1 与L2垂直 二、三角形的存在性问题探究: 三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形 (一)三角形的性质和判定: 1、等腰三角形 性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。 判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。2、直角三角形 性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。 判定:有一个角是直角的三角形是直角三角形。 3、等腰直角三角形 性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于 45°。判定: 具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形4、等边三 角形 性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。

判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是 60°的等腰三角形是等 边三角形。 总结:( 1)已知 A、B 两点,通过“两圆一线”可以找到所有满足条件的等腰三角形,要求 的点(不与 A、B 点重合)即在两圆上以及两圆的公共弦上 (2)已知 A、B 两点,通过“两线一圆” 可以找到所有满足条件的直角三角形,要求的点(不与A、B 点重合)即在圆上以及在两条与直径 AB垂直的直线上。 (二)关于等腰三角形找点(作点)和求点的不同, 1、等腰三角形找点(作点)方法:以已知边为边长,作等腰三角形,运用两园一线法,在图 上找出存在点的个数,只找不求。 2、等腰三角形求点方法:以已知边为边长,在抛物线或坐标轴或对称轴上找点,与已知点构 成等腰三角形,先设所求点的坐标,然后根据两点间的距离公式求出三点间的线段长度,然后分 顶点进行讨论, 如:已知两点 A、B,在抛物线上求一点 C,使得三角形 ABC 为等腰三角形 解法:这是求点法:先运用两点间的距离公式分别求出线段AB BC AC的长度, 第二步,作假设,(1)以点 A 为顶点的两条腰相等,即AB=AC(2)以点B为顶点的两条腰相等,即 BA=BC ( 3)以点 C为顶点的两条腰相等,即CA=CB 第三步,根据以上等量关系,求出所求点的坐标 第四步进行检验,这一步是非常重要的,因为求出的有些点是不符合要求的。 如:已知两点 A、 B,在抛物线上求一点C,使得三角形 ABC 为等腰三角形 解法:这是求点法:先运用两点间的距离公式分别求出线段AB BC AC的长度, 第二步,作假设,(1)以点 A 为顶点的两条腰相等,即 AB=AC (2)以点 B 为顶点的两条腰相等,即 BA=BC (3)以点 C 为顶点的两条腰相等,即CA=CB 第三步,根据以上等量关系,求出所求点的坐标 第四步,进行检验,这一步是非常重要的,因为求出的有些点是不符合要求的。 (三)关于直角三角形找点和求点的方法 1、直角三角形找点(作点)方法:以已知边为边长,作直角三角形,运用两线一园法,在图 上找出存在点的个数,只找不求。所谓的两线就是指以已知边为直角边,过已知边的两个端点分 别作垂线与抛物线或坐标轴或对称轴的交点,就是所求的点;一圆就是以已知边为直径,以已知 边的中点作圆,与抛物线或坐标轴或对称轴的交点即为所求的点。 2、具体方法 ( 1) k1 k21; (2)三角形全等(注意寻找特殊角,如 30°、 60°、 45°、 90 °) (3)三角形相似;经常利用一线三等角模型 (4)勾股定理; 当题目中出现了特殊角时,优先考虑全等法三、二 次函数的应用:

二次函数与相似三角形综合

第10讲:二次函数中因动点产生的相似三角形问题? 二次函数中因动点产生的相彳以三角形问题一般有三个解题途径: ①求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角比、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。 例题1:已知抛物线的顶点为A (2, 1),且经过原点O,与X轴的另一个交点为B. 1 2 y = --x~ +x (1)求抛物线的解析式:(用顶点式求得抛物线的解析式为 4 ) (2)连接OA、AB.如图2,在x轴下方的抛物线上是否存在点P,使得二OBP与二OAB 相似?若存在,求出P点的坐标:若不存在,说明理由。 解:如图2,由抛物线的对称性可知:AO=AB二AOB=CABO. 若二BOP与匚A0B相似,必须有二POB = OBOA =匚BPO 设0P交抛物线的对称轴于A?点,显然AX2-1) 1 y = --x 二直线OP的解析式为2 一一x =一一x? + 由2 4 得x 1 = 0, x 2 =6 -JP(6,~3) 过P 作PE二x 轴,在RtZBEP 中,BE=2,PE=3, 二PB=厢拜. 二PB=OB,HBOP* 二BPO、 ZOPB0与匚BAO不相似, 同理可说明在对称轴左边的抛物线上也不存在符合条件的P点. 所以在该 抛物线上不存在点R使得ZBOP与ZAOB相似.

