第6节(弯曲变形)

第6节(弯曲变形)

第6节(弯曲变形)

单元5 剪切与扭转变形时的承载力计算

单元5 剪切与扭转变形时的承载力计算 【学习目标】 1.能深入理解剪切和挤压的概念; 2.能进行剪应力和压应力的计算和校核; 3.能灵活运用剪切虎克定律公式和剪应力互等定理; 4.能深入理解圆轴的扭矩的概念和公式; 5.能进行圆轴圆轴扭转强度计算,最大剪应力; 5.1 剪切与挤压变形实例 5.1.1剪切的概念 它是指杆件受到一对垂直于杆轴方向的大小相等、方向相反、作用线相距很近的外力作用所引起的变形,如铆钉连接中的铆钉及销轴连接中的销等都是心剪切变形为主要变形的构件。 图5.1 如图所示。此时,截面cd相对于动将发生相对ab错动,即剪切变形。若变形过大,杆件将在两个外力作用面之间的某一截面m—m处被剪断,被剪断的截面称为剪切面,如图5.1所示。 5.1.2挤压的概念 构件在受剪切的同时,在两构件的接触面上,因互相压紧会产生局部受压,称为挤压。 图5.2

如图5.2所示的铆钉连接中,作用在钢板上的拉力F,通过钢板与铆钉的接触面传递给铆钉,接触面上就产生了挤压。两构件的接触面称为挤压面,作用于接触面的压力称挤压力,挤压面上的压应力称挤压应力,当挤压力过大时,孔壁边缘将受压起“皱”,铆钉局部压“扁”,使圆孔变成椭圆,连接松动,这就是挤压破坏。因此,连接件除剪切强度需计算外,还要进行挤压强度计算。 图5.3 5.2 铆接或螺栓连接实用计算(剪切与挤压的实用计算) 5.2.1剪切的实用计算 剪切面上的内力可用截面法求得。 图5.4 假想将铆钉沿剪切面截开分为上下两部分,任取其中一部分为研究对象,由平衡条件可知,剪切面上的内力Q必然与外力方向相反,大小由∑X=0,F-Q=0,得:Q=F这种平行于截面的内力Q称为剪力。 与剪力Q相应,在剪切面上有剪应力η存在。剪应力在剪切面上的分布情况十分复杂,工程上通常采用一种以试验及经验为基础的实用计算方法来计算,假定剪切面上的剪应力η是均匀分布的。因此:Qη=―A式中A——剪切面面积; Q——剪切面上的剪力。 为保证构件不发生剪切破坏,就要求剪切面上的平均剪应力不超过材料的许用剪应力,即剪切时的强度条件为:Q η=―≤[η]( 5.1 ) A 式中[η]——许用剪应力,许用剪应力由剪切试验测定。

弯曲变形剪切变形

很常见的四个概念,但是一定要小心~ 弯曲变形、剪切变形,弯曲型变形、剪切型变形。注意,一个字之差,意思却大不相同。弯曲变形、剪切变形:这两个是材料力学和结构力学中的概念,分别指构件中的某一个截面的弯矩、剪力产生的变形,可以由弯矩和抗弯刚度EI、剪力和抗剪刚度GA计算得到。框架结构,剪力墙结构和框剪结构在侧向力作用下的水平位移曲线的特点:1、框:抗侧刚度较小,其位移由两部分组成:梁和柱的弯曲变形产生的位移,侧移曲线呈剪切型,自下而上层间位移减小;柱的轴向变形产生的侧移,侧移曲线呈弯曲型,自下而上层间位移增大.第一部分是主要的,第二部分很小可以忽略,所以框架结构在侧向力作用下的侧移曲线以剪切型为主,故称为剪切型变形. 2、剪:抗侧刚度较大,剪力墙的剪切变形产生位移,侧向位移呈弯曲型,即层间位移由下至上逐渐增大,相当于一个悬臂梁; 3、框剪:位移曲线包括剪切型和弯曲型,由于楼板的作用,框架和墙的侧向位移必须协调.在结构的底部,框架的侧移减小;在结构的上部,剪力墙的侧移减小,侧移曲线呈弯剪型,层间位移沿建筑物的高度比较均匀,改善了框架结构及剪力墙结构的抗震性能,也有利于减少小震作用下非结构构件的破坏 框架结构抗侧刚度小,在水平力作用下产生较大侧向位移该位移变形包括1、由柱子的拉压变形产生水平位移而引起的整体弯曲,该部份所占比例小而被忽略了2、梁柱杆件发生弯曲变形后产生的水平位移而引起的剪切变形。底部的剪力大剪切变形就大,楼层增高该变形逐渐减小. 而剪力墙结构就是2楼说的它是一根下部嵌固的悬臂深梁 剪力墙结构的侧向刚度较大,在水平力作用下其结构类似于一根竖向悬臂构件, 可以把地球理解成这根竖向悬臂构件的支座,地面就是它的固定端, 它的变形当然是离固定端近的就比较小了,好象挑梁一样. 弯曲变形对应弯曲破坏,是延性破坏,剪力墙刚度大,对应的是弯曲变形, 给一个单位力施加在结构上,所产生的位移对应是柔度, 框架结构变形较剪力墙变形大,是相对其剪力墙较柔,刚度较差。 剪切变形对应剪切破坏,是脆性破坏,结构中尽量避免,延迟。 有些概念,只是概念,结构中很多是试验得到的,有时太深入,反而把自己搞晕了。 2#楼的好像说的也不是很清楚。 我试着说说。根据结构力学我们知道结构在荷载作用下的位移包括三部分:弯矩引起的、剪力引起、轴力引起。一般多层框架结构的变形主要是由梁柱的弯曲变形产生的,层间剪力除以层抗侧刚度,高层的话轴力变形也是不容忽略的。这种变形的形状和悬臂梁在剪力作用下的相似,所以叫剪切变形。 而剪力墙结构的变形主要由弯曲和剪切变形,变形的形状和悬臂梁的弯曲变形相似,所以称为弯曲变形。 为什么都是和悬臂梁的变形做比较,每个建筑从整体上看都是坐落在大地上的悬臂梁。老庄结构总提的老子的思想,一生二,从悬臂梁转化简支梁、固端梁等等。

