第三章2020氨的合成习题及答案

第三章2020氨的合成习题及答案
第三章2020氨的合成习题及答案

工程热力学课后作业答案(第三章)第五版

3-1 安静状态下的人对环境的散热量大约为400KJ/h,假设能容纳2000人的大礼堂的通风系统坏了:(1)在通风系统出现故障后的最初20min内礼堂中的空气内能增加多少?(2)把礼堂空气和所有的人考虑为一个系统,假设对外界没有传热,系统内能变化多少?如何解释空气温度的升高。 解:(1)热力系:礼堂中的空气。 闭口系统 根据闭口系统能量方程 Q+ = ? U W 因为没有作功故W=0;热量来源于人体散热;内能的增加等于人体散热。 ? Q=2.67×105kJ 2000? = 20 60 / 400 (1)热力系:礼堂中的空气和人。 闭口系统 根据闭口系统能量方程 ? = Q+ U W 因为没有作功故W=0;对整个礼堂的空气和人来说没有外来热量, 所以内能的增加为0。 空气温度的升高是人体的散热量由空气吸收,导致的空气内能增加。 3-5,有一闭口系统,从状态1经a变化到状态2,如图,又从状态2经b回到状态1;再从状态1经过c 变化到状态2。在这个过程中,热量和功的某些值已知,如表,试确定未知量。 解:闭口系统。 使用闭口系统能量方程 (1)对1-a-2和2-b-1组成一个闭口循环,有 ??=W δ Qδ

即10+(-7)=x1+(-4) x1=7 kJ (2)对1-c-2和2-b-1也组成一个闭口循环 x2+(-7)=2+(-4) x2=5 kJ (3)对过程2-b-1,根据W U Q +?= =---=-=?)4(7W Q U -3 kJ 3-6 一闭口系统经历了一个由四个过程组成的循环,试填充表中所缺数据。 解:同上题 3-7 解:热力系:1.5kg 质量气体 闭口系统,状态方程:b av p += )]85115.1()85225.1[(5.1---=?v p v p U =90kJ 由状态方程得 1000=a*0.2+b 200=a*1.2+b 解上两式得: a=-800 b=1160 则功量为 2.1 2.022 1 ]1160)800(21[5.15.1v v pdv W --==?=900kJ 过程中传热量 W U Q +?==990 kJ 3-8 容积由隔板分成两部分,左边盛有压力为600kPa ,温度为27℃的空气,右边为真空,容积为左边5倍。将隔板抽出后,空气迅速膨胀充满整个容器。试求容器内最终压力和温度。设膨胀是在绝热下进行的。 解:热力系:左边的空气 系统:整个容器为闭口系统 过程特征:绝热,自由膨胀 根据闭口系统能量方程 W U Q +?=

我国合成氨工业的现状及发展趋势

我国合成氨工业的现状及发展趋势 合成氨工业的现状及发展趋势 一、我国合成氨工业已走过了五十多年的路程,从小到大从弱到强,从3000吨/年——5000吨/年到45万吨/年,从碳铵到尿素。根据中国氮肥协会统计2019年合成氨产量5864.1万吨/年,位居世界第一,其中88%用来生产化肥;30万吨/年工厂有74家约占 49.4%,8万吨/年上以工厂有223家占82.4%,合成氨工业由3000吨/年发展到今天40万 吨/年(单系列),全国从1000个厂到今只有300个厂,然而总产量不但没有下降,反而 有所增加,尿素2019年出口355.95万吨,从而保证了粮食生产连年丰收。(据农业部门 反映一吨尿素可增产粮食几吨),我国粮食为什么连年丰收增产,一是靠国家支农、惠农、护农政策,二是靠优良品种,三是靠化肥支撑。因此对于我们这样一个有13.4亿人的大国,如果粮食生产不能稳定,那是不堪设想的。因此合成氨工业是国家发展的需要,也是 人民生活的需要。 二、我国合成氨工业发展趋势 由于我国人多地少,粮食需求量大,因此合成氨工业必须由小变大,向大型化、现代 化发展,过去小规模用块煤的技术已远远不能满足国民经济发展需要,发展趋势主要是: 1. 由小变大,扶大压小; 2. 由块煤变粉煤; 3. 由低压向中压、高压气化发展; 具体有以下几点: 1. 中压、高压造气 不管用水煤浆气化炉、干粉煤气化炉,还是块煤炉,流化床气化炉都要向中压、高压 发展,现在有的气化炉已做到8.7Map ,一般都在4.0Map 左右。 透平压缩这样可以省电3%左右。 2. 低压合成氨。 过去为了追求产量合成氨压力由低压向高压发展,现在从降低能耗的角度又能向低压,目前已成功运用15Map ,10Map 即正在试验中,这样可以做到电耗最低。 3. 高度净化,为了保证催化剂长周期运行气体净化已达到PPM 级,甚至PPb 级。 4. 消灭三废,最少做到达标排放,最终做到零排放。

工程热力学习题集答案

工程热力学习题集答案一、填空题 1.常规新 2.能量物质 3.强度量 4.54KPa 5.准平衡耗散 6.干饱和蒸汽过热蒸汽 7.高多 8.等于零 9.与外界热交换 10.7 2g R 11.一次二次12.热量 13.两 14.173KPa 15.系统和外界16.定温绝热可逆17.小大 18.小于零 19.不可逆因素 20.7 2g R 21、(压力)、(温度)、(体积)。 22、(单值)。 23、(系统内部及系统与外界之间各种不平衡的热力势差为零)。 24、(熵产)。 25、(两个可逆定温和两个可逆绝热) 26、(方向)、(限度)、(条件)。

