遗传密码子及偏爱性

遗传密码子及偏爱性
遗传密码子及偏爱性

查看下面这个网址:

https://www.360docs.net/doc/141930344.html,/mb/admin/upload/files/wjl/htm/chapter6_4.htm

(关于密码子的使用频率等等的东东,很全)

6.4遗传密码表

6.4.1密码子的特点

①每个密码子三联体(triplet)决定一种氨基酸

除Trp和Met只有1个密码子外,其它18种氨基酸均有1个以上的密码子,Phe、Tyr、His、Gln、Glu、Asn、Asp、Lys、Cys各有2个密码子;Ile有3个密码子;Val、Pro、Thr、Ala、Gly各有4个密码子;Leu、Arg、Ser各有6个密码子。

许多氨基酸的密码子的第1和第2个碱基相同,只有第3个碱基不同,在同一方框内。如有4个密码子的氨基酸。

有些方框内有两种氨基酸的密码子。它们的第1、2个碱基均相同,第3个嘌呤或嘧啶分别编码不同氨基酸。

在同义密码子中,有偏爱必有偏废。在不同物种中,偏废或罕用的密码子,也各不相同。克隆基因时应注意偏爱密码子。

密码子使用偏好性参数汇总

研究密码子偏好性常用的参数 1、相对同义密码子使用度(Relativ e Synonymous Codon Usage, RSCU ) 是指对于某一特定的密码子在编码对应氨基酸的同义密码子间的相对概率,它去除了氨基酸组成对密码子使用的影响。如果密码子的使用没有偏好性,该密码子的RSCU值等于1,当某一密码子的RSCU值大于1时,代表该密码子为使用相对较多的密码子,反之亦然。第i个氨基酸的第j个密码子的相对同义密码子使用度值的计算公式如下: 公式中, X ij是编码第i个氨基酸的第j个密码子的出现次数, n i是编码第i个氨基酸的同义密码子的数量( 值为1~6) 。研究中通常先利用高表达基因的RSCU值建立参考表格。 2、密码子适应指数(Codon Adaptation Index, CAI) 可以根据已知高表达基因的序列来估计未知基因密码子使用的偏好性程度。CAI的值在0~1之间, 如果越高则表明该基因的密码子使用偏好性越强。CAI 值一般用来预测种内基因的表达水平( 但目前的研究发现对于单细胞生物比较适用, 而在哺乳动物中并不能用来表示基因表达水平), 又可以用来预测外源基因的表达水平。 w ij(The relative adaptiveness of a codon): 密码子相对适应度 上式中RSCU imax、X imax分别指编码第i个氨基酸的使用频率最高的密码子的RSCU值和X值 L是指基因中所使用的密码子数。 3、密码子偏好参数(Codon Preference Parameter, CPP) CPP的变化范围为0 ~ 18, 越接近18表示密码子被非随机使用的程度越高。它对于基因编码区域总的碱基组成不敏感, 适于比较基因间或物种间密码子使用偏性的大小。 x ij是编码第i个氨基酸的第j个密码子的出现次数, n i是编码第i个氨基酸的同义密码子的数量( 值为2~6, n i= 1 的情况被排除) 4、有效密码子数(Effective Number of Codon, ENC) ENC值的范围在20~ 61之间, 越靠近20偏性越强。此值是描述密码子使用偏离随机选择的

遗传学课后习题答案

遗传学复习资料 第一章绪论 1、遗传学:是研究生物遗传和变异的科学 遗传:亲代与子代相似的现象就是遗传。如“种瓜得瓜、种豆得豆” 变异:亲代与子代、子代与子代之间,总是存在着不同程度的差异,这种现象就叫做变异。 2、遗传学研究就是以微生物、植物、动物以及人类为对象,研究他们的遗 传和变异。遗传是相对的、保守的,而变异是绝对的、发展的。没有遗传,不可能保持性状和物种的相对稳定性;没有变异,不会产生新的性状,也就不可能有物种的进化和新品种的选育。遗传、变异和选择是生物进化和新品种选育的三大因素。 3、1953年瓦特森和克里克通过X射线衍射分析的研究,提出DNA分子结构 模式理念,这是遗传学发展史上一个重大的转折点。 第二章遗传的细胞学基础 原核细胞:各种细菌、蓝藻等低等生物有原核细胞构成,统称为原核生物。 真核细胞:比原核细胞大,其结构和功能也比原核细胞复杂。真核细胞含有核物质和核结构,细胞核是遗传物质集聚的主要场所,对控制细胞发育和性状遗传起主导作用。另外真核细胞还含有线粒体、叶绿体、内质网等各种膜包被的细胞器。真核细胞都由细胞膜与外界隔离,细胞内有起支持作用的细胞骨架。 染色质:在细胞尚未进行分裂的核中,可以见到许多由于碱性染料而染色较深的、纤细的网状物,这就是染色质。 染色体:含有许多基因的自主复制核酸分子。细菌的全部基因包容在一个双股环形DNA构成的染色体内。真核生物染色体是与组蛋白结合在一起的线状DNA 双价体;整个基因组分散为一定数目的染色体,每个染色体都有特定的形态结构,染色体的数目是物种的一个特征。 染色单体:由染色体复制后并彼此靠在一起,由一个着丝点连接在一起的姐妹染色体。 着丝点:在细胞分裂时染色体被纺锤丝所附着的位置。一般每个染色体只有一个着丝点,少数物种中染色体有多个着丝点,着丝点在染色体的位置决定了染色体的形态。 细胞周期:包括细胞有丝分裂过程和两次分裂之间的间期。其中有丝分裂过程分为: (1)DNA合成前期(G1期);(2)DNA合成期(S期); (3)DNA合成后期(G2期);(4)有丝分裂期(M期)。 同源染色体:生物体中,形态和结构相同的一对染色体。 异源染色体:生物体中,形态和结构不相同的各对染色体互称为异源染色体。 无丝分裂:也称直接分裂,只是细胞核拉长,缢裂成两部分,接着细胞质也分裂,从而成为两个细胞,整个分裂过程看不到纺锤丝的出现。在细胞分裂的整个过程中,不象有丝分裂那样经过染色体有规律和准确的分裂。 有丝分裂:包含两个紧密相连的过程:核分裂和质分裂。即细胞分裂为二,各含有一个核。分裂过程包括四个时期:前期、中期、后期、末期。在分裂过程中经过染色体有规律的和准确的分裂,而且在分裂中有纺锤丝的出现,故称有丝分裂。

