煤液化技术

煤液化技术
煤液化技术

《近代化学》课程作业

煤液化技术的研究现状

The research status of coal liquefaction technology

姓名:

专业:

时间:

煤液化技术的研究现状

能源安全关系到一个国家的长期稳定发展,我国的煤炭资源相对于其他形式的资源而言较为丰富,但是长期以来,我国的煤炭资源一直处于低利用率水平,造成了大量的资源浪费以及环境污染等问题,随着资源的日益减少,如何提高资源利用率成为需要研究的关键问题。

煤炭液化技术可以分为直接、间接两种,所谓煤炭直接液化技术是指将粉状煤炭与循环溶剂制备成的混合油煤浆在定温、定压以及催化剂条件下,进行加氢化学反应,最终生成所需要的液态和气态烃类化合物,同时要对所生成的物体进行脱硫、脱氮处理等有害物质处理;煤炭的间接液化技术先进行的是气化处理,将煤气化后并在催化剂的作用下,通过F-T费托过程,得到相应的烃类化合物。相对于煤炭间接液化而言,直接液化在同样原料的基础上,所能够生产出的油品率更高一些。

1煤直接液化

煤的直接液化是指在适当的温度(400~500℃)和压力(20~30MPa)下,催化加氢裂化(热裂、溶剂、萃取、非催化裂化等)成液体烃类,生成少量气体烃,脱出煤中氮、氧和硫等杂原子的深度转化过程[1]。理论上讲,煤加氢液化分为轻度加氢和深度加氢。通过加氢,煤结构中某些键断开,将固态煤转变成液体产物和气态产物。

1.1煤直接液化的技术的进展

煤直接液化技术主要包括[2]:①煤浆配制、输送和预热过程的煤浆制备单元;

②煤在高温、高压条件下进行加氢反应,生成液体产物的反应单元;③将反应生成的残渣、液化油和气态产物分离的分离单元④稳定加氢提质单元。具体流程图如图1所示:

图1:煤直接液化工艺流程简图

自从1913年德国科学家F.Bergiu发明了煤炭直接液化技术后,美国、日本、英国、俄国也都独自研发出了拥有自主知识产权的液化技术。以下简单介绍几种最具代表性的煤炭直接液化工艺,如德国IGOR工艺[3]、美国H TI工艺[4]、日本NEDOL工艺[5]等。

1.1.1德国IGOR工艺

德国矿冶技术及检测公司在20世纪90年代初改进了原DT工艺,形成了先进的IGOR工艺。该工艺是将循环溶剂和加氢液化油提质加工与煤的直接液化结合成一体的新工艺技术。

该工艺与原工艺相比有如下优点:①液化残渣的固液分离改为减压蒸馏,其

处理能力增大,操作简单;②循环油基本不含固体并且基本排除了沥青烯;③煤的直接液化与循环溶剂加氢和液化油提质加工串联在一套高压系统中,油收率增加,产品质量提高,过程氢耗降低。

1.1.2美国HTI工艺

HTI工艺是在H-Coal工艺和CTSI两工艺基础上,采用悬浮床反应器和胶体铁基催化剂的一种煤加氢液化工艺。该工艺的主要技术特征有:①采用胶态高分散纳米尺度的Fe催化剂,降低了催化剂成本,提高了活性;②采用外循环全返混三相鼓泡床反应器,增强了反应器处理能力;③对液化粗油进行在线加氢精制,进一步提高了馏分油的品质;④反应条件较为温和,温度440~450℃,压力为17MPa,产率高,氢耗低;⑤固液分离采用超临界溶剂萃取脱灰,油收率提高5%。

1.1.3日本NEDOL工艺

NEDOL工艺是日本在EDS工艺的基础上开发出来的烟煤液化工艺,由煤前处理单元、液化反应单元、液化油蒸馏单元及溶剂加氢单元等四个主要单元组成,用预加氢过的中、重质油溶剂将煤、催化剂制成煤浆,和氢气一起预热后在一定的温度、压力下使之反应液化,然后把得到的液化粗油进行分离,精制、改性。大部分的中质油和全部重质油馏分经加氢后被循环作为供氢溶剂,供氢性能明显优于EDS工艺。其工艺特点为:①反应温度430~465℃,反应压力17~19 MPa;②催化剂采用合成硫化铁或天然黄铁矿;③固液分离采用减压蒸馏;④采用循环溶剂单独加氢,提高了溶剂的供氢能力。它集聚了“直接加氢法”、“溶剂萃取法”和“溶剂分解法”这三种烟煤液化法的优点,适用于从次烟煤至煤化度低的烟煤等广泛煤种。

1.1.4俄罗斯低压加氢液化工艺

此工艺是俄罗斯在20世纪70~80年代针对本国煤质特点,开发的直接加氢液化工艺。其工艺特点为:使用加氢活性很高的Mo催化剂,并采用离心溶剂循环和焚烧进行回收;液化反应气压力低,褐煤加氢液化压力为6. 0 MPa,烟煤加氢液化压力为10. 0 MPa,有利于降低工程投资和运行成本;采用瞬间涡流仓煤干燥技术,可以增加原料煤的比表而积和孔溶剂,减少煤颗粒粒度,利于加氢液化反应;采用半离线固定床催化反应器对液化粗油加氢精制,便于操作。

2.1煤直接液化催化剂研究进展

催化剂是煤直接液化过程的核心技术,在煤液化过程中起着非常重要的作用。优良的催化剂可以降低煤液化温度,减少副反应并降低能耗,提高氢转移效率,增加液体产物的收率。

到目前为比,被研究的催化剂主要有廉价的铁基催化剂、稍贵的钼基催化剂、利用金属间协同作用的复合催化剂以及一些新型的改性催化剂。

2.1.1铁基催化剂

铁基催化剂的研究一般可分为两类:一类是天然矿物或矿渣催化剂;另一类是发展超细微粒的铁基催化剂。铁基催化剂的活性较低,一般和硫一起使用,可以产生较好的液化效果。虽然铁催化剂在加氢裂解活性上不如Co和Mo等催化剂,但由于经济和环保上的优势,并且煤灰分中也含有铁元素,因此,开发高效铁基催化剂成为近年来研究的重点。

Taka[6]采用配有红外聚焦炉的速热高压反应釜制备了高分散的Fe1-xS液化催化剂,考察该催化剂对Yallourn煤的直接液化效果,并和传统的黄铁矿催化剂的性能进行了比较。结果发现,在红外聚焦炉的快速加作用下y-Fe00H转化为磁黄铁矿,大大提高了煤转化率和产品产率。

2.1.2钼基催化剂

1925年人们开始使用过度金属钼及其钼酸盐催化剂用于煤的加氢液化研究,但对煤液化取得重要进展的是钼基硫化物催化剂的应用,它对煤液化的催化活性优于铁基催化剂,特别是对煤大分子结构中的Car—Cal、Car—O间的化学键断裂具有一定的选择性而备受研究者的关注。

艾军等[7]利用间歇式高压釜,采用钼系催化剂钼酸铵、三氧化钼和二硫化钼对神东煤进行煤直接液化性能的研究。研究表明,钼的添加量为0.1%时,钼酸铵的效果最好,转化率和油产率最高,分别为82. 14%和39. 47%。