31.孤立系; 32.开尔文(K); 33.-w s =h 2-h 1 或 -w t =h 2-h 1 34.小于 35. 2 2 1 t 0 t t C C > 36. ∑=ω ωn 1 i i i i i M /M / 37.热量 38.65.29% 39.环境 40.增压比 41.孤立 42热力学能、宏观动能、重力位能 43.650 44.c v (T 2-T 1) 45.c n ln 1 2T T 46.22.12 47.当地音速 48.环境温度 49.多级压缩、中间冷却 50.0与1 51.(物质) 52.(绝对压力)。 53.(q=(h 2-h 1)+(C 22 -C 12 )/2+g(Z 2-Z 1)+w S )。 54.(温度) 55. (0.657)kJ/kgK 。 56. (定熵线)

57.(逆向循环)。 58.(两个可逆定温过程和两个可逆绝热过程) 59.(预热阶段、汽化阶段、过热阶段)。 60.(增大) 二、单项选择题 1.C 2.D 3.D 4.A 5.C 6.B 7.A 8.A 9.C 10.B 11.A 12.B 13.B 14.B 15.D 16.B 17.A 18.B 19.B 20.C 21.C 22.C 23.A 三、判断题 1.√2.√3.?4.√5.?6.?7.?8.?9.?10.? 11.?12.?13.?14.√15.?16.?17.?18.√19.√20.√ 21.(×)22.(√)23.(×)24.(×)25.(√)26.(×)27.(√)28.(√) 29.(×)30.(√) 四、简答题 1.它们共同处都是在无限小势差作用下,非常缓慢地进行,由无限接近平衡 状态的状态组成的过程。 它们的区别在于准平衡过程不排斥摩擦能量损耗现象的存在,可逆过程不会产生任何能量的损耗。 一个可逆过程一定是一个准平衡过程,没有摩擦的准平衡过程就是可逆过程。 2.1kg气体:pv=R r T mkg气体:pV=mR r T 1kmol气体:pV m=RT nkmol气体:pV=nRT R r是气体常数与物性有关,R是摩尔气体常数与物性无关。 3.干饱和蒸汽:x=1,p=p s t=t s v=v″,h=h″s=s″

工程热力学思考题答案,第三章

第三章 理想气体的性质 1.怎样正确看待“理想气体”这个概念?在进行实际计算是如何决定是否可采用理想气体的一些公式? 答:理想气体:分子为不占体积的弹性质点,除碰撞外分子间无作用力。理想气体是实际气体在低压高温时的抽象,是一种实际并不存在的假想气体。 判断所使用气体是否为理想气体(1)依据气体所处的状态(如:气体的密度是否足够小)估计作为理想气体处理时可能引起的误差;(2)应考虑计算所要求的精度。若为理想气体则可使用理想气体的公式。 2.气体的摩尔体积是否因气体的种类而异?是否因所处状态不同而异?任何气体在任意状态下摩尔体积是否都是 0.022414m 3 /mol? 答:气体的摩尔体积在同温同压下的情况下不会因气体的种类而异;但因所处状态不同而变化。只有在标准状态下摩尔体积为 0.022414m 3 /mol 3.摩尔气体常数 R 值是否随气体的种类不同或状态不同而异? 答:摩尔气体常数不因气体的种类及状态的不同而变化。 4.如果某种工质的状态方程式为pv =R g T ,那么这种工质的比热容、热力学能、焓都仅仅是温度的函数吗? 答:一种气体满足理想气体状态方程则为理想气体,那么其比热容、热力学能、焓都仅仅是温度的函数。 5.对于一种确定的理想气体,()p v C C 是否等于定值?p v C C 是否为定

值?在不同温度下()p v C C -、p v C C 是否总是同一定值? 答:对于确定的理想气体在同一温度下()p v C C -为定值, p v C C 为定值。在不同温度下()p v C C -为定值,p v C C 不是定值。 6.麦耶公式p v g C C R -=是否适用于理想气体混合物?是否适用于实际 气体? 答:迈耶公式的推导用到理想气体方程,因此适用于理想气体混合物不适合实际气体。 7.气体有两个独立的参数,u(或 h)可以表示为 p 和 v 的函数,即(,)u u f p v =。但又曾得出结论,理想气体的热力学能、焓、熵只取决于温度,这两点是否矛盾?为什么? 答:不矛盾。实际气体有两个独立的参数。理想气体忽略了分子间的作用力,所以只取决于温度。 8.为什么工质的热力学能、焓、熵为零的基准可以任选?理想气体的热力学能或焓的参照状态通常选定哪个或哪些个状态参数值?对理想气体的熵又如何? 答:在工程热力学里需要的是过程中热力学能、焓、熵的变化量。热力学能、焓、熵都只是温度的单值函数,变化量的计算与基准的选取无关。热力学能或焓的参照状态通常取 0K 或 0℃时焓时为0,热力学能值为 0。熵的基准状态取p 0=101325Pa 、T 0=0K 熵值为 0 。 9.气体热力性质表中的h 、u 及s 0的基准是什么状态? 答:气体热力性质表中的h 、u 及s 0的基准是什么状态00(,)T P 00T K =