例题2:如图所示,已知抛物线与兀轴交于A、B两点,与y轴交于点c. (1)求A、B、C三点的坐标. (2)过点A作APZCB交抛物线于点P,求四边形ACBP的面积. (3)在x轴上方的抛物线上是否存在一点过M作MG丄兀轴于点G, 使以A、M. G 三点为顶点的三角形与APCA相似.若存在,请求岀M点的坐标; 解:(1)令尸°,得?-1=0 解得“±1 令x=o,得〉‘=一1 二A(70)B(I,°)c(°,j) (2)匚OA=OB=OC= 1 □ ZBAC=厶ACO= ZBCO= 45 ZAPZCB, E Z PAB=45 过点P作PE丄x轴于E,则△ APE为等腰直角三角形 令OE=" > 贝iJPE=Q + l + 0 ::点p在抛物线上“+1=/_i 解得5=2,心=一1 (不合题意,舍去)二PE=3 1 1 1 「1 ———x2xl + —x2x3 = 4 二四边形ACBP的而积S = 2 A B?OC+ 2 A B?PE=2 2 (3).假设存在 二Z PAB= Z BAC =45 匚PA 丄AC ZMG丄 * 轴于点G, □ Z MGA= Z PAC = 90 在Rt 二AOC 中,OA=OC= 1 二AC=Q 在Rt 二PAE 中, AE=PE= 3 ZAP= 3^2 设M点的横坐标为m ,则M(加,m~ -1) □点M在y轴左侧时,贝0VT 图2

二次函数与相似三角形结合问题

琢玉教育个性化辅导讲义 教师学科上课时间年月日学生年级讲义序号 课题名称 教学目标1.会根据题目条件求解相关点的坐标和线段的长度; 2.掌握用待定系数法求解二次函数的解析式; 3.能根据题目中的条件,画出与题目相关的图形,继而帮助解题; 教学重点 难点1.体会利用几何定理和性质或者代数方法建立方程求解的方法; 2.会应用分类讨论的数学思想和动态数学思维解决相关问题。 课前检查上次作业完成情况:优□良□中□差□建议_______________________________ 教学容知识结构: 一.二次函数知识点梳理:下图中0 a≠二.特殊的二次函数:下图中0 a≠

3 4 y x =与BC边交于D点. (1)求D点的坐标; (2)若抛物线2 y ax bx =+经过A、D两点,求此抛物线的表达式; (3)设(2)中的抛物线的对称轴与直线OD交于点M,点P是对称轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求出符合条件的点P. 方法总结: 1.已知:如图,在平面直角坐标系xOy中,二次函数c bx x y+ + - =2 3 1 的图像经过点 A(-1,1)和点B(2,2),该函数图像的对称轴与直线OA、OB分别交于点C和点D.二次函数背景下相似三角形的解题方法和策略: 1.根据题意,先求解相关点的坐标和相关线段的长度; 2.待定系数法求解相关函数的解析式; 3.相似三角形中,注意寻找不变的量和相等的量(角和线段); 4.当三角形的三边不能用题目中的未知量表示时,注意利用相似三角形的转化求解; 5.根据题目条件,注意快速、正确画图,用好数形结合思想; 6.注意利用好二次函数的对称性; 7.利用几何定理和性质或者代数方法建立方程求解都是常用方法。

二次函数与方程(组)-教师版

二次函数与方程(组) 1.如图,已知抛物线223y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点.点P 在抛物线上且在x 轴上方,15PBC S =△,求P 点坐标. 【答案】解:作//PD y 轴交BC 延长线于D ,如图, 当0y =时,2230x x --=,解得11x =-,23x =,则(3,0)B , 当0x =时,2233y x x =--=-,则(0,3)C -, 设直线BC 的解析式为y kx b =+, 把(3,0)B ,(0,3)C -代入得30 3k b b +=??=-?, 解得1 3k b =??=-? , ∴直线BC 的解析式为3y x =-; 设2(,23)P x x x --,则(,3)D x x -, 2223(3)3PD x x x x x ∴=----=-, 21 3(3)2 PBC PBD PCD S S S x x ???=-=??-, ∴21 3(3)152 x x ??-=, 解得12x =-,25x =, P ∴点坐标为(2,5)-或(5,12).