2.1.3复合催化剂

由于铁基催化剂的活性相对较低,而昂贵的钼镍催化剂又很难投入实际应用,因此人们开始将铁基催化剂和昂贵的钼、镍等复合,希望提高铁基催化剂活性的同时,减少贵金属的用量。

Priyanto等[8]使用原位担载的方法制备了一系列的Fe、Mo、Ni三金属催化剂。在反应温度为450 ℃,氢压为15 MPa,四氢化萘为溶剂的条件下,三金属FeMoNi催化剂的活性要明显好于MoNi催化剂,油产率高达770%。三种金属的添加次序对油产率有轻微的影响。同时,他们将液化残渣回收并作为催化剂使用,结果显示此催化剂依然有较高的活性可以反复使用,从而降低催化剂的用量。王勇等[9]研制了一种FeNi复合催化剂,考察了催化剂对神东煤直接液化的催化活性,主要考察了催化剂粒度等因素对直接液化反应的影响,并与煤炭科学研究总院自主研发的“863”催化剂进行对比。研究结果表明,随着复合催化剂粒径变小,煤液化的转化率和油产率增加,中间产物沥青烯和前沥青烯组分产率基本不变,气产率和氢耗率降低。与"863”铁基催化剂相比,小于74 μm的复合催化剂的催化效果要优于后者。该催化剂中含有一定的镍,镍的强加氢作用使得煤液化反应转化率增加,油产率增加。

2煤间接液化

煤间接液化是指将煤炭转化为汽油、柴油、煤油、燃料油、液化石油气和其它化学品等液体产品的工艺过程,主要由三大部分组成,即煤制合成气(包括造气和净化)、合成气费托合成以及合成油品加工精制。其中费托合成单元是其核心部分。

2.1煤间接液化技术的发展历程

在20世纪20年代,德国就开始了煤间接液化技术的研究,并于1936年首先建成工业规模的合成油厂。到1955年,世界上已有18个合成油工厂,总生产能力达到100万吨/年。之后,由于石油工业的兴起和发展,致使大部分费托合成油装置关闭停运。

目前,国外典型的工业化煤间接液化技术有南非Sasol的费托合成技术、荷兰Shell公司的SMDS技术和Mobil公司的MTG合成技术等。此外还有一些先进的合成技术,如丹麦Topse公司的TIGAS技术、美国Mobil公司的STG技术、Exxon 公司的AGC-21技术、Syntroleum公司的Syntroleum技术等,但均未商业化[10]。

我国在20世纪50~60年代初曾在锦州运行过规模为5万吨/年的煤间接液化工厂。2008年山西潞安集团年产16万吨煤基合成油示范项目以中国科学院山西煤炭化学研究所自主研发的煤基液体燃料合成浆态床工业化技术为核心技术正式出油,标志着中国煤制油产业化试验取得了阶段性成果和重大突破。2009 年,我国首套煤间接液化工业化示范装置在内蒙古伊泰集团正式投产。据估计,到

2020 年全国将形成煤间接液化装置5000 万吨/年的产能。

2.2煤间接液化技术的经济性与工业应用前景

2.2.1煤间接液化技术的经济性

影响煤间接液化技术经济性的主要因素有:①整个装置的投资规模和生产规模;②煤间接液化的技术选择;③间接液化使用的催化剂,一般不能再生,且价格贵,因此除设法减少损耗和延长寿命外,应在催化剂再生技术上争取突破;④采用先进固定流化床和浆态床工艺,可提高主产品的产率和选择性,增产高附加值化学品,给企业带来丰厚的收益;⑤建厂地理位置,项目的建设周期,原料煤的价格和品质,原油、成品油价格等;⑥整个煤液化工艺流程的集成优化程度等。

煤制油是一个具有规模经济性的大型综合性产业,要取得明显的经济效益,煤制油装置规模应在100万吨/年以上,装置规模越大,吨油投资越少,物料和能量利用率越高,其综合效益越好。

在技术选择方面,对煤间接液化制油项目的经济性有重要影响的是:煤制合成气技术、合成油技术和煤基油加工精制技术。煤制合成气装置占总投资的65%左右,费托合成装置约占20%,油品精制装置占15%。由此可见,煤制合成气装置是制约煤制油装置投资和回报期的主要因素。国内采用Texaco和Lurgi气化炉的煤气化技术均有商业装置运行并已基本实现国产化。

费托合成油技术的选择也很重要,主要需比较国外引进技术与国内自主研发技术。国外技术优点是成熟可靠,缺点是引进费用高,使项目的总体造价可能大幅度上升;相反,采用国内自主研发技术缺点是工程放大存在一定风险,放大倍数越大,风险就越大,优点是软件费用低,项目总体造价可以大幅降低。

原料和动力的消耗是构成煤间接液化制油项目中可变成本的主要组成部分,对项目的经济性有重要影响,煤耗相对水耗和电价的影响更大。

煤炭间接液化项目的投资额非常大,降低投资的一个可能途径是装置的集约化,即煤炭液化和炼油厂有机结合,如共享一些产品混合和输出设备,即使最低程度的设备联合使用也可大大降低投资成本。同时,煤气化所得的合成气除了制油、发电、制氢外还可以生产甲醇、化肥、城市煤气、二甲醚、烯烃等,将多个单元联产可以使多个产品的生产过程互相耦合,与这些产品单独生产相比,可以减少基本投资和运行费用,降低各产品的生产成本。

2.2.2煤间接液化技术的工业前景

国外大规模的合成油装置为100万吨级,从技术上来说,建立这一规模的装置是可以实现的。国内煤间接液化技术需加大技术投入,加快发展自主知识产权,特别是核心技术和关键技术的知识产权。立足有自主知识产权的费托合成技术,建设有工业规模的煤制油项目符合国家的能源政策,不仅有利于促进地方经济的发展,而且符合国家产业政策和西部大开发以及可持续发展的要求,具有良好的环境效益和经济效益。

3结语

随着国际原油价格的上涨,我国各大企业对煤液化项目都表示了极大的兴趣,先后投资上马了许多煤液化项目。既有采用直接液化技术的项目,也有采用间接液化技术的项目。发展煤液化技术是一种减轻并最终消除由于石油供应紧张带来的各种压力以及可能对经济发展产生负而影响的重要举措,同时也可以使煤化工与石油化工在技术及产品方而做到优势互补。煤液化技术有助于中国摆脱对进口原油和石油产品的过度依赖,己成为保证中国能源安全的战略选择,两种煤液化

技术均有很好的发展前景。

参考文献:

[1]刘峰,胡明辅,安赢,毛文元. 煤液化技术进展与探讨[J]. 化学工程与装备,2009,11:106-110.

[2]范立明,高俊文,张勇. 煤直接液化催化剂研究进展[J]. 工业催化,2006,11:17-22.

[3]李克健,史士东,李文博. 德国IGOR煤液化工艺及云南先锋褐煤液化[J]. 煤炭转化,2001,02:13-16.

[4]Zhou Peizheng, Lee Theo L K. HTI coal conversion technologies in China[J]. Fuel Chemistry Division Preprints,2003, 48 (1):155-157

[5]Itoh H,Hiraide M, Kidoguchi A, et al. Simulator for coal liquefaction based on the NEDOI process[J]. Industrial and Engineering Chemistry Research, 2001,40(1):2 L 0-217.