哈工大工程热力学习题答案——杨玉顺版

第二章 热力学第一定律 思 考 题 1. 热量和热力学能有什么区别?有什么联系? 答:热量和热力学能是有明显区别的两个概念:热量指的是热力系通过界面与外界进行的热能交换量,是与热力过程有关的过程量。热力系经历不同的过程与外界交换的热量是不同的;而热力学能指的是热力系内部大量微观粒子本身所具有的能量的总合,是与热力过程无关而与热力系所处的热力状态有关的状态量。简言之,热量是热能的传输量,热力学能是能量?的储存量。二者的联系可由热力学第一定律表达式 d d q u p v δ=+ 看出;热量的传输除了可能引起做功或者消耗功外还会引起热力学能的变化。 2. 如果将能量方程写为 d d q u p v δ=+ 或 d d q h v p δ=- 那么它们的适用范围如何? 答:二式均适用于任意工质组成的闭口系所进行的无摩擦的内部平衡过程。因为 u h pv =-,()du d h pv dh pdv vdp =-=-- 对闭口系将 du 代入第一式得 q dh pdv vdp pdv δ=--+ 即 q dh vdp δ=-。 3. 能量方程 δq u p v =+d d (变大) 与焓的微分式 ()d d d h u pv =+(变大) 很相像,为什么热量 q 不是状态参数,而焓 h 是状态参数? 答:尽管能量方程 q du pdv δ=+ 与焓的微分式 ()d d d h u pv =+(变大)似乎相象,但两者 的数学本质不同,前者不是全微分的形式,而后者是全微分的形式。是否状态参数的数学检验就是,看该参数的循环积分是否为零。对焓的微分式来说,其循环积分:()dh du d pv =+??? 因为 0du =?,()0d pv =? 所以 0dh =?, 因此焓是状态参数。 而 对 于 能 量 方 程 来 说 ,其循环积分:

工程热力学习题解答

1. 热量和热力学能有什么区别?有什么联系? 答:热量和热力学能是有明显区别的两个概念:热量指的是热力系通过界面与外界进行的热能交换量,是与热力过程有关的过程量。热力系经历不同的过程与外界交换的热量是不同的;而热力学能指的是热力系内部大量微观粒子本身所具有的能量的总合,是与热力过程无关而与热力系所处的热力状态有关的状态量。简言之,热量是热能的传输量,热力学能是能量?的储存量。二者的联系可由热力学第一定律表达式 d d q u p v δ=+ 看出;热量的传输除了可能引起做功或者消耗功外还会引起热力学能的变化。 2. 如果将能量方程写为 d d q u p v δ=+ 或 d d q h v p δ=- 那么它们的适用范围如何? 答:二式均适用于任意工质组成的闭口系所进行的无摩擦的内部平衡过程。因为 u h p v =-,()du d h pv dh pdv vdp =-=-- 对闭口系将 du 代入第一式得 q dh pdv vdp pdv δ=--+ 即 q dh vdp δ=-。 3. 能量方程 δq u p v =+d d (变大) 与焓的微分式 ()d d d h u pv =+(变大) 很相像,为什么热量 q 不是状态参数,而焓 h 是状态参数? 答:尽管能量方程 q du pdv δ=+ 与焓的微分式 ()d d d h u pv =+(变大)似乎相象,但两者的数学本 质不同,前者不是全微分的形式,而后者是全微分的形式。是否状态参数的数学检验就是,看该参数的循环积分是否为零。对焓的微分式来说,其循环积分:()dh du d pv =+??? 因为 0du =?,()0d pv =? 所以 0dh =?, 因此焓是状态参数。 而对于能量方程来说,其循环积分: q du pdv δ=+??? 虽然: 0du =? 但是: 0pdv ≠? 所以: 0q δ≠? 因此热量q 不是状态参数。 4. 用隔板将绝热刚性容器分成A 、B 两部分(图2-13),A 部分装有1 kg 气体,B 部分为高度真空。将隔板抽去后,气体热力学能是否会发生变化?能不能用 d d q u p v δ=+ 来分析这一过程?

最新工程热力学课后作业答案第五版

工程热力学课后作业答案第五版

2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3) MPa p 1.0=,500=t ℃时的摩尔容积Mv 。 解:(1)2N 的气体常数 28 8314 0= = M R R =296.9)/(K kg J ? (2)标准状态下2N 的比容和密度 101325 2739.296?== p RT v =0.8kg m /3 v 1= ρ=1.253/m kg (3) MPa p 1.0=,500=t ℃时的摩尔容积Mv Mv = p T R 0=64.27kmol m /3 2-3.把CO 2压送到容积3m 3的储气罐里,起始表压力 301=g p kPa ,终了表压力3.02=g p Mpa ,温 度由t1=45℃增加到t2=70℃。试求被压入的CO 2的质量。当地大气压B =101.325 kPa 。 解:热力系:储气罐。 应用理想气体状态方程。 压送前储气罐中CO 2的质量 1 1 11RT v p m = 压送后储气罐中CO 2的质量 2 2 22RT v p m = 根据题意 容积体积不变;R =188.9 B p p g +=11 (1) B p p g +=22 (2) 27311+=t T (3) 27322+=t T (4) 压入的CO 2的质量

