高一数学对数函数7

对数函数讲义(可直接使用).

一、 教学目标: 1.理解对数的概念,掌握对数的运算性质; 2.掌握对数函数的概念、图象和性质;能利用对数函数的性质解题. 二、教学重、难点: 运用对数运算性质进行求值、化简、证明、运用对数函数的定义域、单调性解题 三、命题规律: 主要考察指数式b a N =与对数式log a N b =的互化,对数函数的图像和性质或由对数函数复合成的函数,主要涉及比较大小、奇偶性、过定点、单调区间以及运用单调性求最值等,主要以填空为主。 四、教学内容: 【知识回顾】 1.对数的概念 如果 ,那么数b 叫做以a 为底N 的对数,记作 ,其中a 叫做对数的 ,N 叫做对数的 。 即指数式与对数式的互化:log b a a N b N =?= 2.常用对数:通常将以10为底的对数10log N 叫做常用对数,记作lg N 。 自然对数:通常将以无理数 2.71828e =???为底的对数叫做自然对数,记作ln N 。 3.对数的性质及对数恒等式、换底公式 (1)对数恒等式:①log N a a = (01,0)a a N >≠>且②log N a a = (01,0)a a N >≠>且 (2)换底公式:log a N =log log b b N a (3)对数的性质:①负数和零没有对数 ② 1的对数是零,即log 10a = ③底的对数等于1,即log 1a a = ④log log log a b c b c d ??=log a d

4.对数的运算性质 如果01,0,0a a M N >≠>>且,那么 (1)log ()a MN = ; (2)log a M N = ; (3)log n a M = ; (4)log n a m M = 。 (5)log log a b b a ?= ; (6)log a b =1log b a 5.对数函数 函数log (01)a y x a a =>≠且做对数函数,其定义域为(0,+∞),值域为(-∞,+∞).、 6.对数函数图像与性质 注:对数函数1log log (01)a a y x y x a a ==>≠与且的图像关于x 轴对称。 7.同真数的对数值大小关系如图 在第一象限内,图像从左到右相应的底逐渐增大, 即01c d a b <<<<< 8.对数式、对数函数的理解 ① 应重视指数式与对数式的互化关系,它体现了数学的转化思想,也往往是解决“指数、对数”问题的关键。 ② 在理解对数函数的概念时,应抓住定义的“形式”,像2log 2,log 2,3ln x y y x y x ===等函数均不符合形式log (01)a y x a a =>≠且,因此,它们都不是对数函数 ③ 画对数函数log a y x =的图像,应抓住三个关键点1(,1),(1.0),(,1)a a -

高一数学函数专项训练题(含答案)

20XX 年秋高一数学第一学期函数压轴训练题 1.(本小题满分12分)已知x 满足不等式2112 2 2(log )7log 30x x ++≤,求2 2()log log 42 x x f x =?的最大值与最小值及相应x 值. 2.(14分)已知定义域为R 的函数2()1 2x x a f x -+= +是奇函数 (1)求a 值; (2)判断并证明该函数在定义域R 上的单调性; (3)若对任意的t R ∈,不等式2 2 (2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围; 3. (本小题满分10分)已知定义在区间(1,1)-上的函数2 ()1ax b f x x +=+为奇函数,且12 ()25f =. (1) 求实数a ,b 的值; (2) 用定义证明:函数()f x 在区间(1,1)-上是增函数; (3) 解关于t 的不等式(1)()0f t f t -+<. 4. (14分)定义在R +上的函数f(x)对任意实数a,b +∈R ,均有f(ab)=f(a)+f(b)成立,且当x>1时,f(x)<0, (1)求f(1) (2)求证:f(x)为减函数。 (3)当f(4)= -2时,解不等式1)5()3(-≥+-f x f 5.(本小题满分12分)已知定义在[1,4]上的函数f(x)=x 2 -2bx+4 b (b ≥1), (I)求f(x)的最小值g(b); (II)求g(b)的最大值M 。