[6]Takao Kanekoa , KazuharuTazawaa, Noriyuki Okuyamab,etal.Effect of highly dispersed iron catalyst on direct liquefaction of coal[J].Fuel,2000,79 (3-4):263-271.

[7]艾军,黄澎,谷小会,赵渊. 钼系催化剂对神东煤直接液化的影响[J]. 洁净煤技术,2011,02:31-33.

[8]PriyantoU,SakanishiK,Okuma O, et al. Catalytic activity of FeMoNi Ternary Sulfide Suported on a nanoparticulate carbon in the liquefaction of Indonesian coals[J]. Industrial Engineering Chemistry Research ,2011,40 (3):774-780.

[9] Priyanto U, Sakanishi K, OkumaO,et al Catalytic activityof FeMoNi Ternary Sulfide Supported on a nanoparticulatecarbon in the liquefaction of Indonesian coals[J]. IndustrialEngineering Chemistry Research, 2001,40(3):774-780.

[10] Sie S T. Process development and scale up IV: Case of the development of a Fischer-Tropsch synthesisprocess [J]. Rev. of Chem.Eng., 1998, 14 (21): 109-157.

煤液化技术的重要性

煤液化技术的重要性 1.1 中国的能源现状 随着我国经济的快速发展,能源消费急剧增加,20世纪90年代我国已成为石油净进口国。2003年,我国已是全球仅次于美国的第二大石油进口国和消耗国,2008年我国石油净进口量超过19985万t,进口原由占国消费比重达53.1%。石油资源匮乏和国石油供应不足已成为中国能源发展的一个严峻现实, 随着国民经济的发展,石油供需矛盾将呈持续性扩大趋势。经济高速增长、石油资源缺乏的中国已经把石油安全置于能源战略的核心位置。 我国“多煤炭、少石油、缺天然气”的能源资源特点决定了我国能源在较长时期以煤为主的格局不会改变,确立我国的能源安全战略,必须从这一基本条件出发。充分利用我国丰富的煤炭资源解决石油短缺问题并保证能源安全供给,是我国能源安全战略的一条有效而又可行的途径。 1.2 煤液化技术在我国应用前景 在替代石油的化石资源中,只有煤炭可以在近中期满足与千万吨数量级的油品缺口相匹配的需要。在这样的背景下,合理利用中国丰富的煤炭资源, 开发“煤制油”技术, 作为石油资源的补充, 解决目前燃油短缺、环境污染两大难题, 对中国具有十分重要的战略意义[1]。 若以目前已查证的煤炭资源量的2 0 %作为直接液化原料,则相当于为中国增加了约4 5 0亿吨的原油资源量。有专家预计,到2 0 2 0 年中国的“煤制油”项目将形成年产5 0 0 0万吨油品的生产能力,加上届时将有年产2 0 0 0万吨的生物质油品投入使用,中国原油对外依赖程度有望从6 0 %以上下降到45%以下。到2030 年,在全球替代能源中非石油替代能源将达到日产1 0 0 0万桶,其中煤制油将占2 9%。就中国来说,煤炭储量丰富,政府有意愿发展这一产业,煤制油工业有着光明的前景。 1.3 煤液化技术在我国中战略地位 中国将长期坚持能源供应基本立足国的方针, 把煤炭作为主体能源, 这是中国能源安全的基石。长期以来, 中国政府坚持能源生产、消费与环境保护并重的方针, 把支持清洁煤技术的开发应用作为一项重要的战略任务。煤炭直接液化是中国能源战略的组成部分, 对充分利用国资源, 解决石油安全具有重要的战略和现实意义。 2 煤液化的发展状况 2.1 煤液化技术简介 煤液化工艺大致可分为两大部分,即在高温高压条件下把粉煤催化加氢生产液化粗油的液化工艺和把液化粗油加氢裂解的提质加工精制工艺。其中煤液化技术又包括直接液化技术和间接液化技术。 2.1.1 煤直接液化技术 煤的直接液化法,就是以煤为原料,在高温高压条件下,通过催化加氢直接

煤液化技术

《近代化学》课程作业 煤液化技术的研究现状 The research status of coal liquefaction technology 姓名: 专业: 时间:

煤液化技术的研究现状 能源安全关系到一个国家的长期稳定发展,我国的煤炭资源相对于其他形式的资源而言较为丰富,但是长期以来,我国的煤炭资源一直处于低利用率水平,造成了大量的资源浪费以及环境污染等问题,随着资源的日益减少,如何提高资源利用率成为需要研究的关键问题。 煤炭液化技术可以分为直接、间接两种,所谓煤炭直接液化技术是指将粉状煤炭与循环溶剂制备成的混合油煤浆在定温、定压以及催化剂条件下,进行加氢化学反应,最终生成所需要的液态和气态烃类化合物,同时要对所生成的物体进行脱硫、脱氮处理等有害物质处理;煤炭的间接液化技术先进行的是气化处理,将煤气化后并在催化剂的作用下,通过F-T费托过程,得到相应的烃类化合物。相对于煤炭间接液化而言,直接液化在同样原料的基础上,所能够生产出的油品率更高一些。 1煤直接液化 煤的直接液化是指在适当的温度(400~500℃)和压力(20~30MPa)下,催化加氢裂化(热裂、溶剂、萃取、非催化裂化等)成液体烃类,生成少量气体烃,脱出煤中氮、氧和硫等杂原子的深度转化过程[1]。理论上讲,煤加氢液化分为轻度加氢和深度加氢。通过加氢,煤结构中某些键断开,将固态煤转变成液体产物和气态产物。 1.1煤直接液化的技术的进展 煤直接液化技术主要包括[2]:①煤浆配制、输送和预热过程的煤浆制备单元; ②煤在高温、高压条件下进行加氢反应,生成液体产物的反应单元;③将反应生成的残渣、液化油和气态产物分离的分离单元④稳定加氢提质单元。具体流程图如图1所示: 图1:煤直接液化工艺流程简图 自从1913年德国科学家F.Bergiu发明了煤炭直接液化技术后,美国、日本、英国、俄国也都独自研发出了拥有自主知识产权的液化技术。以下简单介绍几种最具代表性的煤炭直接液化工艺,如德国IGOR工艺[3]、美国H TI工艺[4]、日本NEDOL工艺[5]等。 1.1.1德国IGOR工艺 德国矿冶技术及检测公司在20世纪90年代初改进了原DT工艺,形成了先进的IGOR工艺。该工艺是将循环溶剂和加氢液化油提质加工与煤的直接液化结合成一体的新工艺技术。 该工艺与原工艺相比有如下优点:①液化残渣的固液分离改为减压蒸馏,其