2.已知抛物线223y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点,点P 在抛物线上,且在第四象限,若3PBC S =△,求P 点坐标. 【答案】易得()30B , ,()03C -,,直线BC :3y x =- 设()223P x x x --,,作PH x ⊥轴交BC 于D 则()223233PD x x x x x =----=-+ ∵() 21 3332 PBC S x x =??-+=△ ∴2320x x -+= ∴()14P -, 或()23-, 3.如图,抛物线257 266 y x x =-++与x 轴负半轴交于A 点,与y 轴交于B 点,点H 在抛物 线上,BH 交x 轴于M 点,若MBA BAM ∠=∠,求H 点的坐标. 【答案】令257 2066 x x -++=,可得257120x x --=,()()51210x x -+= ∴()10A -, ,()02B , 作MH AB ⊥于H

二次函数与等腰三角形综合

专题:二次函数与三角形综合 1.与等腰三角形综合 例1如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在 x轴上,点C在y轴上,且AC=BC. (1)求抛物线的对称轴; (2)写出A,B,C三点的坐标并求抛物线的解析式; (3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是 等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由. 例2在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=ax2+ax-2经过点B. (1)求点B的坐标; (2)求抛物线的解析式; (3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角 边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

2.与直角三角形综合 例3如图,已知直线 1 1 2 y x =+与y轴交于点A,与x轴交于点D,抛物线2 1 2 y x bx c =++与直线交于 A、E两点,与x轴交于 B、C两点,且B点坐标为(1,0). (1)求该抛物线的解析式; (2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标; (3)若点Q在抛物线上,且△CEQ为直角三角形,请直接写出Q的坐标; (4)在抛物线的对称轴上找一点M,使|AM-MC|的值最大,求出点M的坐标. 例4如图(1),在平面直角坐标系中,O为坐标原点,抛物线y=ax2+8ax+16a+6经过点B(0,4).(1)求抛物线的解析式; (2)设抛物线的顶点为D,过点D、B作直线交x轴于点A,点C在抛物线的对称轴上,且C点的纵坐标为-4,连接BC、AC.求证:△ABC是等腰直角三角形; (3)在(2)的条件下,将直线DB沿y轴向下平移,平移后的直线记为l,直线l 与x轴、y轴分别交于点A′、B′,是否存在直线l,使△A′B′C是直角三角形,若存在求出l的解析式,若不存在,请说明理由.

3讲义特殊的二次函数图像三(教师版)

复习引入: (一)在同一直角坐标系中画出二次函数y = x2与y = (X T)2+1与y = (x-1 )2+1的图像列表(取点原则:取原点及左右对称点) 描点、连线 分 (1)函数y(x 1)2+1与y(x-1 )2+1的图像与y =x2图像有哪些相同处及不同处 析: (2)产生这三个图像的差异的本质原因是什么平移 (3)这三个二次函数若与坐 总结:y =a(x m)2 k的图像性质(左加右减,上加下减)

a 的符号 开口方向 顶点坐标 对称轴 性质 a >0 向上 (-m,k) 直线 x = _m x > —m 时,y 随x 的增大而增大;x £ —m 时, y 随x 的增大而减小;x = -m 时,y 有最小值 k . a cO 向下 (-m, k) 直线 x = -m x > —m 时,y 随x 的增大而减小;x £ —m 时, y 随x 的增大而增大;x = -m 时,y 有最大值 k . 1 ?平移步骤: ⑴ 将抛物线解析式转化成顶点式y =a(x m)2 k ,确定其顶点坐标(-m,k); ⑵ 保持抛物线y 二ax 2的形状不变,将其顶点平移到(-m,k)处,具体平移方法如下: 2. 平移规律 在原有函数的基础上“ h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 例题分析 1. 填表 抛物线 开口方向 对称轴 顶点坐标 2 y = -(x -2) +4 下 直线X=2 (2,4) 1 2 厂尹3)2_5 上 直线X=-3 (-3,-5) 2,1 y = —3(x —2) + — 3 下 直线X=2 (2,1/3) —3、2 7 y = ——(x —一) 一 — 12 4 12 下 直线X=3/4 (3/4,-7/12) 向左平移1个单位,再向下平移 3个单位,得到的抛物线的表达式为 y=-5(x+1) 2-3 ___________ 3. 抛物线y =2x 2沿x 轴向 _______ 左 ___ 平移_2 ____ 单位,再沿y 轴向 _______ 下 _______ 移 ¥ y=a(x-h)2 y=ax 2+k ! 向右(h>0)【或左(h<0)】 平移KI 个单位 y=a(x-h)2+k 向上(k>0)【或向下(k<0)】平移|k|个单位 向上(k>0)【或下(k<0)】平移|k|个单位 向上(k>0)【或下(k<0)】 平移|k 个单位 向右(h>0)【或左(h<0)】 平移|k|个单位 向右(h>0)【或左 (h<0)】 平移kl 个单位