)1 122(21T p T p R v m m m -= -= (5) 将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg 2-5当外界为标准状态时,一鼓风机每小时可送300 m 3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m 3,问鼓风机送风量的质量改变多少? 解:同上题 1000)273 325.1013003.99(287300)1122(21?-=-= -=T p T p R v m m m =41.97kg 2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m 3,充入容积8.5 m 3的储气罐内。设开始时罐内的温度和压力与外界相同,问在多长时间内空气压缩机才能将气罐的表压力提高到0.7MPa ?设充气过程中气罐内温度不变。 解:热力系:储气罐。 使用理想气体状态方程。 第一种解法: 首先求终态时需要充入的空气质量 288 2875 .810722225???==RT v p m kg 压缩机每分钟充入空气量 288 28731015???==RT pv m kg 所需时间 == m m t 2 19.83min 第二种解法 将空气充入储气罐中,实际上就是等温情况下把初压为0.1MPa 一定量的空气压缩为0.7MPa 的空气;或者说0.7MPa 、8.5 m 3的空气在0.1MPa 下占体积为多少的问题。 根据等温状态方程 const pv = 0.7MPa 、8.5 m 3的空气在0.1MPa 下占体积为 5.591 .05 .87.01221=?== P V p V m 3 压缩机每分钟可以压缩0.1MPa 的空气3 m 3,则要压缩59.5 m 3的空气需要的时间 == 3 5 .59τ19.83min 2-8 在一直径为400mm 的活塞上置有质量为3000kg 的物体,气缸中空气的温度为18℃,质量为2.12kg 。加热后其容积增大为原来的两倍。大气压力B =101kPa ,问:(1)气缸中空气的终温是多少?(2)终态的比容是多少?(3)初态和终态的密度各是多少?

工程热力学经典例题-第三章_secret

3.5 典型例题 例题3-1 某电厂有三台锅炉合用一个烟囱,每台锅炉每秒产生烟气733 m (已折算成标准状态下的体积),烟囱出口出的烟气温度为100C ?,压力近似为101.33kPa ,烟气流速为30m/s 。求烟囱的出口直径。 解 三台锅炉产生的标准状态下的烟气总体积流量为 烟气可作为理想气体处理,根据不同状态下,烟囱内的烟气质量应相等,得出 因p =0p ,所以 烟囱出口截面积 32V 299.2m /s 9.97m q A = == 烟囱出口直径 3.56m 讨论 在实际工作中,常遇到“标准体积”与“实际体积”之间的换算,本例就涉及到此问题。又例如:在标准状态下,某蒸汽锅炉燃煤需要的空气量3V 66000m /h q =。若鼓风机送入的热空气温度为1250C t =?,表压力为g120.0kPa p =。当时当地的大气压里为b 101.325kPa p =,求实际的送风量为多少? 解 按理想气体状态方程,同理同法可得 而 1g1b 20.0kPa 101.325kPa 121.325kPa p p p =+=+= 故 33V1101.325kPa (273.15250)K 66000m 105569m /h 121.325kPa 273.15kPa q ?+=?=? 例题3-2 对如图3-9所示的一刚性容器抽真空。容器的体积为30.3m ,原先容 器中的空气为0.1MPa ,真空泵的容积抽气速率恒定为30.014m /min ,在抽气工程中容器内温度保持不变。试求: (1) 欲使容器内压力下降到0.035MPa 时,所需要的抽气时间。 (2) 抽气过程中容器与环境的传热量。 解 (1)由质量守恒得 即 所以 V d d q m m V τ-= (3) 一般开口系能量方程 由质量守恒得 out d d m m =- 又因为排出气体的比焓就是此刻系统内工质的比焓,即out h h =。利用理想气体热力性质得

工程热力学思考题答案,第三章

理想气体的性质 1.怎样正确看待理想气体”这个概念?在进行实际计算是如何决定是否可采用理想气体的一些公式? 答:理想气体:分子为不占体积的弹性质点,除碰撞外分子间无作用力。理想气体是实际气体在低压咼温时的抽象,是一种实际并不存在的假想气体。判断所使用气体是否为理想气体(1)依据气体所处的状态(如:气体的密度是否足够小)估计作为理想气体处理时可能引起的误差;(2)应考虑计算所要求的精度。若为理想气体则可使用理想气体的公式。 2.气体的摩尔体积是否因气体的种类而异?是否因所处状态不同而 异?任何气体在任意状态下摩尔体积是否都是0.022414m3/mol? 答:气体的摩尔体积在同温同压下的情况下不会因气体的种类而异; 但因所处状态不同而变化。只有在标准状态下摩尔体积为0.022414m 3/mol 3?摩尔气体常数R值是否随气体的种类不同或状态不同而异? 答:摩尔气体常数不因气体的种类及状态的不同而变化。 4?如果某种工质的状态方程式为pv二R g T,那么这种工质的比热容、热力学能、焓都仅仅是温度的函数吗? 答:一种气体满足理想气体状态方程则为理想气体,那么其比热容、热力学能、焓都仅仅是温度的函数。 C 5.对于一种确定的理想气体,(C p C v)是否等于定值?」是否为定 C v 值?在不同温度下(C P C v)、C P是否总是同一定值? C 答:对于确定的理想气体在同一温度下(C p C v)为定值,—p为定值。 C v C 在不同温度下(C p C v)为定值,—p不是定值。 C v 6.麦耶公式C p C v R g是否适用于理想气体混合物?是否适用于实际 气体?