煤炭直接液化技术总结

煤炭直接液化技术总结 洁净煤技术——直接液化技术 —、德国IGOR工艺 1981 年,德国鲁尔煤矿公司和费巴石油公司对最早开发的煤加氢裂解为液体燃料的柏吉斯法进行了改进,建成日处理煤200 吨的半工业试验装置,操作压力由原来的70 兆帕降至30兆帕,反应温度450?480摄氏度;固液分离改过滤、离心为真空闪蒸方法,将难以加氢的沥青烯留在残渣中气化制氢,轻油和中油产率可达50%。 原理图: IGOR 直接液化法工艺流程 工艺流程:煤与循环溶剂、催化剂、氢气依次进入煤浆预热器和煤浆反应器,反应后的物料进入高温分流器,由高温分流器下部减压阀排出的重质物料经减压闪蒸,分出残渣和闪蒸油,闪蒸油又通过高压泵打入系统,与高温分离器分出的气体及清油一起进入第一固定床反应器,在此进一步加氢后进入分离器。中温分离器分出的重质油作为循环溶剂,气体和轻质油气进入第二固定床反应器再次加氢,通过低温分离器分离出提质后的轻质油品,气体经循环氢压机压缩后循环使用。为了使循环气体中的氢气浓度保持在所需的水平,要补充一定数量的新鲜氢气。 液化油经两步催化加氢,已完成提质加工过程。油中的氮和硫含量可降低到10-5 数量级。此产品经直接蒸馏可得到直馏汽油和柴油,再经重整就可获得高辛烷值汽油。柴油只需加少量添加剂即可得到合格产品。与其他煤的直接液化工艺相比,IGOR工艺的煤处理能力最大,煤液化反应器的空速为0. 36?0. 50 t /( m3 ? h)。在反应器相同的条件下,IGOR 工艺的生产能力可比其他煤液化工艺高出50%?100%由于煤液化粗油的提质加工与 煤的液化集为一体,IGOR煤液化工艺产出的煤液化油不仅收率高,而且油品质量好。 工艺特点:把循环溶剂加氢和液化油提质加工与煤的直接液化串联在一套高压系统中,避免了分立流程物料降温降压又升温升压带来的能量损失,并在固定床催化剂上使二氧化碳和一氧化碳甲烷化,使碳的损失量降到最小。投资可节约20%左右,并提高了能量效率。反应条件苛刻(温度470C,压力30MPa);催化剂使用铝工业的废渣(赤泥);液化反应和加氢精制在高压下进行,可一次得到杂原子含量极低的液化精制油;循环溶剂是加氢油,供 氢性能好,液化转化率高。 优点:(1)煤液化粗油的提质加工与煤的液化集为一体,IGOR煤液化工艺产出的煤 液化油不仅收率高,而且油品质量好。 (2)供氢性能好,液化转化率高 (3) 结构简单,投资少,克服了反应尺寸、能力、压力等诸多方面的局限 (4) 传热效果好,反应温度易控制.

神华煤直接液化工艺技术特点和优势

神华煤直接液化工艺技术特点和优势 神华煤直接液化示范工程采用的煤直接液化工 艺技术是在充分消化吸收国外现有煤直接液化工艺 的基础上,利用先进工程技术,经过工艺开发创新,依靠自身技术力量,形成了具有自主知识产权的神 华煤直接液化工艺 神华煤直接液化工艺技术特点 1) 采用超细水合氧化铁(FeOOH)作为液化催 化剂。以Fe 2 + 为原料,以部分液化原料煤为载体,制成的超细水合氧化铁,粒径小、催化活性高。 2) 过程溶剂采用催化预加氢的供氢溶剂。煤 液化过程溶剂采用催化预加氢,可以制备45% ~50%流动性好的高浓度油煤浆;较强供氢性能的过 程溶剂防止煤浆在预热器加热过程中结焦,供氢溶 剂还可以提高煤液化过程的转化率和油收率。 3)强制循环悬浮床反应器。该类型反应器使 得煤液化反应器轴向温度分布均匀,反应温度控制 容易;由于强制循环悬浮床反应器气体滞留系数低, 反应器液相利用率高;煤液化物料在反应器中有较 高的液速,可以有效阻止煤中矿物质和外加催化剂4)减压蒸馏固液分离。减压蒸馏是一种成熟 有效的脱除沥青和固体的分离方法,减压蒸馏的馏 出物中几乎不含沥青,是循环溶剂的催化加氢的合 格原料,减压蒸馏的残渣含固体50%左右。 5) 循环溶剂和煤液化初级产品采用强制循环 悬浮床加氢。悬浮床反应器较灵活地催化,延长了 稳定加氢的操作周期,避免了固定床反应由于催化 剂积炭压差增大的风险;经稳定加氢的煤液化初级 产品性质稳定,便于加工;与固定床相比,悬浮床操作性更加稳定、操作周期更长、原料适应性更广。神华示范装置运行结果表明,神华煤直接液化 工艺技术先进,是唯一经过工业化规模和长周期运 行验证的煤直接液化工艺。 神华煤直接液化工艺技术优势 1)单系列处理量大。由于采用高效煤液化催 化剂、全部供氢性循环溶剂以及强制循环的悬浮床 反应器,神华煤直接液化工艺单系列处理液化煤量 为6000 t/d。国外大部分煤直接液化采用鼓泡床反 应器的煤直接液化工艺,单系列最大处理液化煤量 为每天2500 ~3000 t。 2)油收率高。神华煤直接液化工艺由于采用

洁净煤技术的发展及意义

洁净煤技术的发展及意义 摘要:介绍了什么是洁净煤技术以及它的特点,世界上的发达国家和我国洁净煤技术的发展现状,洁净煤技术的发展意义。关键词:洁净煤技术;现状;意义;特点 传统意义上的洁净煤技术主要是指煤炭的净化技术及一些加工转换技术,即煤炭的洗选、配煤、型煤以及粉煤灰的综合利用技术,国外煤炭的洗选及配煤技术相当成熟,已被广泛采用;目前意义上洁净煤技术是指高技术含量的洁净煤技术,发展的主要方向是煤炭的气化、液化、煤炭高效燃烧与发电技术等等。洁净煤技术计划是能源计划,是涉及整个国民经济中包括生产和用户等多个部门的一项庞大的系统工程。在开发、制定和执行程序上通常分为2个层次,即近期与长远相结合,发展常规技术和发展高新技术相结合,同时启动分期完成。常规的应用技术中有煤的洗选燃烧利用技术,如流化床燃烧、烟气净化等。高新应用技术中有新型发电系统、煤的气化、煤的液化新工艺,如燃料电池发电、磁流体发电、二氧化碳固化及有效利用技术等。 洁净煤技术(clean coal technology,CCT)是洁净、高效利用煤炭的先导性技术,最早由美国学者提出,主要是为了解决美国和加拿大边境的酸雨问题。洁净煤技术是指从煤炭开发到利用全过程中,旨在减少污染物排放和提高利用效率的煤炭加工、转化、燃烧及污染控制等一系列新技术的总称,是使煤作为一种能源应达到最大限度的潜能利用而将释放的污染控制在最低水平,实现煤的高效、洁净利用的技术体系。洁净煤技术涵盖了煤炭从“摇篮”到“坟墓”———开采到使用终结的洁净生产和洁净消费的全过程。