材料力学习题册答案-第6章 弯曲变形

第六章弯曲变形 一、是非判断题 1.梁的挠曲线近似微分方程为EIy’’=M(x)。(√)2.梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角为零。(×)3.两根几何尺寸、支撑条件完全相同的静定梁,只要所受载荷相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是 否相同无关。(×)4.等截面直梁在弯曲变形时,挠曲线的曲率最大值发生在转角等于零的截面处。(×)5.若梁上中间铰链处无集中力偶作用,则中间铰链左右两侧截面的挠度相等,转角不等。(√)6.简支梁的抗弯刚度EI相同,在梁中间受载荷F相同,当梁的跨度增大一倍后,其最大挠度增加四倍。(×)7.当一个梁同时受几个力作用时,某截面的挠度和转角就等于每一个单独作用下该截面的挠度和转角的代数和。(√)8.弯矩突变的截面转角也有突变。(×) 二、选择题 1. 梁的挠度是(D) A 横截面上任一点沿梁轴线方向的位移 B 横截面形心沿梁轴方向的位移 C横截面形心沿梁轴方向的线位移

D 横截面形心的位移 2. 在下列关于挠度、转角正负号的概念中,(B)是正确的。 A 转角的正负号与坐标系有关,挠度的正负号与坐标系无关 B 转角的正负号与坐标系无关,挠度的正负号与坐标系有关 C 转角和挠度的正负号均与坐标系有关 D 转角和挠度的正负号均与坐标系无关 3. 挠曲线近似微分方程在(D)条件下成立。 A 梁的变形属于小变形 B 材料服从胡克定律 C 挠曲线在xoy平面内 D 同时满足A、B、C 4. 等截面直梁在弯曲变形时,挠曲线的最大曲率发生在(D)处。 A 挠度最大 B 转角最大 C 剪力最大 D 弯矩最大 5. 两简支梁,一根为刚,一根为铜,已知它们的抗弯刚度相同。跨中作用有相同的力F,二者的(B)不同。 A支反力 B 最大正应力 C 最大挠度D最大转角6. 某悬臂梁其刚度为EI,跨度为l,自由端作用有力F。为减小最大挠度,则下列方案中最佳方案是(B) A 梁长改为l /2,惯性矩改为I/8 B 梁长改为3 l /4,惯性矩改为I/2 C 梁长改为5 l /4,惯性矩改为3I/2 D 梁长改为3 l /2,惯性矩改为I/4 7. 已知等截面直梁在某一段上的挠曲线方程为: y(x)=Ax2(4lx - 6l2-x2),则该段梁上(B)

工程力学习题库-弯曲变形

第8章 弯曲变形 本章要点 【概念】平面弯曲,剪力、弯矩符号规定,纯弯曲,中性轴,曲率,挠度,转角。 剪力、弯矩与荷载集度的关系;弯曲正应力的适用条件;提高梁的弯曲强度的措施;运用叠加法求弯曲变形的前提条件;截面上正应力分布规律、切应力分布规律。 【公式】 1. 弯曲正应力 变形几何关系:y ερ = 物理关系:E y σρ = 静力关系:0N A F dA σ==?,0y A M z dA σ==?,2z z A A EI E M y dA y dA σρ ρ == =?? 中性层曲率: 1 M EI ρ = 弯曲正应力应力:,M y I σ= ,max max z M W σ= 弯曲变形的正应力强度条件:[]max max z M W σσ=≤ 2. 弯曲切应力 矩形截面梁弯曲切应力:b I S F y z z S ??=* )(τ,A F bh F S S 2323max ==τ 工字形梁弯曲切应力:d I S F y z z S ??=* )(τ,A F dh F S S ==max τ 圆形截面梁弯曲切应力:b I S F y z z S ??=* )(τ,A F S 34max =τ 弯曲切应力强度条件:[]ττ≤max

3. 梁的弯曲变形 梁的挠曲线近似微分方程:()''EIw M x =- 梁的转角方程:1()dw M x dx C dx EI θ= =-+? 梁的挠度方程:12()Z M x w dx dx C x C EI ??=-++ ??? ?? 练习题 一. 单选题 1、 建立平面弯曲正应力公式z I My /=σ,需要考虑的关系有( )。查看答案 A 、平衡关系,物理关系,变形几何关系 B 、变形几何关系,物理关系,静力关系; C 、变形几何关系,平衡关系,静力关系 D 、平衡关系, 物理关系,静力关系; 2、 利用积分法求梁的变形,不需要用到下面那类条件( )来确定积分常 数。 查看答案 A 、平衡条件 B 、边界条件 C 、连续性条件 D 、光滑性条件 3、 在图1悬臂梁的AC 段上,各个截面上的( )。 A .剪力相同,弯矩不同 B .剪力不同,弯矩相同 C .剪力和弯矩均相同 D .剪力和弯矩均不同 图1 图2 4、 图2悬臂梁受力,其中( )。 A .A B 段是纯弯曲,B C 段是剪切弯曲

第12章 薄板的小挠度弯曲问题

第十二章薄板的小挠度弯曲问题知识点 薄板的基本概念 薄板的位移与应变分量 薄板广义力 薄板小挠度弯曲问题基本方程薄板自由边界条件的简化 薄板的莱维解 矩形简支薄板的挠度基尔霍夫假设 薄板应力 广义位移与薄板的平衡 薄板的典型边界条件 薄板自由边界角点边界条件挠度函数的分解 一、内容介绍 薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板。薄板的弯曲变形属于弹性力学空间问题,由于数学求解的复杂性,因此,需要首先建立应力和变形分布的基本假设。 根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。薄板的小挠度弯曲理论是由基尔霍夫基本假设作为基础的。 根据基尔霍夫假设,采用位移解法,就是以挠度函数作为基本未知量求解。因此,首先将薄板的应力、应变和内力用挠度函数表达。然后根据薄板单元体的平衡,建立挠度函数表达到平衡方程。 对于薄板问题,边界条件的处理与弹性力学平面等问题有所不同,典型形式有几何边界、混合边界和面力边界条件。 二、重点 1、基尔霍夫假设; 2、薄板的应力、广义力和广义位移; 3、薄板小 挠度弯曲问题的基本方程;4、薄板的典型边界条件及其简化。 §12.1 薄板的基本概念和基本假设