专题探讨-二次函数与等腰三角形的综合考察

二次函数背景下的等腰三角形 二次函数是历年中考的重难点,出题比较灵活多变,主要是二次函数和一些图形题结合的考查,此类问题多基于图形的运动上进行考察,所以对于学生的想象力以及分析和运算能力有着一定的要求,所以平时应该多进行训练。 第一问一般情况下是以求二次函数的解析式和顶点坐标居多。此类题比较简单,第一种情况题目直接给出二次函数所过点的坐标,带入解析式直接求出参数a 、b 、c 的值即可,第二种情况题目中会给一些几何条件,间接求出二次函数所过点的坐标即可。 第二问出题较灵活,反观近几年中考,主要会出以下几类:求锐角三角比、面积表示、用字母表示某线段的长。 第三问主要考察动点居多,主要是二次函数和相似三角形、等腰三角形、直角三角形、特殊四边形、圆的结合。 其实二次函数综合题型在平面直角坐标系的考察,实则就是点坐标的求解。也就是函数解析式和坐标轴、对称轴,以及函数解析式交点的求解。这块知识解法比较多变,主要分为代数分析法和几何分析法。主要应用了一个比较重要的数学思想即数形结合思想。接下来主要分析下二次函数和等腰三角形这块知识的求解。 等腰三角形与二次函数综合求解方法 第一、由于等腰三角形的特殊性,是每年中考必考的考点,做题时需要考虑等腰三角形的性质:腰相等,底角相等,三线合一等这些,然后分类讨论,一般地一个三角形为等腰三角形可以分为三种情况,可以以不同的顶点为分类依据。 第二、以腰相等列方程,利用二次函数可得的数据求出所设字母的值。这类题型主要设动点坐标,一般动点坐标在已知直线上或二次函数图像上,根据函数解析式设动点坐标,最好纵横坐标只设一个字母,这样学生解题思路更加清晰,再根据两点之间的距离或利用锐角的三角比列出方程,求出字母的值进而可以求出动点的坐标,并需要强调的是求出来的点的坐标的取舍。 例1:在直角坐标系中,把点(1,)A a -(a 为常数)向右平移4个单位得到点A ',经过点A 、A '的抛物线2y ax bx c =++与y 轴的交点C 的纵坐标为2。 (1)求这条抛物线的解析式; (2)设该抛物线的顶点为点P ,点B 的坐标为)1m ,(,且3

(名师整理)最新数学中考专题冲刺《二次函数动点成特殊三角形问题》压轴真题训练(含答案)

冲刺中考《二次函数动点成特殊三角形问题》压轴专题 1.如图,在平面直角坐标系中,二次函数y =- 1 3 x2+bx+c的图象与坐标轴交于A,B, C三点,其中点A的坐标为(-3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ. (1)填空:b=________,c=________; (2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由; (3)在x轴下方的二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由. 第1题图 解:(1)1 3 ,4; 【解法提示】∵二次函数y=-1 3 x2+bx+c与x轴交于A(-3,0),B(4,0), ∴ b c= b c= --+ ? ? ? -++ ?? 330 16 40 3 ,解得 b= c= ? ? ? ?? 1 3 4 , 1