从以上分析可知,洁净煤技术具有以下几个显著特点: (1)以高硫煤为原料,以一碳化学为基础,采用多样化工艺,可以实现煤炭资源的优化配置、高效和清洁利用; (2)涉及物理学、化学、生物学、地质学等多学科,化工、热工、环境等多技术,是一项多层次多学科、综合性很强的系统工程; (3)注重综合效益,实现了环境友好和经济发展的双重效益,即“经济”和“环境”的双赢。 随着人们对环境的意识,能源的意识增强,而洁净煤技术在减少污染和提高能源效率都有大的贡献,各国都开始发展洁净煤技术。下面是各发达国家在洁净煤技术上的发展情况; 美国是最先提出洁净煤技术计划且组织最严密、成效最大的国家。美国还开展了4项相关技术的研究:煤的直接液化、煤的气化、氢气和合成气、温和气化。欧共体的洁净煤发展计划的主旨是促进欧洲能源利用新技术的开发,减少对石油的依赖和煤炭利用时所造成的环境污染,提高能源转换和利用效率,减少二氧化碳和其他温室气体排放,使燃煤发电更加洁净,通过提高效率减少煤炭消耗。日本为摆脱对石油的过分依赖,开始积极实行洁净煤技术开发计划(新阳光计划),并以煤代油作为能源的基本政策之一。 而从我国情况看,中国能源结构的特点是缺油、少气、富煤,在常规能源中,煤炭储量占90%以上。加上中国属于发展中国家,这就决定了煤炭是主要能源。在新的技术取得成功之前,控制煤炭燃烧中的污染是最现实的措施。中国用煤的70%至75%用于火力发电,因此,限制发电用煤、工业

煤炭液化技术

煤炭液化技术 [编辑本段] 煤炭液化技术 煤炭液化是把固体煤炭通过化学加工过程,使其转化成为液体燃料、化工原料和产品的先进洁净煤技术。根据不同的加工路线,煤炭液化可分为直接液化和间接液化两大类: 一、直接液化 直接液化是在高温(400℃以上)、高压(10MPa以上),在催化剂和溶剂作用下使煤的分子进行裂解加氢,直接转化成液体燃料,再进一步加工精制成汽油、柴油等燃料油,又称加氢液化。 1、发展历史 煤直接液化技术是由德国人于1913年发现的,并于二战期间在德国实现了工业化生产。德国先后有12套煤炭直接液化装置建成投产,到1944年,德国煤炭直接液化工厂的油品生产能力已达到423万吨/年。二战后,中东地区大量廉价石油的开发,煤炭直接液化工厂失去竞争力并关闭。 70年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。日本、德国、美国等工业发达国家,在原有基础上相继研究开发出一批煤炭直接液化新工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。目前世界上有代表性的直接液化工艺是日本的NEDOL工艺、德国的IGOR 工艺和美国的HTI工艺。这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa降低至17~30MPa,产油率和油品质量都有较大幅度提高,降低了生产成本。到目前为止,上述国家均已完成了新工艺技术的处理煤100t/ d级以上大型中间试验,具备了建设大规模液化厂的技术能力。煤炭直接液化作为曾经工业化的生产技术,在技术上是可行的。目前国外没有工业化生产厂的主要原因是,在发达国家由于原料煤价格、设备造价和人工费用偏高等导致生产成本偏高,难以与石油竞争。 2、工艺原理 煤的分子结构很复杂,一些学者提出了煤的复合结构模型,认为煤的有机质可以设想由以下四个部分复合而成。 第一部分,是以化学共价键结合为主的三维交联的大分子,形成不溶性的刚性网络结构,它的主要前身物来自维管植物中以芳族结构为基础的木质素。 第二部分,包括相对分子质量一千至数千,相当于沥青质和前沥青质的大型和中型分子,这些分子中包含较多的极性官能团,它们以各种物理力为主,或相互缔合,或与第一部分大分子中的极性基团相缔合,成为三维网络结构的一部分。

煤直接液化技术研究与发展

煤直接液化技术研究与发展 摘要:文章介绍了煤炭直接液化技术的发展状况和典型工艺,对其发展趋势和我国的发展前景进行了展望,指出发展煤炭直接液化工艺是我国缓解环境恶化、优化能源机构、解决石油短缺、保证能源安全的有效途径。 关键词:煤炭直接液化;工艺;趋势;前景 伴随着经济的不断发展,世界性的石油短缺将无法避免。因此,各国一直进行着石油代用燃料的开发。在新能源大规模应用之前,煤炭仍是石油和天然气的最佳替代品。其中,煤直接液化技术作为煤炭清洁、高效利用的代表之一,将是未来调整世界能源结构和保证经济正常高速发展的重要技术途径。 1煤炭直接液化技术的发展历程 煤炭直接液化工艺的开发大致经历以下三个阶段: ①在第二次世界大战前及二战期间,以德国为首的国家开发并建设了高温高压加氢液化工艺的生产装置,实现了煤液化技术的首次工业化。随着第二次世界大战的结束,德国的煤直接液化工厂陆续停产。 ②在1973年中东石油危机结束以后,以美国、德国为首的国家重启了煤直接液化技术的研究与开发。在德国的老工艺基础上,提高了催化剂活性,降低了反应压力,大幅度降低了成本。到20世纪80年代初,新工艺基本成熟,但由于成本依然较高,没有实现工业化。 ③20世纪90年代中后期至今。由于石油资源严重匮乏,以中国、日本为代表的亚洲国家,积极开发煤炭直接液化技术,先后完成了工业示范实验。2008 年世界上首套6000 t/d 的神华煤炭直接液化工业示范装置建成,并于年底投入第一次工业运行。 2煤炭直接液化技术 2.1反应机理 煤直接液化是在高温和高压下,借助于供氢溶剂和催化剂,使氢元素进入煤及其衍生物的分子结构,从而将煤转化为液体燃料或化工原料的过程。 2.2工艺单元 ①煤浆制备单元: 磨细原料煤, 并与溶剂、催化剂一起制成油煤浆;②反应单元: 在高温、高压条件下进行催化加氢反应, 得到液化粗产品;③分离单元: 将

煤炭液化技术

煤炭液化技术[编辑本段] 煤炭液化技术 煤炭液化是把固体煤炭通过化学加工过程产品的先进洁净煤技术。根据不同的加工 ,使其转化成为液体燃 料路线,煤炭液化可分为直 接 、化工原料 和液化和间接液 化 两大类: 一、直接液化 直接液化是在高温(400℃以上)、高压(10MPa以上),在催化剂和溶剂作用下使 煤的分子进行裂解加氢,直接转化成液体燃料,再进一步加工精制成汽油、柴油等燃料油,又称加氢液化。 1、发展历史 煤直接液化技术是由德国人 于1913 年发现的,并于二战期间在德国实现了工业 化生产。德国先后有12套煤炭直接液化装置建成投产, 到1944年,德国煤炭直接 液化工厂的油品生产能力已达到423万吨/年。二战后,中东地区大量廉价石油的开发,煤炭直接液化工厂失去竞争力并关闭。 70年代初期,由于世界范围内的石油危机,煤炭液化技术又开始活跃起来。日 本、德国、美国等工业发达国家,在原有基础上相继研究开发出一 批煤炭直接液化新 工艺,其中的大部分研究工作重点是降低反应条件的苛刻度,从而达到降低煤液化油生产成本的目的。目前世界上有代表性的直接液化工艺是日本的NEDOL 工艺、德国的IGOR工艺和美国的HTI工艺。这些新直接液化工艺的共同特点是,反应条件与老液化工艺相比大大缓和,压力由40MPa降低至17~30MPa,产油率和油品质量都有 较大幅度提高,降低了生产成本。到目前为止,上述国家均已完成 了新工艺技术的处 理煤100t/d 级以上大型中间试 验,具备了建设大规模液化厂的技术能力。煤炭直接 液化作为曾经工业化的生产技术,在技术上是可行的。目前国外没有工业化生产厂的主要原因是,在发达国家由于原料煤价格、设备造价和人工费用偏高等导致生产成本偏高,难以与石油竞争。 2、工 艺原理 煤的分 子结构很复杂,一些学者提出了煤的复合结构模型,认为煤的有机质可以 设想由以下四个部分复合而成。 第一部 分,是以化学共价键结合为主的三维交联的大分子,形成不溶性的刚性网 络结构,它的主要前身物来自维管植物中以 芳族结构为基础的木质素。 第二部 分,包括相对分子质量一千至数千,相当于沥青质和前沥青质的大型和中