学习要点: 本节讨论薄板的基本概念和基本假设。 薄板主要几何特征是板的中面和厚度。首先,根据几何尺寸,定义薄板为0.5≤δ/b≥1/80,并且挠度小于厚度的五分之一,属于小挠度问题。对于小挠度薄板,在横向载荷作用下,将主要产生弯曲变形。 根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。 薄板的小挠度弯曲理论是由三个基本假设作为基础的,因为这些基本假设是由基尔霍夫首先提出的,因此又称为基尔霍夫假设。 根据上述假设建立的薄板小挠度弯曲理论是弹性力学的经典理论,长期应用于工程问题的分析。实践证明是完全正确的。 学习思路: 1、薄板基本概念; 2、基尔霍夫假设 1、薄板基本概念 薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板 薄板的弯曲变形属于弹性力学空间问题,由于数学求解的复杂性,因此,需要首先建立应力和变形分布的基本假设。 薄板的上下两个平行面称为板面,垂直于平行面的柱面称为板边,如图所示。两个平行面之间的距离称为板厚,用δ 表示。平分板厚的平面称为板的中面。 设薄板宽度为a、b,假如板的最小特征尺寸为b,如果δ/b≥1/5,称为厚板;

最新第七章 剪切和扭转讲课讲稿

第七章 剪切和扭转 § 7-1 剪切的概念 在工程实际中,有许多起连接作用的部件,如图17-所示各种常见连接中的螺栓、铆 钉、销轴、键,这些起连接作用的部件,称为连接件,它们都是剪切变形的工程实例。 图7—2(a )所示的铆钉连接中,钢板受力后,通过钢板与铆钉的接触面,将力传递到铆钉上,使铆钉受力如图(b )所示。此时,铆钉受到一对垂直于杆轴线、大小相等、方向相反、作用线相距很近而不重合的平行外力的作用。 随着力的逐渐增大,铆钉的上、下两部分将会分别沿着外力的方向移动,从而发生沿着两作用力之间的截面相对错动的变形,这种变形即为剪切变形。当外力足够大时,铆钉可能会沿着mm 截面被剪断,如图7—2(c )所示。 在剪切变形中,发生相对错动的面,称为剪切面。剪切面平行于作用力的方向,介于使连接件产生剪切变形的二力之间。 § 7-2 连接接头的强度计算 工程上通常采用实用计算方法来分析连接件的强度计算 一、剪切的实用计算 二、挤压实用计算 连接件在受剪切的同时,往往伴随着挤压,如图7—4所示。作用于挤压面上的力,称为挤压力,用C F 表示。挤压面积用C A 表示。挤压力在挤压面上的分布集度称为挤压应力,用C σ表示。挤压应力的实际分布很复杂。在实用计算中,假定挤压应力在挤压面上是均匀分布的。 【例7—1】 如图7—5所示铆接钢板的厚度10=δmm ,铆钉直径17=d mm ,铆钉的许用剪 应力 []τ=140MPa ,许用挤压应力[]320 =C σMPa ,=P 24kN ,试作强度校核。 解:(1)剪切强度校核 24 = ==d P A Q πτ[]MPa 8.105=<=τ(2)挤压强度校核 [MPa d P A F C C C 2.141<===δσ满足挤压强度条件

弯曲变形

第七章 弯 曲 变 形 1 基本概念及知识要点 1.1 基本概念 挠度、转角、挠曲线、挠曲线近似微分方程、直接积分法、叠加法。 1.2 挠度和转角 梁弯曲变形后,梁轴线将弯曲成一条光滑而连续的曲线,称为挠曲线。以梁在变形前的轴线为x 轴,y 轴向上为正。梁的挠曲线为xy 平面内的一条平面曲线。 梁的弯曲变形用两个基本量来度量: 1 挠度:横截面形心沿垂直于梁轴线方向的位移,用w 表示;向上的挠度为正,反之为负。 2 转角:横截面变形后绕中性轴转过的角度,用θ表示。逆时针转动为正,顺时针转动为负。挠度和转角之间有如下关系: () dw x dx θ= 可见确定梁的位移,关键是确定挠曲线方程()w f x =。 1.3 挠曲线近似微分方程 梁弯曲时,曲率和弯矩的关系为 1() ()() M x x EI x ρ=,式中)(x EI 为梁的抗弯刚度。在小变形的情况下,挠曲线近似微分方程为 22() d w M x dx EI = 1.4 梁变形的求解 1 直接积分法 对挠曲线近似微分方程积分一次,得转角方程 ()() ()dw x M x x dx C dx EI θ= =+? (a ) 再积分一次,得挠度方程 () ()M x w x dxdx Cx D EI =++?? (b ) 其中C 、D 为积分常数,可利用梁的边界条件和挠曲线连续条件确定。 2 叠加法 在小变形和弹性范围内,梁的挠度与载荷为线性关系,可以用叠加法求梁的挠度:即将梁的载荷分为若干种简单载荷,分别求出各种简单载荷作用下的位移,将它们叠加起来即为原载荷产生的位移。

1.5 梁的刚度条件 梁的设计中,除了需要满足强度条件外,在很多情况下,还要将变形限制在一定范围内,即满足刚度条件 max max [] [] w w θθ≤≤ 式中的[]w 和][θ分别为梁的许用挠度和许用转角,可从有关设计手册中查得。 1.6 简单超静定梁 由于多余约束的存在,某些梁的约束反力只用静力平衡方程并不能完全确定,这种梁称为超静定梁。求解方法之一为变形比较法,主要有以下步骤: (1)解除多余约束,视此约束反力为未知外力,选取静定基,得到原超静定梁的相当系统; (2)将相当系统的变形与原系统比较,找到变形所应满足的条件,即变形协调方程; (3)由变形协调方程求解未知的约束反力。 多余约束反力解出后,利用平衡方程求解其它约束反力。 1.7 提高梁刚度的措施 从挠曲线的近似微分方程及其积分可以看出,弯曲变形与弯矩大小、跨度长短、支座条件、梁截面的惯性矩I 、材料的弹性模量E 有关。故提高梁刚度的措施为: (1)改善结构形式,减小弯矩M ; (2)增加支承,减小跨度l ; (3)选用合适的材料,增加弹性模量E : (4)选择合理的截面形状,提高惯性矩I ,如工字形截面、空心截面等。 2 重点与难点及解析方法 2.1挠曲线近似微分方程 梁弯曲变形后,曲率和弯矩之间的关系EI x M x ) ()(1= ρ是弯曲变形的基本方程,可直接用来解决梁的一些变形问题。 解析方法:梁的挠曲线近似微分方程是建立在以梁左端为原点的右手坐标系上的, 求解梁的弯曲变形时应特别注意。 2.2梁变形的求解 1 直接积分法是求解梁的变形的基本方法。

案例-弯曲变形与强度.