生命的密语——遗传密码子的破译 基因组学作业参考

?生命的密语? ——遗传密码子的破译 --------------------------------------------------------------------------------------------------- 姓名:学院:培养单位:学号: 姓名:学院:培养单位:学号: ----------------------------------------------------------------------------------------------------------------- 进入国科大已经一月有半,对于自己所在实验室的科研内容已经有了相对具体的了解,也适应了国科大相对紧张的课程进度。迎面而来的都是具体的专业知识和局限的研究内容,尽管我们都是抱着对生命科学的热情而来,还是在现实的科研环境中略感枯索。 为什么会这样呢?我觉得是由于对生命科学这个学科的了解太少。每个学科都有它自己的历史和文化,对于真正醉心科学魅力的人来说,这种文化渗透在他们的筋骨血脉之中,成为一个科研群体独有的性格传承,让科研人和科研事业两相吸引。就像爱因斯坦说过的,人知道的越多,越觉得自己的无知。从而对未知更渴望和敬畏。对于刚刚踏上科研道路的我们来说,正是“无所知”,造成了“无所求知”。 所以,这一次作业,给了我们一个机会,静下心来了解一段生命科学“咿咿学语”的岁月。我们如今已经熟稔于胸的遗传密码子,这门精密简练的语言,是如何普知于世的。 第一部分:前人栽树,后人乘凉——遗传密码子破译史 一、三联体密码子的提出及其性质——理论研究阶段(1953-1961): 事情要从沃森克里克这对分子生物学创始人开始讲起。 1953 年,克里克和沃森在《Nature》杂志上发表了文章《DNA 结构的遗传学意义》,引起了许多人DNA如何携带遗传信息的诸多猜想,这其中包括物理学家伽莫夫。 基于DNA双螺旋模型的基础,伽莫夫上提出一种设想,并于发表在1954年登上了《Nature》。他把双螺旋结构中由于氢键生成而形成的空穴用氨基酸填

分子生物学 课后习题 简答

1-6 说出分子生物学的主要研究内容。 1、DNA重组技术:它可用于定向改造某些生物基因组结构,也可用来进行基因研究。 2、基因表达调控研究: 3、生物大分子的结构功能研究----结构分子生物学; 4、基因组、功能基因组与生物信息学研究。 2-4 简述DNA的一、二、三级结构特征。 DNA一级结构:4种核苷酸的的连接及排列顺序,表示该DNA分子的化学结构。 DNA二级结构:指两条多核苷酸链反向平行盘绕所生成的双螺旋盘绕结构。 DNA三级结构:指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构。 2-5 原核生物DNA具有哪些不同于真核生物DNA的特征? 1、结构简练原核生物DNA分子的绝大部分是用来编码蛋白质,非编码序列极少,这与真核DNA的冗余现象不同。 2、存在转录单元原核生物DNA序列中功能相关的RNA和蛋白质基因,往往丛集在基因组的一个或几个特定部位,形成功能单位或转录单元,其转录产物为多顺反子mRNA(能作为多种多肽链翻译模板的mRNA),而真核生物转录产物为单顺反子mRNA(只编码一个蛋白质的mRNA)。 3、有重叠基因重叠基因,即同一段DNA携带了两种或两种以上不同蛋白质的编码信息。主要有3种情况① 一个基因完全在另一个基因里面 ② 部分重叠 ③ 两个基因只有一个碱基对是重叠的. 2-6 简述DNA双螺旋结构及其在现代分子生物学发展史中的意义。 DNA的双螺旋结构模型是Watson和Cricket于1953年提出的。其主要内容是: 1、两条反向平行的多核苷酸围绕同一中心轴相互缠绕;两条链都是右手螺旋。 3,5-磷酸二酯键连接,2、脱氧核糖和磷酸交替连接,排列在双螺旋外侧,彼此通过,, 构成DNA分子的基本骨架;碱基排列在双螺旋的内侧,碱基平面与纵轴垂直。 3、双螺旋的平均直径为2.0nm,相邻碱基平面之间垂直距离为0.34nm,每10个碱基对旋转一圈,碱基对之间的螺距为3.4nm。 4、在双螺旋的表面分别形成大沟和小沟。 5、两条链借助碱基之间的氢键和碱基堆积力牢固结合,维持DNA结构的稳定性。 该模型的建立对促进分子生物学及分子遗传学的发展具有划时代的意义。对DNA本身的复制机制、对遗传信息的存储方式和遗传信息的表达。对生物遗传稳定性和变异性等规律的阐明起了非常重要的作用。 2-8 简述原核生物DNA的复制特点。 1、原核生物双链DNA都是以半保留方式遗传的,DNA的复制在整个细胞周期都能进行; 2、只有一个复制起点; 3、在起点处解开形成复制叉,可以连续开始新的DNA复制,一个复制单元多个复制叉; 4、复制叉移动速度很快; 5、是半不连续的复制,需要多种酶和蛋白质的协同参与; 6、DNA聚合酶在组成和功能上与真核生物有很大的不同。 3-1 什么是编码链?什么是模板链? 编码链:DNA双链中与 mRNA 序列和方向相同的那条 DNA 链,又称为有意义链