现代化煤直接液化技术进展通用版

安全管理编号:YTO-FS-PD683 现代化煤直接液化技术进展通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

现代化煤直接液化技术进展通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 我国是一个富煤贫油少气的国家,煤炭资源探明剩余可采储量为1842 亿t,石油资源探明剩余经济可采储量为20.4 亿t,天然气资源探明剩余经济可采储量为23900 亿m3,这样的能源结构决定了中国煤炭价格要大大低于油气价格,煤炭价格的上涨速度也大大低于油气价格的上涨速度。近年来,我国石油进口量不断增加,对外依存度已超过40%,已经严重威胁到我国国家的能源安全问题。面对这样的现实,为了缓解我国石油严重短缺的现状,充分利用中国采储量相对较大的煤炭资源,大力推进煤液化产业的成熟与发展,越来越受到了国人的重 视和青睐。 “煤制油”的科学名称为“煤液化”,实施煤液化目是事关国家能源安全的重大战略选择。煤直接液化是国家“十五”期间12 个高技术工程项目之一,受到各方关注,国外专家也积极参与[1-3]。所谓煤液化,就是指把固体的煤炭通过化学加工的方法,使其转化为液体燃料、化工原料等产品。根据加工路线的不同,通常把煤液化分为直接

煤直接液化工艺技术及工程应用

石油炼制与化工 。oo。年,月reTRc,-euM!竺!!!!!!!竺!兰!!!二!竺里!竺!!兰!!——兰!!兰竺:塑———————————————————————————————————————一 煤直接液化工艺技术及工程应用 范传宏 (中国石化工程建设公司,北京1000¨) 摘要介绍了目前世界上比较典型的煤直接液化工艺技术(IGOR+工艺、NEDOL工艺和HTl工艺)的特点。结台各工艺的特点,对工艺流程中循环溶剂的选择、各单元流程的选择和设计 进行了探讨,提出r合理建议。 美键词:煤液化工艺设计工程述评 l前言 煤炭的化学成分类似于石油,是含氢少,杂质多的固体燃料,可以通过在高温高压下的裂姆、加氢和分解等过程,直接转化成液体产品。自20世纪70年代以来,世界各国相继研究开发了多种煤直接液化新工艺,其中不少新工艺已发展到每天处理几十吨至几百吨的工业性试验装置,但由于80年代石油降价,各国均没有进行商业化煤液化装置的建设。但我国,煤炭保有储量远比石油丰富,价格便宜,采用煤直接液化技术制取各种油品是一种比较适合我国国情的能源途径,可以充分利用我国丰富的煤炭资源,调整我国能源消费结构,缓解石油进口压力。为加快我国煤直接液化工业化的步伐,应在充分r解和研究煤直接液化工艺的基础上,合理地在工程中加以优化和运用,降低技术风险和经济风险,提高工业化装置长周期稳定运转的可靠性。 2煤直接液化工艺技术 2.1煤炭液化原理 煤加氢液化的反应过程可分为两个步骤”]:第一步是通过加热使煤的结构单元之间的桥键断裂,形成以单个结构单元为主体的自由基;第二步是在催化剂的作用下通过加氢使自由基在溶剂中保持稳定,因此溶剂应具有较好的重质芳烃溶解性,并能够提供氢给自由基以阻止自由基聚合。另外,通过加氢还可使各结构单元继续脱除氧、氮、硫等杂原子,并使结构单元进一步裂解,使芳烃部分饱和以降低相对分子质量、提高氢碳原子比,从而得到与石油馏分十分相似的低相对分子质嚣的油品。 煤液化所得的油品含有较多的杂原子及芳烃,一般还要经过加氢精制或加氢裂化工艺才能得到台格的油品。 2.2典型的煤液化工艺技术 煤直接液化工艺的主要过程是把煤先磨成粉,再和自身产生的液化重油(循环溶剂)配成煤浆,在高温(430~470℃)和高压(15~30MPa)下直接加氢,将煤转化成液体产品。整个过程可分成4个主要工艺单元: (1)煤浆制备单元:将煤破碎至小于o.2mm以下,并与溶剂、催化剂一起制成煤浆; (2)反应单元:煤在高温、高压的反应器内进行加氢反应,生成液体产物; (3)分离单元:将反应生成的残渣、液化油、反应生成气分离; (4)稳定加氢单元:液化油加氢,提供供氢溶剂,并使液化油加氢稳定。 目前世界上典型的煤直接液化技术主要有德国IGoR+工艺、日本NEDOL工艺和美国H—CoAI。及HTI工艺。 2.2.1德国IGoR+工艺IGOR+(IntegratedGrossoilRe“ning)工艺是在德国原IG工艺基础上开发出的新一代煤炭液化技术。该液化工艺将反应压力由70MPa降低到30MPa,将煤的加工量提高了50%,此外在残渣处理方面,用现代蒸馏法取代了从环保和技术角度都有缺陷的机械分离 收稿日期:200303¨;修改稿收到H期,2003一04一02。 作者简介:范传宏,工程师.硕士,1996年毕业于石油大学,从事石油化工的工艺研究和工程设计工作,曾负责设计多套加氢裂化装置,班正负责煤液化工业装置的工艺设计工作。 万方数据