台湾丰原高中礼堂坍塌事故原因分析 建筑物坍毁是工程事故发展的最终阶段,因此所有坍塌事故均属于恶性事故。按照《建筑结构设计统一标准》(GB 68—84、GB 50068—2001)和结构抗震设计“小震不坏,中震可修,大震不倒”三准则的要求,所有坍塌事故,包括地震灾后的坍塌事故,都属于责任事故,应该追究当事人责任。只有经过分析鉴定,确认事故原因存在设计安全水准以外的意外因素时,才能界定为天灾,豁免当事人责仟。下面列举的坍塌事故都是近年来发生在国内外的引起全社会关注的恶性事故,并且都是人为过失事故。说明在所有工程事故中,人为过失事故占了很大比例,值得警惕! 1.案例背景 该礼堂位于一栋19.5m×49.5m的两层长方形建筑的第2层(底层为教室),层高6m,平面如图1所示。屋顶结构由跨度19.5m、中心间距4.5m的钢桁架承重。桁架端部高125cm,跨中高135cm,次桁架起纵向支撑的作用,并与主桁架相连接构成整体,由40cm×60cm的钢筋混凝土柱与纵向连系梁组成纵向排架支承,并在⑤~⑧轴处从联系梁则面悬挑出一很大的钢筋混凝土雨篷。屋盖系统如图2所示。 图1 中学礼堂平面图图2 礼堂顶层结构简图 施工过程中,由于某种原因,在底层教室完工后,曾有10个月的停工间隙期,因而在第2层楼面以上的钢筋混凝土立柱中,存在施工缝的处理问题。 该建筑于1975年1月竣工。由于出现严重的屋面渗漏现象,在1983年6月对屋面进行返修。返修时,为了改善屋面的保温隔热性能,在屋顶上增加了一个蓄水保温系统。 1983年8月24日,该礼堂屋顶结构发生坍塌。虽然事故的前一天曾经下过雨,但在事故发生的时候,并未在结构上施加任何临时额外荷载,坍毁前也没有出现异兆。 2.可用于事故原因分析的线索 (1)节点连接的施工质量问题 台湾技术学院的C.Y.林教授经过现场考察认为,结构系统的坍毁很可能是始于下弦拉杆的某一焊接头断裂,或者是由于垂直杆与斜撑杆的螺栓接头松

第六章弯曲变形

第六章 弯曲变形 挠曲线的弯曲微分方程 W=f(x) 挠度 横截面形心(即轴线上的点)在垂直于x 轴方向的线位移, 转角 横截面对原来位置的角位移,称为该截面的转角 可以是挠曲线上的点的切线方向与x 轴的夹角,也是改点的法线与横截面的夹角 【转角就是这一点的切线的斜正值为正的,负值为顺时针】 规定转角顺时针为负值,逆时针为正值, 而且剪力是顺时针为正值,逆时针为负值 注意 用梁的轴线来代替梁 弯矩规定下凸为正(叫做凹曲线)左顺右逆【使下侧受压为正】 梁的弯曲变形是很小的,在tan θ=θ值 在数学表达式中有|' 1"w |p 1w +=中有二阶无穷小量 最后简化为 在规定的坐标系中, x 轴水平向右为正, w 轴竖直向上为正。此时,挠度的二阶导数在挠曲线凹(下凸)时为正,反之为负。 【挠度的二阶导数是弯矩,一阶导数是转角正好有弯矩的定义对应起来】 梁的挠曲线近似微分方程 在这公式中,只是纯弯曲,忽略了剪力和二阶无穷小量 6---3用积分法求弯曲变形 在挠曲线的某些点上,挠度和转角有时候是已知的 1()()M x x EI ρ=()"M x w EI =1()d EIw M x x C '=+?12()d d EIw M x x x C x C =++??

积分常数的确定 1.边界条件 简支梁左右胶支座挠度为0; 悬臂梁固定端挠度是零,转角也是零 2.连续条件 (1)挠度连续条件 (2)转角连续条件 3.感悟弯矩为零处转角取极值;转角为零处,挠度取极值【更加简单的是从挠度曲线上来判读】 4.事实上:在简支梁中, 不论集中载荷作用于什么位置, 其最大挠度值一般都可用梁跨中点处的挠度值来代替, 精确度能够满足工程要求.技巧:(a )对各段梁,都是由坐标原点到所研究截面之间的梁段上的外力来写弯矩方程的.所以后一段梁的弯矩方程包含前一段梁的弯矩方程.只增加了(x-a)的项. 对于见对方对于简支梁的来说;中间作用一个集中力的话,要是判断那一段的挠度和转角的话,1 比较a 和b 的值,谁大挠度最大值就在那一侧;因为转角是在弯矩等于零的地方,所以可以知道转角一定会在 角支座处可能取得2比较集中力作用点的转角值得正负也可以判断 6--4用叠加法求弯曲变形 载荷叠加法和结构叠加法(逐段钢化法) 在简支梁的一段作用的非集中载荷时候;要用积分的方法;取一小段dx 算出这一点的集度,再用第九栏的公式计算 0)(a x M -+