遗传育种课后重点及答案

第二章基因突变及其机制 1.突变(Mutation):遗传物质核酸(DNA或病毒中的RNA)中的核苷酸序列突然发生了稳定的可遗传的变化。 2.突变型:由于突变体中DNA碱基序列的改变,所产生的新的等位基因及新的表现型称为突变型。 3.染色体畸变:染色体结构的改变,多数是染色体或染色单体遭到巨大损伤产生断裂,而断裂的数目、位置、断裂端连接方式等造成不同的突变。包括染色体缺失、重复、倒位和易位等。涉及到DNA分子上较大范围的变化,往往会涉及到多个基因。 4.基因突变;是指一个基因内部遗传结构或DNA序列的任何改变,包括一对或少数几对核苷酸的缺失、插入或置换,分为碱基置换(转换和颠换)和移码突变。 转换transition:DNA链中一个嘌呤(嘧啶)被另一个嘌呤(嘧啶)所置换。 颠换transversion:DNA链中一个嘌呤(嘧啶)被一个嘧啶(嘌呤)所置换。 5.错义突变missense mutation:由于突变后的密码子代表另一种氨基酸,从而造成个别碱基的改变导致多肽链上某个氨基酸为另一种氨基酸所取代。 6.同义突变:由于遗传密码的简并性,突变后的密码子编码的仍是同一种氨基酸。碱基序列发生改变而氨基酸序列未发生改变的隐蔽突变。 7.无义突变:突变后的密码子变成终止密码子,是一类是引起遗传性状改变的突变。8.移码突变frameshift mutation:在DNA序列中由于一对或少数几对核苷酸的插入或缺失,而使其后全部遗传密码的阅读框架发生移动,进而引起转录和转译错误的突变叫移码突变。一般只引起一个基因的表达出现错误。 9.条件致死突变型:在某一条件下具有致死效应,而在另一条件下没有致死效应的突变型。 如:温度敏感突变型。

密码子偏好性与异源蛋白表达

密码子偏性与异源蛋白表达 原文:Claes Gustafsson, et al. TRENDS in Biotechnology, 2004,22(7): 346-353. https://www.360docs.net/doc/141930344.html,/corp/images/MS102504CG.pdf 翻译:zhxm409511 在1977年,当Genetech的科学家和他们的科研合作伙伴首次利用细菌生产出人类蛋白(生长激素释放抑制因子)时[1],蛋白的异源表达在整个生物技术产业中发挥着关键的角色。那时,仅知道生长激素释放抑制因子的氨基酸序列,还不知如何从人的基因组中克隆该基因,因此,Genetech小组采用数条寡核苷酸合成了14个密码子长的生长激素释放抑制因子基因。Itakura和同事们设计这些寡核苷酸时遵循了三条标准[1]。首先,优先使用MS2噬菌体偏爱的密码子——尽管当时对大肠杆菌的基因组DNA序列还知之甚少,却已刚刚完成了MS2噬菌体的测序,并认为该噬菌体的序列能够代表大肠杆菌高表达基因所使用的密码子。其次,消除寡核苷酸不必要的分子内和分子间配对,因为这可能影响基因合成。第三,避免那些先是富含GC随后是富含AT的序列,当时认为这种序列可能会导致转录终止。结果,利用这条合成的基因首次制生产出来了具有功能活性的多肽。 25年后的今天,大多数基因克隆自cDNA文库或直接利用聚合酶链反应(PCR)从相应的基因组中扩增获得。要尽量避免从头合成基因,因为这样做需要消耗大量的财力和人力[2]。尽管基于PCR的克隆被广泛使用,但很多情况下它还是不及所描述的那样快捷和容易。它经常需要一些不易得到的模板(对于具有内含子的生物,需要cDNA模板),此外还需要进行PCR条件的优化,需要对PCR产物进行测序,如果PCR引入了任何的配对错误,还经常需要通过定点突变进行修复。然而,当扩增出的基因克隆入表达载体后,真正有趣的事情就发生了:经常是没有蛋白表达或表达水平很低。人们已经进行了大量的研究,以提高克隆基因的表达水平,包括优化宿主的生长条件,建立新的宿主系,改用新的宿主,和无细胞系统[3]。尽管这些方法都取得了一些进展,但它们都是围绕一个最根本问题进行的:一种生物所采用的编码蛋白的DNA序列经常不同于另外一种生物在编码该蛋白时所采用的DNA序列。 为什么不同的生物会偏爱不同的密码子? 遗传密码采用61组三连核苷酸(密码子)编码20种氨基酸,采用3个密码子终止翻译。因此每个氨基酸利用1个(Met和Trp)至6个(Arg,Leu,和Ser)同义密码子编码。这些密码子在核糖体中被互补的tRNAs阅读,而这些tRNAs已经事先携带了相应的氨基酸。密码子的兼并性使得同一蛋白可采用多种不同的核苷酸序列编码。对于两种不同的生物,或对于同一生物的高表达和低表达基因,有时甚至在同一个操纵子内部,对不同密码