工程热力学习题(第3章)解答

第3章 热力学第一定律 3.5空气在压气机中被压缩。压缩前空气的参数为p 1=1bar ,v 1=0.845m 3/kg ,压缩后的参数为p 2=9bar ,v 2=0.125m 3/kg ,设在压缩过程中1kg 空气的热力学能增加146.5kJ ,同时向外放出热量55kJ 。压缩机1min 产生压缩空气12kg 。求:①压缩过程中对1kg 空气做的功;②每生产1kg 压缩空气所需的功(技术功);③带动此压缩机所用电动机的功率。 解:①闭口系能量方程 q=?u+w 由已知条件:q=-55 kJ/kg ,?u=146.5 kJ/kg 得 w =q -?u=-55kJ-146.5kJ=-201.5 kJ/kg 即压缩过程中压气机对每公斤气体作功201.5 kJ ②压气机是开口热力系,生产1kg 空气需要的是技术功w t 。由开口系能量守恒式:q=?h+w t w t = q -?h =q-?u-?(pv)=q-?u-(p 2v 2-p 1v 1) =-55 kJ/kg-146.5 kJ/kg-(0.9×103kPa×0.125m 3/kg-0.1×103kPa×0.845m 3/kg) =-229.5kJ/kg 即每生产1公斤压缩空气所需要技术功为229.5kJ ③压气机每分钟生产压缩空气12kg ,0.2kg/s ,故带动压气机的电机功率为 N=q m·w t =0.2kg/s×229.5kJ/kg=45.9kW 3.7某气体通过一根内径为15.24cm 的管子流入动力设备。设备进口处气体的参数是:v 1=0.3369m 3/kg , h 1=2826kJ/kg ,c f1=3m/s ;出口处气体的参数是h 2=2326kJ/kg 。若不计气体进出口的宏观能差值和重力位能差值,忽略气体与设备的热交换,求气体向设备输出的功率。 解:设管子内径为d ,根据稳流稳态能量方程式,可得气体向设备输出的功率P 为: 2222f1121213(0.1524)()()(28262326)440.3369 c d P m h h h h v ×=?=?=?× =77.5571kW 。 3.9一个储气罐从压缩空气总管充气,总管内压缩空气参数恒定,压力为500kPa ,温度为25℃。充气开始时,罐内空气参数为50kPa ,10℃。求充气终了时罐内空气的温度。设充气过程是在绝热条件下进行的。 解:根据开口系统的能量方程,有: δQ =d(m·u )+(h out +c 2fout +gz out )δm out -(h in +c 2fin +gz in ) δm in +δW s 由于储气罐充气过程为绝热过程,没有气体和功的输出,且忽略宏观能差值和重力位能差值,则δQ =0,δm out =0,(c 2fin +gz in )δm in =0,δW s =0,δm in =d m ,故有: d(m·u )=h in ·d m 有: m ·d u +u ·d m=h in ·d m 即:m ·d u=(h in -u )·d m =pv ·d m =R g T ·d m 分离积分变量可得:(c v /R g )·d T /T=d m /m 因此经积分可得:(c v /R g )ln(T 2/T 1)= ln(m 2/m 1) 设储气罐容积为V 0,则:m 1=p 1·V 0/(R g T 1),m 2=p 2·V 0/(R g T 2) 易得T 2=T 1· (p 2/p 1) R g /cp =283×(500/50)0.287/1.004=546.56 K 3.10一个储气罐从压缩空气总管充气,总管内压缩空气参数恒定,压力为1000kPa ,温度为27℃。充气开始时,储气罐内为真空,求充气终了时罐内空气的温度。设充气过程是在绝热条件下进行的。 解:根据开口系统的能量方程,有: δQ =d(m·u )+(h out +c 2fout +gz out )δm out -(h in +c 2fin +gz in ) δm in +δW s 由于储气罐充气过程为绝热过程,没有气体和功的输出,且忽略宏观能差值和重力位能差值,则δQ =0,δm out =0,(c 2fin +gz in )δm in =0,δW s =0,δm in =d m ,故有: d(m·u )=h in ·d m