壳– 具有明显剪切变形的板弯曲

SAP2000 PROGRAM NAME: REVISION NO.: 算例 2-012 壳–具有明显剪切变形的板弯曲 问题描述 本算例是参考文献Roark and Young 1975中376页的例子。这是一个环形 板,内径1.4 in,外径2 in,厚度0.5 in。板在内边简支,在半径1.8 in处 施加一圆形线荷载。自由外边缘的变形与文献中的结果进行了比较。 文献中给出了弯曲和剪切对边缘变形的贡献。为这个算例创建三个模型。 第一个模型(Example 2-012a-thin)使用壳单元薄板选项。因为薄板公式不包 括剪切变形效果,薄板模型结果与文献中的弯曲变形比较。 第二个模型(Example 2-012a-thick)使用厚板选项。因为厚板变形包括剪切变 形影响,厚板模型结果与文献中弯曲和剪切变形的和进行比较。 第三个模型(Example 2-012b-thick)使用厚板选项但包含了面对象剪切刚度修 正v13 = 1,000 和 v23 = 1,000。修正系数使壳单元在剪切上刚 1,000 倍,因此 剪切变形可忽略不计。带剪切刚度修正的厚板模型结果与文献中变形比 较。 环形板用6x96网格剖分(径向乘切向). 圆形线荷载作为分布荷载施加到虚框架单元上。对虚框架单元所有的属性 修改设为零。因此虚框架单元没有刚度。

PROGRAM NAME: SAP2000 REVISION NO.: 几何,属性与荷载 , ,

PROGRAM NAME: SAP2000 REVISION NO.: SAP2000测试的技术特性 ?壳单元的板弯曲分析,剪切变形明显。 ?面对象刚度修正 ?框架分布荷载 结果比较 手算解在参考文献Roark and Young 1975中376页。文献中弯曲变形为- 0.00521 in,剪切变形为-0.00521 in,弯曲和剪切共同作用变形为-0.00534 in。 模型输出参数SAP2000 手算解百分误差 A 薄板外边缘 U z 弯曲变形 in -0.00522 -0.00521 +0.2% A 厚板 外边缘 U z 弯曲加剪切变 形 in -0.00534 -0.00534 0% B 带剪切刚度修正的厚板外边缘 U z 弯曲变形 in -0.00521 -0.00521 0%

10弯形矫正讲解

钳工工艺一体化授课计划

讲授新课:(工艺知识) 定义:将坯料弯成所需要形状的加工方法,称为弯形。 一、弯形 1.弯形概述 弯形是使材料产生塑性变形,因此只有塑性好的材料才能进行弯形。钢板弯形后它的外层材料伸长,内层材料缩短,而中间有一层材料弯形后长度不 变,则称为中性层。 弯形虽然是塑性变形,但也有弹性变形,为抵消材料的弹性变形,弯形过程中应多弯一些。 2.弯形坯料长度的计算 坯料经弯形后,只有中性层的长度不变,因此计算弯形工件坯料长度时,可按中性层的长度进行计算。但当材料弯形后,中性层并不在材料的正中,而是偏向内层材料一边。实验证明,中性层的实际位置与材料的弯曲半径r和枋料的厚度t有关。 钢板弯曲前后 a)弯曲前 b)弯曲后弯形时中性层位置当材料厚度不变时.弯形半径越大,变形越小,中性层的位置就越接近材料厚度的几何中心。弯形的情况不同时,中性层的位置也不同。 表为中性层系数x0的值。从表中r/t的比值中可以看出,当弯形半径r≥16t 时,中性层在材料的中间(即中性层与几何中心重合)。在一般情况下,为简化计算,当r/t≥8时,可取x0=0.5进行计算。

弯形的形式有多种,图中a 、b 、c 为内面带圆弧的制件,d 是内为直角的制件。 内面带圆弧制件的坯料长度等于直线部分(不变形部分)与圆弧中性层长度(弯形部分)之和。圆弧部分中性层长度的计算式为: A=π(r+ x0t )?180a 式中A ——圆弧部分中性层长度,mm ; r ——弯形半径,mm ; z 。——中性层位置系数; t ——材料厚度(或坯料直径),mm ; a ——弯形角(即弯形中心角),单位(°)。 内面弯形成不带圆弧的直角制件时,其坯料长度的计算可按弯形前后坯料的体积不变,采用A=0.5t 的经验公式求出。 例1厚度t=4mm 的钢板坯料,弯成图中的制件,若弯形角a=120°,内弯形半径r=16 mm ,边长l 1=60mm 、l 2=120 mm ,求坯料长度L 是多少? 解:r/t=6/4 得x 0=O.41 因为 L= l 1+ l 2+A A=π(r+ x 0t )? 180a =3.14×(16+0.41×4) × ??180120 =36.93mm 所以 L= l 1+ l 2+A

建筑力学—弯曲变形及答案

第七章 组合变形 本章主要讨论建筑工程中常见的组合变形的强度计算问题。其中斜弯曲、拉(压)与弯 曲、偏心拉(压)组合变形的强度计算问题是本章的重点。 第一节 组合变形的概念 前面的章节分别研究了杆件在轴向拉(压)、剪切、扭转、平面弯曲基本变形下的强度 和刚度计算。但在工程实际中,结构中一些杆件的受力情况是复杂的,往往同时发生两种或 者两种以上的基本变形,这种由两种或两种以上的基本变形组合而成的变形称为组合变形。 例如,图7-1a 所示的烟囱,除自重引起的轴向压缩外,还有水平方向的风力引起的弯 曲变形,即同时产生两种基本变形。又如,图7-1b 所示的备有吊车的厂房柱,作用在立柱 上的荷载1F 和2F ,其合力的作用线一般不在立柱轴线上,此时,立柱即发生压缩变形又发生 弯曲变形。再如,图7-1c 所示的曲拐轴,在荷载F 作用下,曲拐AB 段同时发生扭转和弯 曲变形。上述这些杆件的变形,都是结构杆件发生组合变形的工程实例。 图7-1 由上一章梁的弯曲可知:外力沿横向作用在梁的纵向对称平面内,梁将发生平面弯曲变 形。那么,外力虽然沿梁的横向(垂直于轴线),但不作用在纵向对称平面内时,梁会发生 怎样的变形呢?实验及理论研究得知,此时梁轴线变形后弯成的曲线已不在荷载的作用平面 内,即不属于平面弯曲,这种弯曲称为斜弯曲。若外力不沿梁的横向(斜交于轴线),但力 作用仍在纵向对称平面内,梁将发生拉(压)与弯曲组合变形。若作用外力虽然沿杆件轴向 方向,但不与轴线重合,杆件也将发生拉(压)与弯曲组合变形,称为偏心拉(压)。对发 生组合变形的杆件计算应力和变形时,可将荷载进行简化或分解,使简化或分解后得到的静 力等效的荷载,每类荷载各自只引起一种基本变形,分别计算,再进行叠加,就得到由原来 的荷载所引起的组合变形的应力和变形,这就是组合变形的分析方法和组合变形计算的叠加 原理。这里需要强调的是:叠加原理是在满足小变形和力与位移成线性关系的条件下才适用。 本章将主要讨论斜弯曲、拉压与弯曲、偏心拉伸(压缩)组合变形的强度计算问题。 第二节 拉伸(压缩)与弯曲组合变形 若外力不沿梁的横向(斜交于轴线),但力仍作用在纵向对称平面内,这时梁将发生拉 伸(压缩)与弯曲变形。如图7-2a 所示矩形截面悬臂梁,外力F 斜交于轴线,与y 轴夹角 为 。若将力沿x 、y 轴方向正交分解,则分力F x 沿梁的轴线作用,使梁发生轴向拉伸变形; 分力F y 沿垂直于轴线作用,使梁发生平面弯曲变形。因此,悬臂梁的变形为轴向拉伸(压 缩)与弯曲的组合变形,简称为拉(压)弯曲组合变形。下面以图7-2a 为例,说明拉(压) 弯曲组合变形时的正应力及强度计算。