遗传学复习题

1、医学遗传学是遗传学与医学相结合的一门边缘学科。是研究遗传病发生机制、传递方式、诊断、治疗、预后,尤其是预防方法的一门学科,为控制遗传病的发生和其在群体中的流行提供理论依据和手段,进而对改善人类健康素质作出贡献。 2、什么是遗传病?包括哪些类型? 答:遗传病是遗传物质改变所导致的疾病。类型有①单基因病;②多基因病;③染色体病;④体细胞遗传病,线粒体遗传病。 3、先天性疾病、遗传病和家族遗传病有何关系?遗传病,家族性疾病与先天性疾病的关系:有许多遗传病是先天性疾病,但并不是所有的先天性疾病都是遗传病;遗传病往往具有家族性疾病,但并不是所有家族性疾病都是遗传病,也许不是所有的遗传病都具有家族性.区别:遗传病是指遗传物质改变所引起的疾病,先天性疾病是指个体出生后即表现出来的疾病,家族性疾病指某些表现出家族聚集现象的疾病. 4、名词解释。 罗伯逊易位:两个近端着丝粒染色体在着丝粒部位或着丝粒附近部位发生断裂后,二者的长臂和短臂各形成一条新的染色体。 同义突变:为碱基被替换之后,产生了新的密码子,但新旧密码子是同义密码子,所编码的氨基酸种类保持不变,因此同义突变并不产生突变效应。 无义突变:无义突变是编码某一种氨基酸的三联体密码经碱基替换后,变成不编码任何氨基酸的终止密码UAA、UAG或UGA。 错义突变:错义突变是编码某种氨基酸的密码子经碱基替换以后,变成编码另一种氨基酸的密码子,从而使多肽链的氨基酸种类和序列发生改变。 移码突变:移码突变是由于基因组DNA链中插入或缺失1个或几个(非3或3的倍数)碱基对,从而使自插入或缺失的那一点以下的三联体密码的组合发生改变,进而使其编码的氨基酸种类和序列发生变化。 动态突变:动态突变为串联重复的三核苷酸序列随着世代的传递而拷贝数逐代累加的突变方式。 基因突变:是DNA分子中核苷酸序列发生改变,导致遗传密码编码信息改变,造成基因表达产物--蛋白质中的氨基酸发生变化,从而引起表型的改变。 点突变:指DNA链中一个或一对碱基发生的改变。 基因组印记:又称遗传印记或亲代印记,是指在人或?某些组织细胞中,决定某一表型的同一等位基因根据其是母方还是父方的来源不同而差异性表达。 Ph染色体(Philadelphia chromosome):在慢性粒细胞性白血病(CML)中发现了一条比G组染色体还小的异常染色体,称为Ph染色体。约95%的慢性粒细胞性白血病细胞携有Ph染色体,它可以作为CML的诊断依据。 肿瘤抑制基因(tumor suppressor gene,TSG):指正常细胞中抑制肿瘤发生的基因,也称抑癌基因或隐性癌基因,例如p53, p16等。 癌基因(oncogene)能够使细胞发生癌变的基因,例如src ,H-RAS等 表现度(expressivity) 表现度是基因在个体中的表现程度,或者说具有同一基因型的不同个体或同一个体的不同部位,由于各自遗传背景的不同,所表现的程度可有显著的差异。 基因的多效性(pleiotropy):基因的多效性是指一个基因可以决定或影响多个性状。 遗传异质性(genetic heterogeneity) :与基因多效性相反,遗传异质性是指一

分子生物学-天津农学院-期末试题含答案

1 基因:基因是核酸中贮存遗传信息的遗传单位,是控制性状的基本遗传单位。含有合成功能的蛋白质多肽链或RNA所必需的全部核苷酸序列。 2 基因组:染色体上全部基因。泛指一个有生命体、病毒或细胞器的全部遗传物质。 3 转录:以DNA为模板在RNA聚合酶的作用下合成信使RNA的过程。 4 反转录:以RNA为模板,在反转录酶催化下转录为双链DNA的过程。 5 翻译:指将mRNA链上的核苷酸从一个特定的起始位点开始,按每3个核苷酸代表一个氨基酸的原则,依次合成一条多肽链的过程。 6 剪接:指用不同的剪接方式从一个mRNA前体产生不同的mRNA剪接异构体的过程。 7 有意义链:即编码链,能够转录RNA的那条DNA链称为模板链,而与之互补的另一条DNA链称为编码链。 8 转座子:又称移位子,指存在于染色体DNA上可以移动的一段DNA序列。 9 冈崎片段:在DNA复制过程中,随后链上初合成的不连续的DNA片段 10 SD序列:原核生物起始密码子AUG上游7~12个核苷酸处的一段保守序列,与16S rRNA3′端反向互补,被认为在核糖体与mRNA的结合过程中起重要作用。 11 启动子:是一段位于结构基因5’端的上游的DNA序列,能活化RNA聚合酶,使之与模板DNA准确结合,并具有转录启始特异性。 12 C值:真核生物单倍体基因组所包含的DNA总量称为C值。 13 C值谬误:C值与生物结构或组成的复杂性不一致的现象。表现为:①生物体进化程度高低与大C值不成明显正相关②亲缘关系相近的生物C值相差较大③基因组中存在大量的不编码基因产物的DNA序列。 14 顺式作用元件:真核生物启动子和增强子是由若干DNA序列元件组成的,由于它们常与特定的功能基因连锁在一起,因此被称为顺式作用元件。 15 反式作用因子:反式作用因子是能直接或间接地识别或结合在各类顺式作用元件核心序列上,参与调控靶基因转录效率的蛋白质。 16 感受态细胞:用理化方法人工诱导细胞,使之处于易于吸收和容纳外源DNA分子的状态。 18 外显子与内含子:大多数真核基因都是由蛋白质编码序列和非蛋白质编码序列两部分组成,编码序列称为为外显子。非编码序列称为内含子。 19 诱导与阻遏:诱导是指一些基因在特殊的代谢化合物的作用下,由原来关闭的状态转变为工作状态,即在某些物质的诱导下使基因活化。阻遏:有些基因平时都是开启的,处在产生蛋白或酶的工作过程中,由于一些特殊代谢物或化合物的积累而将其关闭,阻遏了基因的表达。 20 增强子:增强子是指能使与它连锁的基因转录频率明显增加的DNA序列。 21 细菌转化:一种细菌菌株由于捕获了外源DNA而导致性状特征发生遗传改变的生命过程。 22 正调控与负调控:正调控是通过激活蛋白与启动子上游序列结合,以促进RNA聚合酶与启动子结合提高转录的效率。负调控是阻遏蛋白与操纵基因结合使RNA聚合酶不能与启动子结合,因而抑制转录。 23 克隆:在分子生物学上,人们把将外源DNA插入具有复制能力的载体DNA中,使之得以永久保存和复制这种过程称为克隆。 24 操纵子:是指启动基因、操纵基因和一系列紧密连锁的结构基因的总称。 25 GU-AG法则:GU表示供体衔接点的5’端,AG代表接纳体衔接点的3’端。这种保守序列模式称为GU-AG法则。 26 聚合酶链式反应:是利用DNA片段旁侧两个短的单链引物,在体外快速扩增特异DNA片段的技术。 27 弱化作用:弱化子是原核生物操纵子中能显著减弱甚至终止转录作用的一段核苷酸序列,弱化子利用原核微生物转录与翻译的偶联机制对转录进行调节即弱化作用。 28 葡萄糖效应:当葡萄糖和其它糖类一起作为细菌的碳源时葡萄糖总是优先被利用,葡萄糖的存在阻止了其它糖类的利用的现象。 29 可变剪接:剪接过程中选择性的保留或去除mRNA中的某些序列。 1、染色体具备哪些作为遗传物质的特征? ①分子结构相对稳定②能够自我复制,使亲子代之间保持连续性③能够指导蛋白质的合成,从而控制整个生命过程④能够产生可遗传的变异 2、原核生物启动子的结构特点。 结构典型,含有识别、结合和起始三个位点,序列保守①DNA序列在转录起始点的上游5’端区;②在上游10bp处为TATAA,又称为Pribnow盒或—10区;③在上游35bp处为TTGACA故称—35区 3、原核生物RNA转录的基本过程。 ①模板识别——RNA聚合酶与DNA启动子结合;②转录起始——结合处DNA解链形成转录泡,形成第一个核苷酸键;③转录延伸——RNA聚合酶释放σ因子,新生RNA 链不断延长;④转录终止——出现终止子,RNA聚合酶及新生RNA链解离释放。 1 / 3