广大复习资料之工程热力学第三章思考题答案

第三章思考题 3-1门窗紧闭的房间内有一台电冰箱正在运行,若敞开冰箱的大门就有一股凉气扑面,感到凉爽。于是有人就想通过敞开冰箱大门达到降低室内温度的目的,你认为这种想法可行吗? 解:按题意,以门窗禁闭的房间为分析对象,可看成绝热的闭口系统,与外界无热量交换,Q =0,如图3.1所示,当安置在系统内部的电冰箱运转时,将有电功输入系统,根据热力学规定:W <0,由热力学第一定律W U Q +?=可知,0>?U ,即系统的热力学能增加,也就是房间内空气的热力学能增加。由于空气可视为理想气体,其热力学能是温度的单值函数。热力学能增加温度也增加,可见此种想法不但不能达到降温目的,反而使室内温度有所升高。 3-2既然敞开冰箱大门不能降温,为什么在门窗紧闭的房间内安装空调器后却能使温度降低呢? 解:仍以门窗紧闭的房间为对象。由于空调器安置在窗上,通过边界向环境大气散热,这时闭口系统并不绝热,而且向外界放热,由于Q<0,虽然空调器工作时依旧有电功W 输入系统,仍然W<0,但按闭口系统能量方程:W Q U -=?, 此时虽然Q 与W 都是负的,但W Q >,所以?U<0。可见室内空气热力学能将减少,相应地空气温度将降低。 3-6 下列各式,适用于何种条件?(说明系统、工质、过程) 1)?q=du+ ?w ;适用于闭口系统、任何工质、任何过程 2)?q=du+ pdv ;适用于闭口系统、任何工质、可逆过程 3)?q=c v dT+ pdv ;适用于闭口系统、理想气体、任何过程 4)?q=dh ;适用于开口系统、任何工质、稳态稳流定压过程 5)?q=c p dT- vdp 适用于开口系统、理想气体、可逆过程 3-8 对工质加热,其温度反而降低,有否可能? 答:有可能,如果工质是理想气体,则由热力学第一定律Q=ΔU+W 。理想气体吸热,则Q>0,降温则ΔT<0,对于理想气体,热力学能是温度的单值函数,因此,ΔU <0。在此过程中,当气体对外作功,W>0,且气体对外作功大于热力学能降低的量,则该过程遵循热力学第一定律,因此,理想气体能进行吸热而降温的过程。 3-9 “任何没有容积变化的过程就一定不对外做功“这种说法对吗?说明理由。 答:这种说法不正确。系统与外界传递的功不仅仅是容积功,还有轴功等形式,因此,系统经历没有容积变化的过程也可以对外界做功。 3-10 说明以下论断是否正确: 1) 气体吸热后一定膨胀,热力学能一定增加; 答:不正确。由热力学第一定律Q=ΔU+W ,气体吸热,Q>0,可能使热力学能增加,也可能膨胀做功。 2) 气体膨胀时一定对外做功; 答:不正确。自由膨胀就不对外做功。容积变化是做膨胀功的必要条件,不是充分条件。 3) 气体压缩时一定消耗外功; 答:不正确。气体冷却时容积缩小但是不用消耗外功。

工程热力学课后题答案

习题及部分解答 第一篇 工程热力学 第一章 基本概念 1. 指出下列各物理量中哪些是状态量,哪些是过程量: 答:压力,温度,位能,热能,热量,功量,密度。 2. 指出下列物理量中哪些是强度量:答:体积,速度,比体积,位 能,热能,热量,功量,密度。 3. 用水银差压计测量容器中气体的压力,为防止有毒的水银蒸汽产 生,在水银柱上加一段水。若水柱高mm 200,水银柱高mm 800,如图2-26所示。已知大气压力为mm 735Hg ,试求容器中气体的绝对压力为多少kPa ?解:根据压力单位换算 kPa p p p p kPa Pa p kPa p Hg O H b Hg O H 6.206)6.106961.1(0.98)(6.10610006.132.133800.96.110961.180665.92002253=++=++==?=?==?=?= 4. 锅炉烟道中的烟气常用上部开口的斜管测量,如图2-27所示。若 已知斜管倾角 30=α,压力计中使用3/8.0cm g =ρ的煤油,斜管液体长度mm L 200=,当地大气压力MPa p b 1.0=,求烟气的绝对压力(用MPa 表示)解: MPa Pa g L p 6108.7848.7845 .081.98.0200sin -?==???==α ρ MPa p p p v b 0992.0108.7841.06=?-=-=- 5.一容器被刚性壁分成两部分,并在各部装有测压表计,如图2-28所示,其中C 为压力表,读数为kPa 110,B 为真空表,读数为kPa 45。

若当地大气压kPa p b 97=,求压力表A 的读数(用kPa 表示) kPa p gA 155= 6. 试述按下列三种方式去系统时,系统与外界见换的能量形式是什么。 (1).取水为系统; (2).取电阻丝、容器和水为系统; (3).取图中虚线内空间为系统。 答案略。 7.某电厂汽轮机进出处的蒸汽用压力表测量,起读数为MPa 4.13;冷凝器内的蒸汽压力用真空表测量,其读数为mmHg 706。若大气压力为MPa 098.0,试求汽轮机进出处和冷凝器内的蒸汽的绝对压力(用MPa 表示) MPa p MPa p 0039.0;0247.021== 8.测得容器的真空度mmHg p v 550=,大气压力MPa p b 098.0=,求容器 内的绝对压力。若大气压变为MPa p b 102.0=',求此时真空表上的读数为多少mmMPa ? MPa p MPa p v 8.579,0247.0='= 9.如果气压计压力为kPa 83,试完成以下计算: (1).绝对压力为11.0MPa 时的表压力; (2).真空计上的读数为kPa 70时气体的绝对压力; (3).绝对压力为kPa 50时的相应真空度(kPa ); (4).表压力为MPa 25.0时的绝对压力(kPa )。 (1).kPa p g 17=; (2).kPa p 13=;