剪切变形、弯曲变形

剪切变形、弯曲变形 弯曲变形、剪切变形:这两个是材料力学和结构力学中的概念,分别指构件中的某一个截面的弯矩、剪力产生的变形,可以由弯矩和抗弯刚度EI、剪力和抗剪刚度GA计算得到。 框架结构、剪力墙结构和框剪结构在侧向力作用下的水平位移曲线的特点: (1)框架结构 抗侧刚度较小,其位移由两部分组成:梁和柱的弯曲变形产生的位移,侧移曲线呈剪切型,自下而上层间位移减小;柱的轴向变形产生的侧移,侧移曲线呈弯曲型,自下而上层间位移增大。第一部分是主要的,第二部分很小可以忽略,所以框架结构在侧向力作用下的侧移曲线以剪切型为主,故称为剪切型变形,如下图1。 图1(a)剪切型变形图1(b)剪切型曲线 (2)剪力墙结构 抗侧刚度较大,剪力墙的剪切变形产生位移,侧向位移呈弯曲型,即层间位移由下至上逐渐增大,相当于一个悬臂梁,故称为弯曲型变形,如下图2。 图2(a)弯曲型变形图2(b)弯曲型曲线 (3)框剪结构 位移曲线包括剪切型和弯曲型,由于楼板的作用,框架和墙的侧向位移必须协调。在结构的底部,框架的侧移减小;在结构的上部,剪力墙的

侧移减小,侧移曲线呈弯剪型,层间位移沿建筑物的高度比较均匀,改善了框架结构及剪力墙结构的抗震性能,也有利于减少小震作用下非结构构件的破坏,此变形称为弯剪型变形,如下图3。 图3 弯剪型曲线 弯曲型或剪切型可由构件是否有反弯点来判别。 (1)由位移曲线与弯矩的关系可知道,弯曲型构件变形曲线连续,越往上曲率越大(y轴曲率为0),比如剪力墙、梁、悬臂构件; (2)剪切型构件,反弯点在构件高度或长度范围内,变形曲线有变化、不连续的,比如框架柱、连梁,当然有的框架柱反弯点不在层高范 围内,但《抗规》第6.2.2条规定,就算不在层高范围内柱端弯矩 也要乘以增大系数。 对于结构来说,主要构件为剪切型组成的结构就为剪切变形为主的结构;主要构件为弯曲变形组成的结构就为弯曲变形为主的结构。

最新弯曲变形和剪切变形的区别

弯曲变形、剪切变形:这两个是材料力学和结构力学中的概念,分别指构件中的某一个截面的弯矩、剪力产生的变形,可以由弯矩和抗弯刚度EI、剪力和抗剪刚度GA计算得到。 框架结构,剪力墙结构和框剪结构在侧向力作用下的水平位移曲线的特点: 1、框:抗侧刚度较小,其位移由两部分组成:梁和柱的弯曲变形产生的位移,侧移曲线呈剪切型,自下而上层间位移减小;柱的轴向变形产生的侧移,侧移曲线呈弯曲型,自下而上层间位移增大.第一部分是主要的,第二部分很小可以忽略,所以框架结构在侧向力作用下的侧移曲线以剪切型为主,故称为剪切型变形. 2、剪:抗侧刚度较大,剪力墙的剪切变形产生位移,侧向位移呈弯曲型,即层间位移由下至上逐渐增大,相当于一个悬臂梁; 3、框剪:位移曲线包括剪切型和弯曲型,由于楼板的作用,框架和墙的侧向位移必须协调.在结构的底部,框架的侧移减小;在结构的上部,剪力墙的侧移减小,侧移曲线呈弯剪型,层间位移沿建筑物的高度比较均匀,改善了框架结构及剪力墙结构的抗震性能,也有利于减少小震作用下非结构构件的破坏. 剪切滞后 在受剪力作用的薄壁梁中,距剪力作用点较远的突缘上的正应力(见应力)小于按平截面假设求得值的现象。剪切滞后取决于结构中力的扩散(传播)。力的扩散是指作用在结构某一部分上的非自身平衡的力系,向结构其他部分传递,直至与外力或约束反力相平衡的过程。 图1为一宽突缘工字形悬臂梁,它由上下各五根细长突缘杆、上下各四块突缘板和中间一块薄腹板组成。在剪力Q的作用下,梁中出现剪切滞后现象,这可由下面的力的扩散过程来说明。在杆仅受正应力而板仅受剪应力的简化假设下,当剪力Q作用于腹板的自由端时,整个腹板具有剪应力τ。此剪应力直接作用于与腹板相连的中心杆A1B1上,所以在自由端附近的截面上仅A1B1杆中有正应力和正应变。而A2B2杆和A3B3杆均无正应力和正应变。但A1B1杆的正应变引起突缘板A1B1B2A2的剪应变和剪应力,此剪应力又使突缘杆 A2B2产生正应力。在A2B2杆受力变形的基础上,通过同样方式又使A3B3杆受力。图1中在工字梁的左侧用阴影线表示突缘杆中的正应力,右侧绘出突缘板中的剪应力。由于内力是由受剪腹板经与其相连的突缘杆逐步向远处承力突缘杆传播的,所以在力的扩散过程结束后,远离受剪腹板的杆所受的力在空间上有一定落后,而且受力的值小于按平截面假设求得的值,这就是剪切滞后。而根据平截面假设,各杆的受力情况没有差别,这与实际情况相差较远。因此,在计算薄壁梁的应力时,一般不能采用平截面假设。 剪切滞后造成结构内部受力不均匀,影响结构材料的利用率。例如,由于剪力Q的作用,在图2所示的箱形薄壁结构的上下盖板中就出现剪切滞后现象 (正应力在腹板附近大,中间部分小)。甚至当腹板附近的盖板接近破坏时,盖板的中间部分还处于低应力状态。为了估计剪切滞后对盖板利用率的影响程度,可采用折合宽度概念。即假定宽为 W0的一块板的承载能力恰好相当于一块宽仅为Wb 而充分发挥了承载能力的板,Wb称为折合宽度,而比值嗞=Wb/W0称为减缩系数。嗞值小说明材料的利用率低。通常盖板越宽嗞值越小。在工程设计中,应考虑减少腹板的间距,以提高材料的利用率。 很常见的四个概念,弯曲变形、剪切变形,弯曲型变形、剪切型变形。注意,一个字之差,意思却大不相同。弯曲变形、剪切变形:这两个是材料力学和结构力学中的概念,分别指构件中的某一个截面的弯矩、剪力产生的变形,可以由