第37章 遗传密码

37章遗传密码 一判断 1、若1个氨基酸有3个遗传密码,则这3个遗传密码的前两个核苷酸通常是相同的。 2、由于遗传密码的通用性,用原核生物表达真核生物基因不存在技术障碍。表达出的蛋白质通常都是有功能的。 3、tRNA 密码子以外的其他区域的碱基改变有可能会改变其氨基酸特性。 4、在一个基因内总是利用同样的密码子编码一个给定的氨基酸。 5、某真核生物的某基因含有4200bp,以此基因编码的肽链应具有1400bp个氨基酸残基。 6、遗传密码在各种生物和细胞器中都绝对通用。 7、摇摆碱基位于密码子的第三位和反密码子的第一位。 8、反密码子GAA只能辩认密码子UUC。 9、密码子和反密码子都是由A、G、C、U4种碱基构成. 10、在同一基因中,总是用同一个密码子编码一种氨基酸。 二单选 1、下列叙述不正确的是() A.共有20个不同的密码子代表遗传密码 B.色氨酸和甲硫氨酸都只有一个密码子 C.每个核苷酸三联体编码一个氨基酸 D.不同的密码子可能编码同一个氨基酸 E.密码子的第三位具有可变性 2、反密码子中哪个碱基对参与了密码子的简并性() A.第一个 B.第二个 C.第三个 D.第一个与第二个 E.第二个与第三个 3、密码子的简并性指的是() A.一些三联体密码可缺少一个嘌呤碱或嘧啶碱 B.各类生物使用同一套密码子 C.大多数氨基酸有一种以上的密码子 D.一些密码子适用于一种以上的氨基酸 E.以上都不是 4、一个mRNA的部分顺序和密码编号如下,用这一mRNA合成的肽链有多少个氨基酸残基……CAG CUC UAU CGG UAG AAU AGC …… A. 141个 B. 142个 C. 143个 D. 144个 E. 145个 5、一个N端为丙氨酸的20肽,其开放阅读框架至少应由多少个核苷酸残基组成 A. 60个 B.63个 C.66个 D.57个 E.69个 6、下列密码子中,终止密码子是() A、UUA B、UGA C、UGU D、UAU 7、下列密码子中,属于起始密码子的是() A、AUG B、AUU C、AUC D、GAG 8、下列有关密码子的叙述,错误的一项是() A、密码子阅读是有特定起始位点的 B、密码子阅读无间断性 C、密码子都具有简并性 D、密码子对生物界具有通用性 9、密码子变偶性叙述中,不恰当的一项是() A、密码子中的第三位碱基专一性较小,所以密码子的专一性完全由前两位决定 B、第三位碱基如果发生了突变如A G、C U,由于密码子的简并性与变 偶性特点,使之仍能翻译出正确的氨基酸来,从而使蛋白质的生物学功能不变

转录因子WRKY的同义密码子使用偏好性分析

拟南芥和水稻转录因子WRKY的同义密码子使用偏好性分析 生物科学2004级何瑞 指导老师刘汉梅讲师 摘要:本文首次对拟南芥和水稻WRKY基因家族的密码子用法进行了分析,发现两个物种WRKY基因的碱基组成明显不同,水稻的密码子在第一、二、三位GC含量都明显高于拟南芥,且第三位差异最大。不同物种的WRKY基因存在共同的进化趋势,即基因GC3s 逐步增大。对应性分析结果显示,拟南芥WRKY基因的密码子使用偏性受碱基组成等多种因素共同作用,水稻主要受碱基组成和基因表达水平两个因素的影响。最后确定了拟南芥和水稻WRKY基因家族的最优密码子,分别为11个和27个。研究结果为深入开展其进化、表达调控机制和提高该基因家族新成员预测的准确性等提供了重要的理论依据。 关键词:WRKY基因,密码字偏好性,GC含量,Enc Synonymous Codon Bias of WRKY Gene Family in Aribidopsis and Rice HE Rui Biological Science,Grade 2004 Directed by LIU Han-mei (instructor) Abstract: WRKY gene family were firstly analyzed on the codon bias in Arabidopsis and Rice. The components of nitrogenous bases in the two species are obviously different: the GC content at the fist, second and third position of Rice are significantly higher than those of Aribidopsis, that discrepancy at the third position is the most marked. Meanwhile, as WRKY gene family is evolving, G-ending and C-ending codons of both Aribidopsis and Rice are good for the genes evolution. According to Correspondence Analysis, the codon usage of WRKY gene in Aribidopsis is affected by many factors, such as the components of nitrogenous bases. But the components of nitrogenous bases and the gene expression level are two primary factors in Rice. The numbers of the optimal codon in Arabidopsis and Rice are 11 and 27. The results of the the research provide the accuracy of important theoretical basis of forecasts for its evolution, regulation of gene expression and adding the gene family members. Keywords: WRKY Gene,Codon bias,GC content,Enc 蛋白质中的氨基酸序列是由mRNA中核苷酸序列决定的。mRNA上连续相邻的核苷酸以3个为一体,即三联体密码子,进行翻译时,识别与其对应的tRNA,正确的译出遗