合成氨工业发展史

合成氨工业发展史 一、人口增加与粮食需求 农业出现在12000年以前,是人类企图用增加食物供给来增强自己生存的开始。那时的人口约1500万。在2000 年前,由于农业的发展使人口增加到2.5亿。到1650年,人口又增长一倍,达到5亿。然后,到1850年世界人口就翻了一番,高达10亿,这段历程仅仅花了200 年时间。80 年后的1930年,人口超过了20亿。这种增长速度还未减缓,到1985年地球上供养的人数已达50亿。如果每年以1985年人口的2%水平继续增长下去的话,到2020年的世界人口将是100亿左右。因此限制人口的增长势在必行。目前,人口自然增长率在世界范围内正开始下降,据美国华盛顿人口局(1997年):2000年全球人口将由目前的58 亿增至61 亿,2025 年将达68 亿。人口局称,人口增长最快的是全球最贫困的国家。1996 年全球58 亿人中发展中国家的人口占了47 亿,占全球人口总增长率的98%。中国人口增长的形势也不容乐观。根据国家统计局的统计,中国人口已于1995年2 月15 日达到12亿。据预测,到2000 年中国人口将突破13.5亿。 显然,人类将面临日益严重的问题是给自己提供充足的食物和营养,以及从根本上限制人口增长。估计,到20 世纪末,严重营养不良的人数将达6.5 亿。解决问题的出路,必然需要科学的帮助,化学看来是最重要的学科之一。它之所以重要,首先是因为它能增加食物供给,其次它能给那些有意限制人口增长的人提供可靠的帮助。 在历史上,化学曾在扩大世界粮食供应过程中起过关键作用。这就是合成氨的发明和现代农药的使用,以及它们的工业化。 二、合成氨工业发展史 20 世纪初化学家们所面临的突出问题之一,是如何为大规模利用大气中氮找到一种实用的途径。氮化合物是肥料和炸药所必不可少的。但在当时,这种化合物的质量最优和最大来源是智利硝石。但智利地处南美而且远离世界工业中心;可是全世界无论何处,大气的五分之四都是氮。如果有人能学会大规模地、廉价地把单质的氮转化为化合物的形式,那么,氮是取之不尽、用之不竭的。 利用氮气与氢气直接合成氨的工业生产曾是一个较难的课题。合成氨从实验室研究到实现工业生产,大约经历了150年。直至1909年,德国物理化学家F ·哈伯(Fritz Haber,1868—1934)用锇催化剂将氮气与氢气在17.5MPa~20MPa和500℃~600℃下直接合成,反应器出口得到6%的氨,并于卡尔斯鲁厄大学建立一个每小时80g合成氨的试验装置。但是,在高压、高温及催化剂存在的条件下,氮氢混合气每次通过反应器仅有一小部分转化为氨。为此,哈伯又提出将未参与反应的气体返回反应器的循环方法。这一工艺被德国巴登苯胺纯碱公司所接受和采用。由于金属锇稀少、价格昂贵,问题又转向寻找合适的催化剂。该公司在德国化学家A ·米塔斯提议下,于1912 年用2500 种不同的催化剂进行了6500 次试验,并终于研制成功含有钾、铝氧化物作助催化剂的价廉易得的铁催化剂。而在工业化过程中碰到的一些难题,如高温下氢气对钢材的腐蚀、碳钢制的氨合成反应器寿命仅有80h 以及合成氨用氮氢混合气的制造方法,都被该以司的工程师 C ·博施(Carl Bosch,1874—1940)所解决。此时,德国皇帝威廉二世准备发动战争,急需大量炸药,而由氨制得的硝酸是生产炸药的理想原料,于是巴登苯胺纯碱公司于1912年在德国奥堡建成世界上第一座日产30t合成氨的装置,1913年9月9 日开始运转,氨产量很快达到了设计能力。人们称这种合成氨法为哈伯-博施法,它标志着工业上实现高压催化反应的第一个里程碑。由于哈伯和博施的突出贡献,他们分别获得1918、1931年度诺贝尔化学奖金。其他国家根据德国发表的论文也进行了研究,并在哈伯-博施法的基础上作了一些改进,先后开发了合成压力从低压到高压的很多其他方法(表18-1)。

2016-2017年我国上规模的合成氨企业名单(总结)