煤直接液化反应机理

煤直接液化反应机理 煤和石油主要都是由C、H、O等元素组成,不同的是:煤的氢含量和H/C 原子比比石油低,氧含量比石油高;煤的分子量大,一般大于5000,而石油约为200,汽油约为110;煤的化学结构复杂,一般认为煤有机质是具有不规则构造的空间聚合体,它的基本结构单元是缩合芳环为主体的带有侧链和官能团的大分子,而石油则为烷烃、环烷烃和芳烃的混合物。煤还含有相当数量的以细分散组分的形式存在的无机矿物质和吸附水,煤也含有数量不定的杂原子(氧、氮、硫)、碱金属和微量元素。要把固体煤转化为液体油,就必须采用增加温度或其他化学方法以打碎煤的分子结构,使大分子物质变成小分子物质,同时外界要供给足够量的氢,提高其H/C原子比。 煤直接液化反应比较复杂,大致可分为热解、氢转移、加氢三个反应步骤, 如果煤在热解过程中外界不提供氢,煤热解产生的自由基碎片只能靠自身的氢再分配,使少量的自由基碎片形成低分子油和气,而大量的自由基碎片则发生缩聚反应生成固体焦。如果煤在热解过程中外界供给氢,而且煤热解产生的自由基碎片与周围的氢结合成稳定的H/C原子比较高的低分子物(油和气),这样就能抑制缩聚反应,使煤全部或绝大部分转化成油和气。一次加氢液化的实质是用高温切断化学结构中的C-C键,在断裂处用氢来饱和,从而使分子量减少和H/C原子比提高。反应温度要控制合适,温度太低,不能打碎煤分子结构或打碎的太少,油产率低。一般液化工艺的温度为400℃~470℃[4]。 与煤自由基碎片结合的氢必须是活化氢。活化氢的来源:(1)煤分子中的氢再分配;(2)供氢溶剂提供;(3)氢气中的氢分子被催化活化;(4)化学反应放出氢,如系统中供给CO+H2O,则发生变换反应(CO+H2O→CO2+H2)放出氢。据研究证明:系统中供CO+H2O或CO+H2的液化效果比单纯供H2的效果好,这主要是CO+H2O的变化反应放出的氢容易与煤的自由基碎片结合。为保证系统中有一定的氢浓度,使氢容易与碎片结合,必须有一定的压力(氢分压)。目前的液化工艺的一般压力为5MPa~30MPa。 对自由基碎片的加氢是液化反应的关键,可用如下方程式表示加氢反应[5] R-CH2-CH2-R’→ RCH2·+R’CH2· RCH2·+R’CH2·+2H·→ RCH3+R’CH3 煤加氢液化过程包括一系列的顺序反应和平行反应,但以顺序反应为主,每一级反应的分子量逐级降低,结构从复杂到简单,杂原子含量逐级减少,H/C原子比逐级上升。在发生顺序反应的同时,又伴随有副反应,即结焦反应的发生。煤加氢液化反应历程如图1-2所示。从沥青烯向油和气的转化是一个相当缓慢的过程,是整个反应的控制步骤。

煤直接液化法和煤液化的基础知识

煤直接液化 煤直接液化,煤液化方法之一。将煤在氢气和催化剂作用下通过加氢裂化转变为液体燃料的过程。因过程主要采用加氢手段,故又称煤的加氢液化法。 沿革 煤直接液化技术早在19世纪即已开始研究。1869年,M.贝特洛用碘化氢在温度270℃下与煤作用,得到烃类油和沥青状物质。1914年德国化学家F.柏吉斯研究氢压下煤的液化,同年与J.比尔维勒共同取得此项试验的专利权。1926年,德国法本公司研究出高效加氢催化剂,用柏吉斯法建成一座由褐煤高压加氢液化制取液体燃料(汽油、柴油等)的工厂。第二次世界大战前,德国由煤及低温干馏煤焦油生产液体燃料,1938年已达到年产1.5Mt的水平,第二次世界大战后期,总生产能力达到4Mt;1935年,英国卜内门化学工业公司在英国比灵赫姆也建起一座由煤及煤焦油生产液体燃料的加氢厂,年产150kt。此外,日本、法国、加拿大及美国也建过一些实验厂。战后,由于石油价格下降,煤液化产品经济上无法与天然石油竞争,遂相继倒闭,甚至实验装置也都停止试验。至60年代初,特别是1973年石油大幅度提价后,煤直接液化工作又受到重视,并开发了一批新的加工过程,如美国的溶剂精炼煤法、埃克森供氢溶剂法、氢煤法等。 埃克森供氢溶剂法 简称EDS法,为美国埃克森研究和工程公司1976年开发的技术。原理是借助供氢溶剂的作用,在一定温度和压力下将煤加氢液化成液体

燃料。建有日处理250t煤的半工业试验装置。其工艺流程主要包括原料混合、加氢液化和产物分离几个部分(图1)。首先将煤、循环溶剂和供氢溶剂(即加氢后的循环溶剂)制成煤浆,与氢气混合后进入反应器。反应温度425~450℃,压力10~14MPa,停留时间30~100min。反应产物经蒸馏分离后,残油一部分作为溶剂直接进入混合器,另一部分在另一个反应器进行催化加氢以提高供氢能力。溶剂和煤浆分别在两个反应器加氢是EDS法的特点。在上述条件下,气态烃和油品总产率为50%~70%(对原料煤),其余为釜底残油。气态烃和油品中 C1~C4约占22%,石脑油约占37%,中油(180~340℃)约占37%。石脑油可用作催化重整原料,或加氢处理后作为汽油调合组分。中油可作为燃料油使用,用于车用柴油机时需进行加氢处理以减少芳烃含量。减压残油通过加氢裂化可得到中油和轻油。图一: 溶剂精炼煤法

现代化煤直接液化技术进展通用范本

内部编号:AN-QP-HT736 版本/ 修改状态:01 / 00 When Carrying Out Various Production T asks, We Should Constantly Improve Product Quality, Ensure Safe Production, Conduct Economic Accounting At The Same Time, And Win More Business Opportunities By Reducing Product Cost, So As T o Realize The Overall Management Of Safe Production. 编辑:__________________ 审核:__________________ 单位:__________________ 现代化煤直接液化技术进展通用范本

现代化煤直接液化技术进展通用范本 使用指引:本安全管理文件可用于贯彻执行各项生产任务时,不断提高产品质量,保证安全生产,同时进行经济核算,通过降低产品成本来赢得更多商业机会,最终实现对安全生产工作全面管理。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 我国是一个富煤贫油少气的国家,煤炭资源探明剩余可采储量为1842 亿t,石油资源探明剩余经济可采储量为20.4 亿t,天然气资源探明剩余经济可采储量为23900 亿m3,这样的能源结构决定了中国煤炭价格要大大低于油气价格,煤炭价格的上涨速度也大大低于油气价格的上涨速度。近年来,我国石油进口量不断增加,对外依存度已超过40%,已经严重威胁到我国国家的能源安全问题。面对这样的现实,为了缓解我国石油严重短缺的现状,充分利用中国采储量相对较大的煤炭资源,大力推进煤液化产业的成熟与发展,越来越受到了国

神华煤直接液化项目的综合评价

摘要 神华煤制油项目是世界上首个建设的工业化项目,工程分为先期和一期,总建设规模为年生产油品500万t,自2004年8月先期工程开工建设,到2009年一期工程第一条生产线基本完成,并计划于2009年5月正式投产。 本文对神华煤直接液化工艺项目进行了综合评价,主要分为3个部分,包括经济分析、技术分析和环境分析。同时,本文还介绍了煤直接液化的工艺流程,重点介绍了煤制油工艺的特殊的单元,例如:煤液化单元,煤制氢单元,T-star工艺单元。 经济分析部分,采用技术经济学的知识,计算了项目的总投资、总成本、项目销售收入和税金以及现金流量。计算出了项目的内部收益率为13.13%,全投资的回收期为7.73年,大于石油化工项目的平均内部收益率10%。从经济方面,神华煤制油项目是有优势的。 技术分析部分,主要从煤直接液化工艺的技术方案,工程放大和项目的建设进行了研究。重点分析了液化工艺核心技术—采用美国的HTI工艺,液化工艺的催化剂制备单元—采用新型高效“863”合成催化剂,液化工艺煤制氢单元—采用Shell粉煤加压气化工艺等先进的技术。神华煤制油项目在产品分离、加氢改质、空分、水处理方面都采用了先进的技术。同时项目的工程放大和项目的建设都保证了神华煤制油项目的有条不紊的建设。 环境分析部分,重点研究了神华项目污水和液化残渣的利用。对这两部分分别提出了建议意见。 最后,本文对神华项目提出了发展建议,提出了神华项目要加大自主技术研究,完善绿化方案,建立水库储备水源,研究煤、电和化工的结合。 关键词:煤制油;直接液化;综合评价