弯曲变形分析

弯曲变形分析 弯曲过程中,当坯料上作用有外弯曲力矩时,坯料的曲率半径发生变化。 图1表示板弯曲变形区(ABCD部分)内切向应力的变化情况。弯曲过程中内区 (靠近曲率中心一侧)切向受压,外区(远离曲率中心一侧)受拉。 根据变形程度,弯曲过程可分为三个阶段: 1)弹性弯曲。在变形开始时变形程度较小,坯料变形区应力最大的内、 外表面的材料没有产生屈服,变形区内材料仅为弹性变形。此时的切向应力 分布如图3-1a所示。 2)弹-塑性弯曲。随着变形的增大,坯料变形区内、外表面材料首 先屈服,进入塑性变形状态。随着变形的进一步增大,塑性变形由表面向中 心逐步扩展。切向应力分布如图3-1b。 3)纯塑性弯曲。变形到一定程度,整个变形区的材料完全处于塑性变形 状态。切向应力分布如图3-11c。 弯曲变形过程 在压力机上采用压弯模具对板料进行压弯是弯曲工艺中运用最多的方法。弯曲变形的过程一般经历弹性弯曲变形、弹-塑性弯曲变形、塑性弯曲变形三个阶段。现以常见的V 形件弯曲为例,如图1 所示。板料从平面弯曲成一定角度和形状,其变形过程是围绕着弯曲圆角区域展开的,弯曲圆角区域为主要变形 区。 弯曲开始时,模具的凸、凹模分别与板料在 A 、B 处相接触。设凸模在 A 处施加的弯曲力为 2F (见图 1 a )。这时在 B 处(凹模与板料的接触支点则产生反作用力并与弯曲力构成弯曲力矩M = F·(L 1 /2),使板料产生弯曲。在弯曲的开始阶段,弯曲圆角半径r 很大,弯曲力矩很小,仅引起材料的弹性弯曲变形。

图1 弯曲过程 随着凸模进入凹模深度的增大,凹模与板料的接触处位置发生变化,支点 B 沿凹模斜面不断下移,弯曲力臂 L 逐渐减小,即 L n < L 3 < L 2 < L 1 。同时弯曲圆角半径 r 亦逐渐减小,即 r n < r 3 < r 2 < r 1 ,板料的弯曲变形程度进一步加大。 弯曲变形程度可以用相对弯曲半径 r/t表示,t为板料的厚度。 r/t越小,表明弯曲变形程度越大。一般认为当相对弯曲半径r/t>200时,弯曲区材料即开始进入弹-塑性弯曲阶段,毛坯变形区内(弯曲半径发生变化的部分)料厚的内外表面首先开始出现塑性变形,随后塑性变形向毛坯内部扩展。在弹-塑性弯曲变形过程中,促使材料变形的弯曲力矩逐渐增大,弯曲力臂L继续减小,弯曲力则不断加大。 凸模继续下行,当相对弯曲半径 r/t<200时,变形由弹 -塑性弯曲逐渐过渡到塑性变形。这时弯曲圆角变形区内弹性变形部分所占比例已经很小,可以忽略不计,视板料截面都已进入塑性变形状态。最终,B 点以上部分在与凸模的V形斜面接触后被反向弯曲,再与凹模斜面逐渐靠紧,直至板料与凸、凹模完全贴紧。 若弯曲终了时,凸模与板料、凹模三者贴合后凸模不再下压,称为自由弯曲。若凸模再下压,对板料再增加一定的压力,则称为校正弯曲,这时弯曲力将急剧上升。校正弯曲与自由弯曲的凸模下止点位置是不同的,校正弯曲使弯曲件在下止点受到刚性镦压,减小了工件的回弹(进一步论述见本章第 3.2.2节)。