遗传复习资料

一、名词解释 1、遗传:生物在以有性或无性生殖方式进行的种族繁衍过程中,子代与亲代的特征相似的现象。 2、核酸:是一种以核苷酸为基本结构单元组成的高分子化合物,是所有原核生物和真核生物的遗传物质,含有可以传递的遗传物质。 3、基因:是有功能的DNA片段,含有合成有功能的蛋白质多肽链或RNA所必需的全部核苷酸序列,是遗传的结构和功能单位。 4、基因组:一个物种单倍体染色体所携带的一整套基因称为该物种的基因组。 5、近交:亲缘关系相近个体间杂交,亦称近亲交配。 6、开放阅读框:结构基因中从气势密码子开始到终止密码子的这一段核苷酸区域,期间不存在任何终止密码,可编码完整的多肽链,这一区域被称为开放阅读框。 7、复制:以亲代DNA分子为模板合成新的与亲代模板结构相同的子代DNA分子的过程。 8、转录:是以DNA中的一条单链为模板,4种核糖核苷酸为原料,在依赖于DNA 的RNA聚合酶催化下合成RNA链的过程。 9、翻译:由核苷酸序列转换为蛋白质的氨基酸序列的过程。 10、染色体:在细胞分裂中期,由染色质聚缩而成的棒状结构,是DNA的载体。 11、染色质:细胞分裂间期,核内对碱性染料着色均匀的网状、丝状的物质。核小体是染色质的基本单位。 12、真核细胞:细胞核具有明显的核被膜所包围的细胞。细胞质中存在膜相细胞器。 13、原核细胞:细胞内遗传物质没有膜包围的一大类细胞。不含膜相细胞器。 14、染色单体:二价体中的每条染色体含有两条染色单体,他们互称姐妹染色单体。 15、基因工程:又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。 16、联会:同源染色体彼此靠拢并精确配对的过程。 17、二价体:一对同源染色体通过联会形成的复合结构。 18、核型分析:指把受检个体的核型与同种生物的正常核型或核型模式图进行比较,鉴别染色体数目和形态特征变异的一种方法。 19、有丝分裂:DNA复制一次,分裂一次,没有联会,姐妹染色单体没有交换,子细胞中有成套遗传物质。 20、减数分裂:DNA复制一次,分裂两次,有联会,并且姐妹染色单体发生交换,子细胞中只有体细胞的一半遗传物质。

遗传密码

遗传密码 遗传密码- 概述 遗传密码 遗传密码又称密码子、遗传密码子、三联体密码。指信使RNA(mRNA)分子上从5'端到3'端方向,由起始密码子AUG 开始,每三个核苷酸组成的三联体。它决定肽链上某一个氨基酸或蛋白质合成的起始、终止信号。 遗传密码决定蛋白质中氨基酸顺序的核苷酸顺序,由3个连续的核苷酸组成的密码子所构成。由于脱氧核糖核酸(DNA)双链中一般只有一条单链(称为有义链或编码链)被转录为信使核糖核酸(mRNA),而另一条单链(称为反义链)则不被转录,所以即使对于以双链DNA作为遗传物质的生物来讲,密码也用核糖核酸(RNA)中的核苷酸顺序而不用DNA中的脱氧核苷酸顺序表示。 遗传密码- 简介

人体遗传密码正在被逐步破译图册 在转移核糖核酸 (tRNA)分子中有一组与mRNA中的密码子配对的三联体,称为反密码子 。每种tRNA携带一种特定的氨基酸,在遗传密码的解读中起着关键性的作用。1961年英国分子生物学家F·H·C·克里克 等在大肠杆菌 噬菌体T4中用遗传学方法证明密码子由三个连续的核苷酸所组成。美国 生物化学家M·W·尼伦伯格 等从1961年开始用生物化学 方法进行解码研究。1964年尼伦伯格等人进行人工合成的三核苷酸和氨基酰-tRNA、核糖体三者的结合试验,证明三核苷酸已经具备信使的作用。通过种种实验,遗传密码已于1966年全部阐明。表中所列的64个密码子编码18种氨基酸和两种酰胺。至于胱氨酸、羟脯氨酸、羟赖氨酸等氨基酸则都是在肽链合成后再行加工而成的。64个密码子中还包括3个不编码任何氨基酸的终止密码子,它们是UAA、UAG、UGA。这种由3个连续的核苷酸组成的密码称为三联体密码。