(2)可能是,理由如下: ∵点P在AC上以每秒1个单位的速度运动, ∴AP=t, ∵点Q在OB上以每秒1个单位的速度运动,∴OQ=t, ∴AQ=t+3, ∵∠PAQ<90°,∠PQA<90°, ∴若要使△APQ是直角三角形,则∠APQ=90°, 在Rt△AOC中,OA=3,OC=4, ∴AC=5, 如解图①,设PQ与y轴交于点D, 第1题解图① ∵∠ODQ=∠CDP,∠DOQ=∠DPC=90°, 2

人教版初中数学第二十二章二次函数知识点汇总

第二十二章 二次函数 22.1 二次函数的图象和性质 22.1.1 二次函数 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数. 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 22.1.2 二次函数2 y ax =的图象和性质 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小. 例1.若抛物线y=ax 2经过P (1, ﹣2),则它也经过 ( ) A .(2,1) B .(﹣1,2) C .(1,2) D .(﹣1,﹣2) 【答案】 【解析】 试题解析:∵抛物线y=ax 2经过点P (1,-2), ∴x=-1时的函数值也是-2, 即它也经过点(-1,-2). 故选D . 考点:二次函数图象上点的坐标特征. 例2.若点(2,-1)在抛物线2 y ax =上,那么,当x=2时,y=_________

【解析】 试题分析:先把(2,-1)直接代入2 y ax =即可得到解析式,再把x=2代入即可. 由题意得14-=a ,41-=a ,则2 4 1x y -=, 当2=x 时,.144 1-=?-=y 考点:本题考查的是二次函数 点评:解答本题的关键是掌握二次函数图象上的点适合这个二次函数的关系式. 2. 2y ax c =+的性质: 上加下减. 例1.若抛物线 y=ax 2+c 经过点P (l ,-2),则它也经过 ( ) A .P 1(-1,-2 ) B .P 2(-l , 2 ) C .P 3( l , 2) D .P 4(2, 1) 【答案】A 【解析】 试题分析:因为抛物线y=ax 2+c 经过点P (l ,-2),且对称轴是y 轴,所以点P (l ,-2)的对称点是(-1,-2),所以P 1(-1,-2)在抛物线上,故选:A. 考点:抛物线的性质. 例2.已知函数y=ax+b 经过(1,3),(0,﹣2),则a ﹣b=( ) A .﹣1 B .﹣3 C .3 D .7 【答案】D . 【解析】 试题分析:∵函数y=ax+b 经过(1,3),(0,﹣2), ∴a b 3b 2+=??=-?,解得a 5b 2=??=-? . ∴a ﹣b=5+2=7.

二次函数与三角形

二次函数与三角形 抛物线与三角形的结合是抛物线与平面几何结合生成综合性问题的一种重要形式,这类问题以抛物线为背景,探讨是否存在一些点,使其能构成某些特殊图形,有以下常见的形式:(1)抛物线上的点能否构成特殊的线段; (2)抛物线上的点能否构成特殊的角; (3)抛物线上的点能否构成特殊三角形; (4)抛物线上的点能否构成全等三角形、相似三角形; 这类问题把抛物线性质和平面图形性质有机结合,需综合运用待定系数法、数形结合、分类讨论等思想方法。 1、如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D. (1)求抛物线的解析式; (2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标; (3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t 为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值.

2、如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A在x轴的正半轴上,顶点C在y的正半轴上,点B的坐标是(5,3),抛物线y=x2+bx+c经过A、C两点,与x轴的另一个交点是点D,连接 BD. (1)求抛物线的解析式; (2)点M是抛物线对称轴上的一点,以M、B、D为顶点的三角形的面积是6,求点M的坐标; (3)点P从点D出发,以每秒1个单位长度的速度沿D→B匀速运动,同时点Q从点B出发,以每秒1个单位长度的速度沿B→A→D匀速运动,当点P到达点B时,P、Q同时停止运动,设运动的时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是等腰三角形?请直接写出所有符合条件的值. 3、已知函数2 3 2 2 y kx x =-+(k是常数)

九年级上尖子班第1讲 二次函数与特殊三角形(word版)