2016-2017年我国上规模的合成氨企业名单(总结) 序号企业完整名称所在省市详细地址 1 重庆江北化肥有限公司重庆市渝北区悦来镇清南村 2 重庆开元化工有限公司重庆市梁平县七桥南街十九 3 重庆市万利来化工有限公司重庆市潼南县接龙桥居委会中间破2号 4 江津市禾丰化工有限责任公司重庆江津市化肥厂 5 重庆市龙济化肥有责任限公司重庆南川市龙济桥 6 重庆市三灵化肥责任有限公司重庆长寿区青华路 7 绍兴化工有限公司浙江省绍兴市越城区斗门镇新斗门村 8 绍兴化工有限公司浙江省绍兴市越城区五云门外 9 开元县清华化工有限公司浙江省衢州市开化县解放路19号 10 浙江江山化工股份有限公司浙江省衢州市江山市市区景星东路39号 11 浙江金华中元化工有限公司浙江省金华市婺城区朱基头 12 浙江东阳化学工贸有限公司浙江省金华市东阳市东七里 13 湖州汇品化工有限公司浙江省湖州市吴兴区杨家埠交警支队边 14 建德市新化化工有限公司浙江省杭州市建德市桥东路90号 15 杭州龙山化工有限公司浙江省杭州市滨江区浦沿路1号 16 镇雄县赤水源化工有限责任公司云南省昭通市镇雄县板桥村 17 云南省海通化工有限责任公司云南省中通是海通县马家湾村委会 18 云南省玉溪银河化工有限公司云南省玉溪市峨山县土官村 19 云南省云维集团有限公司云南省曲靖市沾益县兴园社区 20 云南省云峰化学工业有限公司云南省曲靖市宣威市暂无 21 罗平县富民化肥有限公司云南省曲靖市罗平县 3 22 云南陆良龙海化工有限责任公司云南省曲靖市陆良县西桥工业区 23 云南陆良龙海化工有限公司云南省曲靖市陆良县兴隆路45号 24 昆明神龙汇丰化肥有限公司云南省昆明市宜良区永新村 25 昆明化肥有限公司昆明市晋宁县石将军街 26 红河远东化工有限公司云南省红河州弥勒县东风路口 27 红河锦东化工股份有限公司云南省红河州弥勒县东风农场虚拟村委会 28 泸西县伟宏吉宇化工有限责任公司云南省红河州泸西县九华路49号 29 云南解化集团有限公司云南省红河州开远市市西北路429号 30 云南德维化工有限公司云南省楚雄州禄丰县董户村 31 云南楚雄宏源化工有限公司云南省楚雄州楚雄市东瓜 32 阿克苏华锦化肥有限公司新疆阿克苏地区库车县库车镇天山路632号 33 四川省资阳市天台化工有限公司四川资阳雁江莲花路652号 34 四川省兴乐化肥股份有限公司资阳分公司四川资阳雁江莲花 35 四川省乐至县行乐化工有限公司四川资阳乐至县东郊 36 简阳市泰锋化肥有限公司四川资阳简阳市北路139号 37 四川省南充化肥总厂四川南充市高坪区南溪口一号 38 四川龙飞化工有限公司四川南充市高坪区南新路476号 39 绵阳市贝多生化有限责任公司四川绵阳盐亭县城东路38号 40 四川江油市胜峰天然气化工有限公司四川绵阳江油市治中路55号 41 四川省泸州市叙永县金虹肥业有限公司四川省泸州市叙永县两外街 42 泸天化(集团)有限公司四川省泸州市纳溪区人民路

中国合成氨产销量及2020年发展趋势分析

中国合成氨产销量及2020年发展趋势分析 一、概述 合成氨指由氮和氢在高温高压和催化剂存在下直接合成的氨,为一种基本无机化工流程。现代化学工业中,氨是化肥工业和基本有机化工的主要原料。合成氨的主要初始原料可分为固体原料、液体原料和气体原料。如天然气、石脑油、重质油和煤(或焦炭)等。氨主要用于制造氮肥、复合肥料,可作为工业原料和氨化饲料,用于制造硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等。 合成氨产业链

二、产销量 合成氨工业是关系中国国民经济的重要行业,是中国化肥工业的基础,也是传统煤化工的重要组成部分。中国合成氨工业自20世纪50年代以来,不断发展壮大,已成为世界上最大的合成氨生产国,2015-2018年中国合成氨产量逐年减少,2018年中国合成氨产量为4611.6万吨,较2017年减少了334.71万吨,2019年较2018年有所增长,2019年中国合成氨产量为4735万吨,较2018年增加了123.48万吨。 中国也是合成氨行业消耗大国,2017-2019年中国合成氨销量逐年减少,2018年中国合成氨销量为1434.8万吨,较2017年减少了11.91万吨;2019年中国合成氨销量为1389.6万吨,较2018年减少了45.20万吨。随着中国资源约束加强,节能环保压力不断加大,中国合成氨行业已经到了转型升级发展的关键时期。 数据显示:2019年一季度中国合成氨产销率为100%,较2018年同期增加了3.3%;2019年二季度中国合成氨产销率为99%,较2018年同期减少了1%;2019年三季度中国合成氨产销率为100.1%,较2018年同期增加了0.1%;2019年四季度中国合成氨产销率为99.9%,较2018年同期减少了0.4%。 2019年一季度中国合成氨库存比年初增减率为15.3%,较2018年同期增加了28.2%;2019年一季度中国合成氨库存比年初增减率为108.5%,较2018年同期增加了110%;2019年一季度中国合成氨库存比年初增减率为-9.6%,较2018年同期减少了34.8%;2019年一季度中国合成氨库存比年初增减率为4.9%,较2018年同期增加了7%。

工程热力学-课后习题答案

工程热力学-课后习题答案

工程热力学(第五版)习题答案 工程热力学(第五版)廉乐明 谭羽非等编 中国建筑工业出版社 第二章 气体的热力性质 2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。 解:(1)2N 的气体常数 2883140==M R R =296.9)/(K kg J ? (2)标准状态下2N 的比容和密度 1013252739.296?==p RT v =0.8kg m /3 v 1 =ρ=1.253/m kg (3)MPa p 1.0=,500=t ℃时的摩尔容积Mv Mv =p T R 0=64.27kmol m /3 2-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。试求被压入的CO2的质量。当地大气压B =101.325 kPa 。 解:热力系:储气罐。 应用理想气体状态方程。

压送前储气罐中CO2的质量 11 11RT v p m = 压送后储气罐中CO2的质量 22 22RT v p m = 根据题意 容积体积不变;R =188.9 B p p g +=11 (1) B p p g +=22 (2) 27311+=t T (3) 27322+=t T (4) 压入的CO2的质量 )1122(21T p T p R v m m m -=-= (5) 将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg 2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少? 解:同上题 1000)273325.1013003.99(287300)1122(21?-=-=-=T p T p R v m m m =41.97kg

相关文档
最新文档