竹节参转录组使用密码子偏好性分析

梁一娥?齐敏杰?丁延庆?等.竹节参转录组使用密码子偏好性分析[J].江苏农业科学?2019?47(2):59-63.doi:10.15889/j.issn.1002-1302.2019.02.013 竹节参转录组使用密码子偏好性分析 梁一娥1?齐敏杰1?丁延庆2?张一来2 (1.贵州师范大学生命科学学院?贵州贵阳550000?2.安顺学院农学院?贵州安顺561000) 一一摘要:竹节参是我国珍稀濒危中药材?研究其基因密码子使用模式?可为利用基因工程技术实现人参皂苷异源生物合成及竹节参分子育种改良提供理论依据?以竹节参转录组测序结果为数据来源?筛选编码蛋白基因序列(coding sequence?简称CDS)碱基数不小于300bp的11199条完整开放阅读框序列作为研究对象?利用Codon和SPSS软件分别统计竹节参基因密码子GC含量二密码子第3位的(C+G)含量(GC3)和密码子第1二第2位(G+C)含量的平均值(GC12)二同义密码子的相对使用度(RSCU)二有效密码子数(ENC)等密码子偏好性指标?通过中性绘图(GC12vs.GC3)二PR2绘图和ENC-GC3s绘图分析影响竹节参密码子使用模式的因素?结果表明?竹节参基因的平均GC二GC12和GC3s含量分别为44.67%二46.97%和39.80%?其密码子使用模式受到突变和选择等多重因素的影响?确定了31个竹节参最优密码子?除了UUG外?其余最优密码子均以A或T结尾?竹节参密码子使用模式与大肠杆菌和酿酒酵母相比差异较大?选取毕赤酵母作为竹节参基因的异源表达宿主更为合适?一一关键词:竹节参?转录组?密码子使用模式?最优密码子 一一中图分类号:Q755?S567.5+10.1一一文献标志码:A一一文章编号:1002-1302(2019)02-0059-05收稿日期:2017-08-27 基金项目:国家自然科学基金(编号:31660252)?贵州省优秀青年科技人才专项(编号:黔科合人字[2015]18号)?贵州省教育厅创新群体重大研究项目(编号:黔教合KY[2016]049号)? 作者简介:梁一娥(1994 )?女?贵州遵义人?硕士研究生?主要从事微生物学研究?E-mail:1013653671@qq.com? 通信作者:张一来?博士?教授?主要从事植物次生代谢调控研究?E-mail:975575681@qq.com? 一一遗传密码子是生物体DNA与蛋白质之间信息传递的基本单位?具有简并性?即同一氨基酸有多个对应的密码子?编码同一种氨基酸的密码子叫作同义密码子?同义密码子在同一物种不同基因间或不同物种内的使用频率大有不同?这种不均衡使用模式称为密码子使用偏好性?通常把使用频率较高的一种或几种同义密码子称为最优密码子[1-2]?研究显示?不同物种之间基因密码子偏好性是由突变压力(如GC含量二基因碱基组成)和自然选择作用(如翻译起始信号二基因表达水平二蛋白结构与长度二tRNA丰度等)引起的?mRNA的二级结构及其稳定性二翻译的速度和准确度二蛋白质折叠等因素也与密码子的偏好性有关[3-4]?对物种密码子偏好性开展研究?有助于理解物种进化发展及密码子使用偏好性的调控机制?密码子偏好性在基因异源表达研究方面也显示了重要作用?基因的表达量越大?其密码子偏好性越强[5]?根据这一原理?替换基因低表达密码子可以提高外源基因表达量?同时根据密码子使用偏好性可以选择更为合适的宿主表达系统?有报道表明?可通过优化密码子的方式来提高外源基因在宿主细胞中的表达量[6-7]?周宗梁等通过优化密码子的方法提高了苏云金芽孢杆菌基因cry1Ah在玉米和水稻中的表达量 [8-9] ?杨金玲等通过优化蝎毒镇痛活性肽基因BmKAngM1? 将其导入毕赤酵母后该基因表达量得到显著提高[10] ?通过使 用最优密码子?在草菇 [11] 二拟南芥 [12] 二川母贝 [13] 二菠萝 [14] 等 生物中均得到了很好的研究成果? 竹节参(PanaxjaponicusC.A.Mey)为多年生草本植物?属于五加科(Paeoniaceae)人参属?是我国珍稀濒危的 七类中草药 之一?具有抗炎二延缓衰老二降血糖等药理作用?有着极高的药用和保健价值?竹节参中富含活性物质三萜皂苷?也是其特征性成分?目前在竹节参种质资源[15-16]二毛状根的培养[17]二基因工程代谢的调控[18]二生药学鉴定[19]二精油成分分析[20]和三萜皂苷代谢追踪[21]等几个研究领域已经开展了许多研究工作?但直接从竹节参中通过分离提取的方法获得三萜皂苷对资源消耗极大?技术难度较高?若利用生物合成的方法则可以很好地解决这一困难?实现有效成分的生物合成?选择适合关键酶基因高效表达的异源表达系统是一个重要步骤?本研究以竹节参转录组数据为材料?通过分析竹节参基因密码子组成的各项指标?研究竹节参表达基因密码子使用偏好性及其影响因素?以期为竹节参相关基因表达系统的选择及分子育种提供理论基础?1 材料与方法1.1一数据来源 竹节参转录组数据来源于文献[22]?通过Perl语言程序 对竹节参转录组数据进行过滤筛选?筛选出碱基数?300bp的蛋白质编码序列共11199条?作为密码子分析的数据来源?本研究中使用到的大肠杆菌(Escherichiacoli)二酿酒酵母(Saccharomycescerevisiae)和毕赤酵母(Pichiapastoris)的密码子偏好性数据来自CodonUsagedatabase(http://www.kazusa.or.jp/codon/)? 1.2一竹节参基因GC含量分析及中性绘图利用CodonW1.4.2(http://codonw.sourceforge.net/)统 计分析竹节参基因密码子的碱基组成规律?测得鸟嘌呤和胞嘧啶总体含量G+C二密码子第3位碱基组成(A3二G3二C3二 95 江苏农业科学一2019年第47卷第2期