Abstract Shenhua coal to oil was the first industrialization project on construction in the world, which was divided into two stages,including the early one and the first one.the gross of project is five million tons/year in petroleum product. The early stage started to be constructed since August, 2004, the first stage will be finshed in 2009, and plan to put into production in may. The comprehensive evaluation of the project in direct liquefaction process on shenhua coal was studied in this paper, which mainly was divided into three parts, including the economic analysis, technical analysis and environmental analysis. At the same time, this paper also introduced the process flow in coal liquefaction, major introduced special unit of coal to oil, for example: coal liquefaction unit, hydrogen unit, T-star process unit. Economic analysis, using knowledge of technical economics, the project total investment, total cost, project sales income and tax and cash flow were calculated,then the internal rate of return and investment recoupment period of project were 13.13% and 7.73 years respectively.The internal rate of return was more than the one for petrochemical industry which was 10%. From the economic aspect, the project was profitable. Technical analysis, mainly studied from coal direct liquefaction technical scheme, engineering enlargement and project construction. The core technology liquefaction process - HTI process employing the America technology, catalyst preparation process - using new efficient "863" synthesis catalyst, coal liquefaction process for hydrogen production unit by adding pressurized gasification - employing Shell advanced pressurized gasification technology were emphatically analyzed. Shenhua coal to oil project in product separation unit, hydrogenation modification uint,air

现代化煤直接液化技术进展

编订:__________________ 审核:__________________ 单位:__________________ 现代化煤直接液化技术进 展 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2023-90 现代化煤直接液化技术进展 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 我国是一个富煤贫油少气的国家,煤炭资源探明剩余可采储量为1842 亿t,石油资源探明剩余经济可采储量为20.4 亿t,天然气资源探明剩余经济可采储量为23900 亿m3,这样的能源结构决定了中国煤炭价格要大大低于油气价格,煤炭价格的上涨速度也大大低于油气价格的上涨速度。近年来,我国石油进口量不断增加,对外依存度已超过40%,已经严重威胁到我国国家的能源安全问题。面对这样的现实,为了缓解我国石油严重短缺的现状,充分利用中国采储量相对较大的煤炭资源,大力推进煤液化产业的成熟与发展,越来越受到了国人的重 视和青睐。 “煤制油”的科学名称为“煤液化”,实施煤液化目是事关国家能源安全的重大战略选择。煤直接液化

现代化煤直接液化技术进展(最新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 现代化煤直接液化技术进展(最 新版)

现代化煤直接液化技术进展(最新版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 我国是一个富煤贫油少气的国家,煤炭资源探明剩余可采储量为1842亿t,石油资源探明剩余经济可采储量为20.4亿t,天然气资源探明剩余经济可采储量为23900亿m3,这样的能源结构决定了中国煤炭价格要大大低于油气价格,煤炭价格的上涨速度也大大低于油气价格的上涨速度。近年来,我国石油进口量不断增加,对外依存度已超过40%,已经严重威胁到我国国家的能源安全问题。面对这样的现实,为了缓解我国石油严重短缺的现状,充分利用中国采储量相对较大的煤炭资源,大力推进煤液化产业的成熟与发展,越来越受到了国人的重 视和青睐。 “煤制油”的科学名称为“煤液化”,实施煤液化目是事关国家能源安全的重大战略选择。煤直接液化是国家“十五”期间12个高技术工程项目之一,受到各方关注,国外专家也积极参与[1-3]。所谓煤液化,就是指把固体的煤炭通过化学加工的方法,使其转化为液体燃

煤液化技术

第一章绪论 1、我国石油能源面临的形势和对策 答:形势:我国石油消费不断增长,大大超过了同期原油生产的增长速度,致使石油共需缺口逐年扩大,不得不进口以补充国内资源不足对策:加大国内石油勘探开发力度,加强国际间的合作多渠道进口石油资源和增加石油的战略储备,加强对煤炭资源的利用。 2、简述煤炭液化的发展史 答:1913年,德国人Bergius发明煤炭在高温高压下加氢能转化成液体油品;1931年,德国IG公司的煤直接液化厂投入运转,生产能力为产油10万吨/年第二次世界大战期间,德国有12家生产厂,总生产能力423万吨/年;40年代,日本、英国、美国也有试验装置。1949年,美国矿业局建立了煤炭处理量为50~60 t/d中试装置;1952年,美国矿业局制定了煤炭液化的发展计划,规划建设2座煤直接液化厂联合碳化物公司;从1935年开始就研究煤炭直接液化技术,到五十年代初发展到300 t/d的试验规模,试图生产各种芳香烃类化学品; 1960年,成立了煤炭研究办公室(OCR)一直支持一些公司和研究机构从事以气化、液化为重点的煤炭加工利用的研究。 3、为什么说煤炭液化是我国的战略选择 答:中国有丰富的可供液化的煤炭资源;中国石油资源短缺;中国政府非常重视石油资源短缺问题,地方积极性也高;是实现煤炭资源高效洁净利用的有效途径之一,提高了煤炭转换过程中的效率及控制了污染,提供了优质替代燃料,优化终端能源结构,保障能源安全。 第二章煤炭与石油的基本性质和分类 1、煤的大分子是如何构成的? 答:煤的大分子是由多个结构相似的“基本结构单元”通过桥键连接而成。基本结构单元类似于聚合物的聚合单体,可分为规则部分和不规则部分。 2、什么是煤的族组成? 答:在一定条件下,对煤的分子结构没有破坏的情况下,进行分子分离后得到的组成 3、煤的溶剂抽提有哪几种? 答:普通、特殊、抽提热解、化学抽提氢解和超临界抽提 4、什么是煤的容胀? 答:高聚物中的高分子键通过一定数量的化学键相交联形成三维空间结构 5、发动机燃料有哪几种? 答:汽油、柴油、喷气燃料 6、对液体燃料有哪些要求? 答:蒸发性、燃烧性、安定性、腐蚀性、低温流动性 7、原油及其馏分族组成表示中,N、P、O、A 分别表示什么? 答:分为链烷烃

、环烷烃、烯烃、芳香烃 8、什么是催化重整?原料和产物是什么? 答:催化重整是指在催化剂作用下,烃类分子的结构发生重排生成所需要的新的化合物的工艺过程。产物:苯、甲苯和二甲苯。原料:石油 9、什么是催化裂化? 答:催化裂化是重质油在酸性催化剂存在下,于480~520℃和近于常压下发生裂解反应。 10、什么是加氢裂化? 答:加氢裂化是通过催化加氢提高油料的氢碳比,然后进行裂化,实现重油轻质化。

相关文档
最新文档