弯曲变形题解word版

第6章 弯曲变形习题解答 6-1 用直接积分法求下列各梁的挠曲线方程和最大挠度。梁的抗弯刚度EI 为已知。 (a )解:(1)弯矩方程 0≤ x ≤l+a M (x )=qlx -qx 2/2+q2/2-ql 2 /2 (2)积分 EI (x )= qlx 2/2-qx 3/6+q3/6-ql 2x /2+C EI ν(x )= qlx 3/6-qx 4/24+q4/24-ql 2x 2 /4+ (3)定常数 x = 0 = 0 → C = 0 x = 0 ν= 0 → D = 0 νmax =ν B =)341(84l a EI ql +-(↓) (b )解:(1)支反力 F A = M o / l (↑), F C =-M o / l (↓) (2)弯矩方程 0≤ x ≤ 4l/3 M (x )= M o x / l -M o / l (3)积分 EI (x )= M o x 2 / 2l - M o 2 /2 l +C EI ν(x )= M o x 3 / 6l - M o 3 /6 l +C x+D (4)定常数 x = 0 ν= 0 → D = 0 x = l ν= 0 → C =-M o l /6 νmax =ν B =EI l M o 62 (↑) 6-2 写出下列各梁的边界条件,并根据弯矩图和支座情况画出挠度曲线的大致形状。 解: x = 0 ν= 0 x = a ν= 0 x = l ν= ?k = M o / lk x = 3a ν= ?l = Fa / x A B C ν l q a l/3 ν A B C x l (b) M o ν a A x a EA a a C B F (b) x B ν A k (a) C 2 l 2 l M o x B C ν A ? x B C A

剪切与扭转

第七章剪切与扭转 第一节剪切与挤压的概念 一、剪切的概念 剪切变形是杆件的基本变形之一。它是指杆件受到一对垂直于杆轴方向的大小相等、方向相反、作用线相距很近的外力作用所引起的变形,如图7-1a所示。此时,截面cd相对于ab将发生相对错动,即剪切变形。若变形过大,杆件将在两个外力作用面之间的某一截面m-m处被剪断,被剪断的截面称为剪切面,如图7-1b 所示。 (a) 受力形式(b)破坏形式 图7-1剪切变形 工程中有一些连接件,如铆钉连接中的铆钉(图7-2a)及销轴连接中的销(7-2b)等都是以剪切变形主的构件。 图7-2连接件的剪切变形 二、挤压的概念 构件在受剪切的同时,在两构件的接触面上,因互相压紧会产生局部受压,称为挤压。如图7-3所示的铆钉连接中,作用在钢板上的拉力F,通过钢板与铆钉的接触面传递给铆钉,接触面上就产生了挤压。两构件的接触面称为挤压面,作用于接触面的压力称挤压力,挤压面上的压应力称挤压应力,当挤压力过大时,孔壁边缘将受压起“皱”(图7-3a),铆钉局部压“扁”,使圆孔变成椭圆,连接松动(图7-3b),这就是挤压破坏。因此,连接件除剪切强度需计算外,还要进行挤压强度计算。 图7-3 挤压变形

第二节 剪切和挤压的实用计算 一、剪切的实用计算 剪切面上的内力可用截面法求得。假想将铆钉沿剪切面截开分为上下两部分,任取其中一部分为研究对象(图7-4c ),由平衡条件可知,剪切面上的内力Q 必然与外力方向相反,大小由 ∑X=0,F-Q =0,得 Q=F 这种平行于截面的内力Q 称为剪力。 (a ) (b ) (c ) (d ) 图7-4 剪切实用计算 与剪力Q 相应,在剪切面上有切应力τ存在(图7-4d )。切应力在剪切面上的分布情况十分复杂,工程上通常采用一种以试验及经验为基础的实用计算方法来计算,假定剪切面上的切应力τ是均匀分布的。因此, A Q =τ (7-1) 式中:A 为剪切面面积,Q 为剪切面上的剪力。 为保证构件不发生剪切破坏,就要求剪切面上的平均切应力不超过材料的许用切应力,即剪切时的强度条件为 ][ττ≤=A Q (7-2) 式中:[τ]为许用切应力。许用切应力由剪切实验测定。 各种材料的许用切应力可在有关手册中查得。 二、挤压的实用计算 挤压应力在挤压面上的分布也很复杂,如图7-5a 所示。因此也采用实用计算法,假定挤压应力均匀地分布在计算挤压面上,这样,平均挤压应力为 c c c A F =σ (7-3) 图7-5 挤压的实用计算 式中A c 为挤压面的计算面积。当接触面为平面时,接触面的面积就是计算挤压面积,当接触面为半圆柱面时,取圆柱体的直径平面作为计算挤压面面积(图7-5b )。这样计算所得的挤压应力和实际最大挤压应力值十分接近。由此可建立挤压强度条件:

工程力学扭转与弯曲变形

扭转与弯曲变形 若危险截面上的扭矩为T ,弯矩为M ,则该截面上的最大正应力和最大切应力分别为: W M = σ,P W T =τ (9-14) 危险点处为平面应力状态,其主应力为 )4(2 10)4(2 12232221τσσσστσσσ+-==++= (9-15) 对于工程中受弯扭共同作用的圆轴大多是由塑性材料制成的,所以应该用第三或第四强度理论来建立强度条件。 如果用第三强度理论,则强度条件为: []στσσr ≤+=2234 (9-16) 如果用第四强度理论,则强度条件为: []στσσr ≤+=2243 (9?17) 对于圆截面,有W P =2W z ,则用第三强度理论,其强度条件为: ][1)2(4)(42222223στσσ≤+=+=+=T M W W T W M z z z r (9-18) 用第四强度理论,其强度条件为: []στσσ≤+=+=+=222222475.01)2(3)(3T M W W T W M z z z r (9-19) 六、连接件的实用计算法 1、剪切的实用计算 在工程中,剪切变形采用实用计算的方法,假定剪切面上切应力是均匀分布的。其剪切强度条件为

][S S τA F τ≤= (9?20) 2、挤压的实用计算 在挤压的实用计算中,假设计算挤压应力在计算挤压面上均匀分布,计算挤压面为承压面在垂直于挤压力方向的平面上的投影。挤压强度条件为 bs bs bs A F σ=][bs σ≤ (9?21) 3、铆钉连接的计算 铆钉连接常见的破坏有下列三种形式:(1)铆钉沿其剪切面被剪断;(2)铆钉与钢板之间的挤压破坏;(3)钢板沿被削弱了的横截面被拉断。为了保证铆钉连接的正常工作,就必须避免上述三种破坏的发生,根据强度条件分别对三种情况作实用强度计算。

相关文档
最新文档