遗传密码特点例析11.19

遗传密码特点例析 遗传密码又称密码子、三联体密码。是指信使RNA(mRNA)分子上从5'端到3'端方向,由起始密码子AUG开始,每三个核苷酸组成的三联体。它决定肽链上某一个氨基酸或蛋白质合成的起始、终止信号。1967年科学家破译了全部密码子并绘制了密码子表。下面结合实例对遗传密码子的特点进行解读,以便对遗传密码表的信息有较全面地把握。 1 三联体密码 例1.细胞内编码20种氨基酸的密码子总数为:() A.4 B.64 C.20 D.61 解析:蛋白质由20种基本氨基酸组成,而mRNA只含有4种核苷酸,由4种核苷酸构成的序列是如何决定多肽链中多至20种氨基酸的序列的呢?显然,在核苷酸和氨基酸之间不能采取简单的一对一的对应关系。2个核苷酸决定一个氨基酸也只能编码16种氨基酸,如果用3个核苷酸决定一个氨基酸,43=64,就足以编码20种氨基酸了,这说明可能需要3个或更多个核苷酸编码一个氨基酸。1961年Francis Crick及其同事的遗传实验进一步肯定3个碱基编码一个氨基酸,此三联体碱基即称为密码子。在64个密码子中,有3个密码子不编码任何氨基酸,从而成为肽链合成的终止信号,称为终止密码子或无义密码子,它们是UAA、UAG、UGA。其余的61个密码子均编码不同的氨基酸,其中AUG和GUG分别是甲硫氨酸和缬氨酸的密码子,同时二者又是肽链合成的起始信号,称为起始密码子。 答案:D 2 不间断性 例2.如果……CGUUUUCUUACGCCU……是某基因产生的 mRNA 中的一个片断 , 如果在序列中某一位置增添了一个碱基 , 则表达时可能发生 ( )。 ①肽链中的氨基酸序列全部改变②肽链提前中断③肽链延长④没有变化⑤不能表达出肽链 A.①②③④⑤ B.①②③④ C.①③⑤ D.②④⑤ 解析: mRNA的三联体密码是连续排列的,相邻密码之间无核苷酸间隔。翻译从起始码AUG开始,3个碱基代表1个氨基酸,从mRNA的5’→3’方向构成1个连续的阅读框,直至终止码。所以,若在某基因编码区的DNA序列或其mRNA中间插入或删除1~2个核苷酸,则其后的三联体组合方式都会改变,不能合成正常的蛋白质,这样的突变亦称移码突变,对微生物常有致死作用。 若增添一个碱基后,导致密码子编组改变,从添加一个碱基的那个密码子开始,一直到末尾都出现误读,相应的氨基酸序列也会从某个氨基酸开始发生全面的改变。这种情况就有可能发生①;若增添一个碱基后,使正常的密码子变成终止密码子,则肽链将提前中断。这

密码子数据库及密码子偏好性分析软件

密码子数据库及密码子偏好性分析软件 题记:转基因研究中经常要进行基因的异源表达,在翻译过程中,受体物种对外源基因密码子的翻译效率对表达有非常大的制约。因此,利用相应的生物信息学数据库及软件对目标序列进行受体物种的密码子偏好性分析将有助于完成对转基因效率的评价,适当选择合适的受体物种进行高效、可行的表达。 人物,阅读前,让我们感谢下列科学家,是他们为基因异源高效表达提供有价值参考。Yasukazu Nakamura博士: The First Laboratory for Plant Gene Research,Kazusa DNA Research Institute 开发Codon Usage Database(生物密码子表的利用情况统计)。 PrimerX:编写了Codon Usage Analyzer在线密码子统计表处理软件(/cgi-bin/codon.cgi),它使得对密码子的统计用图表的形式显示出来,更加的直观可读。 Morris Maduro博士:针对E. coli开发了E. coli Codon Usage Analyze 。目前的版本为2.1。Thomas Sch?dl:开发设计的以图形形式对异源基因表达的密码子使用分析软件 (Graphical codon usage analyser),用以帮助异源基因表达时对异源基因进行改造,以适应受体物种,避免由于翻译时密码子使用情况的限制使受体物种对外源基因表达产生负面影响。内容: 一:密码子使用统计数据库 Codon Usage Database(.jp/codon/ 是由植物基因研究第一实验室(The First Laboratory for Plant Gene Research)Kazusa DNA Research Institute的Yasukazu Nakamura博士开发的生物密码子表的利用情况统计。数据来源于GenBank 的DNA 序列数据库,是GenBank 的Codon Usage Tabulated 数据库在WWW模式下的扩展和整合。每个物种的密码子使用情况都可以通过WWW方式以网页的形式进行分析查询。 在该数据库中29,311个物种的不同形式的密码子使用情况被统计,包含1,756,171 个全长编码区序列。该数据库的数据来源于NCBI GenBank 的Flat File[December 19 2005]. 在数据库的编写过程中,GenBank中的pri (primate sequence entries), rod (rodent sequence entries), mam (other mammalian sequence entries), rt (other ertebrate sequence entries), in (inertebrate sequence entries), pln (plant sequence entries), bct (bacterial sequence entries), rl (iral sequence entries) and phg (phage sequence entries) 文件类型所代表的数据被采用,而EST,pat (patent sequence entries), rna (Structural RNA sequence entries), sts (STS: sequence tagged site sequence entries), syn (synthetic and chimeric sequence entries) and una (unanotated sequence entries)文件类型所代表的数据被舍弃。另外,编码区序列(complete sequenced protein coding genes)被采用,但测序数据中包含的不明确碱基所代表的密码子被排除。 数据库的使用方法: 该数据库可以对物种的拉丁名进行密码子使用情况的搜索,但数据库的搜索是不支持英文别名的。比如对于酵母密码子的搜索,要用其拉丁名Saccharomyces cereisiae,而“yeast”的搜索结果显示为零。另外,数据库对物种也进行了字母排序的统计,同样对酵母,进入S起始的“字典”里可以找到。对于线粒体、叶绿体的密码子使用情况,数据库同样给出了汇总整理。 二:密码子偏好性分析 对于密码子偏好性的分析,有Correspondence Analysis of Codon Usage软件分析程序(/)和graphical codon usage analyser在线分析软件(/faq.php?on=cut)。而对于E. coli,由于其作为发酵工程表达蛋白的最主要的手段,因此Morris Maduro博士针对E. coli开发了 E. coli Codon Usage Analyzer(.edu/~mmaduro/codonusage/usage.htm),目前的版本为2.1,它对于在

相关文档
最新文档