中考培优课程 1 二次函数与特殊三角形 知识目标 模块一 二次函数与等腰直角三角形 知识导航 如图,△ABC 中,AB =AC ,∠BAC =90°,可构造如图所示的三垂直全等模型“△ACD ≌△BAE ”,从而可以转化为水平线段长度与点坐标的基本计算. 若已知等腰直角三角形三个顶点坐标中的两个便可通过此方法求第三顶点坐标. 一般情况下,已知直角顶点坐标计算量会小很多. 在上述结论的基础上,加上二次函数的背景思路依然不变. 题型一 从45度到等腰直角三角形 知识导航 二次函数中经常会出现45度的条件,其中有一种常见思路就是把45度放入直角三角形中就变成了等腰直角三角形,再利用三垂直的算法就可以达到解题的效果. 例1 如图,抛物线y =ax 2+bx -4a 经过A (-1,0)、C (0,4)两点,与x 轴交于另一点B .点D (3,4)在第一象限的抛物线上,点P 为抛物线上一点,且∠DBP =45°,求点P 的坐标.

练习 如图,抛物线y=x2-4x+3与x轴交于A、B两点,与y轴交于点C,连接AC,将直线AC向右平移交抛物线于点P,交x轴于Q点,且∠CPQ=135°,求直线PQ的解析式. 例2 如图,抛物线y=-x2+2x+3与x轴交于A、B两点,交y轴正半轴于点C,D为抛物线的顶点,在抛物线上有一动点P,使得∠PCB=∠CBD,求点P的坐标.

练习 如图,抛物线y=x2-4x+3与x轴交于A、B两点,与y轴交于点C,连接AC,在抛物线上有一动点P,使得∠PCB=∠ACO,求点P的坐标. 题型二等腰直角三角形分类讨论 例3 如图,抛物线y=ax2-2ax-3a(a≠0)交x轴于A、B两点(A在y轴左侧),交y轴正半轴于点C,且OC=3OA. (1)求此抛物线的解折式; (2)设点P的坐标为(t,1),将线段AP绕点P逆时针旋转90°得线段P A1,若A1在抛物线上,求点P 的坐标; 练习 若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=-2x2+4x+2与抛物线C2:y=-x2+mx+n为“友好抛物线”. (1)求抛物线C2的解析式. (2)设抛物线C2的顶点为C.点B的坐标为(-1,4),问在C2的对称轴上是否存在点M,使线段MB 绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在,求出点M的坐标;若不存在,说明理由.

二次函数和三角形面积的综合

二次函数与三角形面积的综合 寻找类 1、重点:中考压轴题的重点在于寻找分析问题,解决问题的思路和方法。能应对这部分题 的关键需要熟练几部分知识点:(1)二次函数与一次函数,反比例函数的解析式(2)勾股定理(3)四边形(4)相似三角形和三角形全等(5)锐角三角函数(6)轴对称和中心对称(7)求交点的方法(8)知识的综合运用 2、难点:寻找联系是这部分内容的一个关键所在,也是一个难点。尤其是遇到二次函数与 三角形面积的综合题的解题思路。运用面积求坐标等等的合理运用,以及运用的重要因素在哪里? 3、易错点:面积中涉及求面积的方法,坐标漏找或错找,坐标与线段长度之间的联系,坐 标在不在二次函数的图像上。这些都是在考试中容易失分的地方。 4、切入点:例如:根据已有条件求坐标,首先要想到平面直角坐标系与锐角三角函数的联 系,尤其是正切的运用。这样直观的可以求出坐标(前提必须建立直角三角形),如果不是直角三角形可以想法构建直角三角形,这是求坐标的最好方法,此方法不通的情况下可以运用勾股定理进行求解,很少运用相似求。掌握了求解方法再做题的时候就知道如何下手了。而次部分求面积的时候要先找到点的坐标的具体位置以及如何通过面积求坐标。 5.求面积常用的方法 a.直接法b。简单的组合c。面积不变同底等高或等底等高的转换 d.相似 e.三角函数f。找面积的最大最小值利用二次函数的性质 (1)直接法若题已经给出或能由已知条件推出个边的长度并且通过坐标能找到对应的

的高,那么三角形的面积能直接用公式算出来。 此题中的三角形的面积就能直接求出。 (2)通过简单的重新组合就能求出面积。 第6题 (2009年贵州安顺市)27、(本题满分12分) 如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)。

相关文档
最新文档