6.(12分)设函数()log (3)(0,1)a f x x a a a =->≠且,当点(,)P x y 是函数()y f x =图象上的点时,点(2,)Q x a y --是函数()y g x =图象上的点. (1)写出函数()y g x =的解析式; (2)若当[2,3]x a a ∈++时,恒有|()()|1f x g x -…,试确定a 的取值范围; (3)把()y g x =的图象向左平移a 个单位得到()y h x =的图象,函数1()22()()()2h x h x h x F x a a a ---=-+,(0,1a a >≠且)在1[,4]4的最大值为54,求a 的值. 7. (12分)设函数124()lg ()3 x x a f x a R ++=∈. (1)当2a =-时,求()f x 的定义域; (2)如果(,1)x ∈-∞-时,()f x 有意义,试确定a 的取值范围; (3)如果01a <<,求证:当0x ≠时,有2()(2)f x f x <. 8. (本题满分14分)已知幂函数(2)(1) ()()k k f x x k z -+=∈满足(2)(3)f f <。 (1)求整数k 的值,并写出相应的函数()f x 的解析式; (2)对于(1)中的函数()f x ,试判断是否存在正数m ,使函数()1()(21)g x mf x m x =-+-,在区间 []0,1上的最大值为5。若存在,求出m 的值;若不存在,请说明理由。 9. (本题满分14分)已知函数1 ()(0x f x a a -=>且1)a ≠ (Ⅰ)若函数()y f x =的图象经过()4,3P 点,求a 的值; (Ⅱ)当a 变化时,比较1 (lg )( 2.1)100 f f -与大小,并写出比较过程; (Ⅲ)若(l g )100f a =,求a 的值.

指数函数与对数函数(讲义)

指数函数与对数函数(讲义) ? 知识点睛 1. 指数函数及对数函数的图象和性质: 2. 利用指数函数、对数函数比大小 (1)同底指数函数,利用单调性比较大小; (2)异底指数函数比大小,可采用化同底、商比法、取中间值、图解法; (3)同底数对数函数比大小,直接利用单调性求解;若底数为字母,需分类讨论; (4)异底数对数函数比大小,可化同底(换底公式)、寻找中间量(-1,0,1),或借助图象高低数形结合. 3. 换底公式及常用变形: log log log c a c b b a =(a >0,且a ≠1;c >0,且c ≠1;b >0) 1 log log a b b a = (a >0,且a ≠1;b >0,且b ≠1) log log m n a a n b b m = (a >0,且a ≠1;b >0,且b ≠1) log a b a b =(a >0,且a ≠1;b >0) ? 精讲精练 1. 若a ,b ,c ∈R +,则3a =4b =6c ,则( )

A .b a c 111+= B . b a c 122+= C .b a c 221+= D .b a c 212+= 2. 计算: (1)若集合{lg()}{0||}x xy xy x y =,,,,,则228log ()x y +=_________; (2)设0()ln 0x e x g x x x ?=?>?≤(), ()则1 (())2g g =_____________; (3)若2(3)6()log 6f x x f x x x +

高一数学必修一 函数知识点总结

3. 函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型),(,)(2n m x c bx ax x f ∈++=的形式; ②逆求法(反求法):通过反解,用y 来表示x ,再由x 的取值范围,通过解不等式,得出y 的取值范围;常用来解,型 如: ),(,n m x d cx b ax y ∈++= ; ④换元法:通过变量代换转化为能求值域的函数,化归思想; 常针对根号,举例: 令 ,原式转化为: ,再利用配方法。 ⑤利用函数有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如: )0(>+ =k x k x y ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。 ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。 二.函数的性质 1.函数的单调性(局部性质) (1)增函数 设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1?<∈对任意的 注:① 函数上的区间I 且x 1,x 2∈I.若2 121)()(x x x f x f -->0(x 1≠x 2),则函数f(x)在区间I 上是增函数; 若2121)()(x x x f x f --<0(x 1≠x 2),则函数f(x)是在区间I 上是减函数。 ② 用定义证明单调性的步骤: <1>设x1,x2∈M ,且21x x <;则 <2> )()(21x f x f -作差整理; <3>判断差的符号; <4>下结论; ③ 增+增=增 减+减=减 ④ 复合函数y=f[g(x)]单调性:同增异减 [](内层) (外层)) (,则)(,)((x f y x u u f y ??===

高中数学常见函数图像

高中数学常见函数图像1. 2.对数函数:

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k π π=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ??++???? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

(新)高一数学函数专题训练(一)

函数专题训练(一) 一、选择题 1.(文)若函数f(x)的定义域是[0,4],则函数g(x)=f (2x )x 的定义域是( ) A .[0,2] B .(0,2) C .(0,2] D .[0,2) (理)(2013·湖北荆门期末)函数f(x)=1x ln(x 2-3x +2+-x 2-3x +4)的定义域为( ) A .(-∞,-4]∪(2,+∞) B .(-4,0)∪(0,1) C .[-4,0)∪(0,1] D .[-4,0)∪(0,1) 2.(文)(2012·江西文,3)设函数f(x)=????? x 2+1,x ≤1,2x ,x>1.则f(f(3))=( ) A.15 B .3 C.23 D.139 (理)已知函数f(x)=??? 2x +1,x ≤0,f (x -3),x>0, 则f(2014)等于( ) A .-1 B .1 C .-3 D .3 3.已知函数f(x)=??? 2x +1,x<1,x 2+ax ,x ≥1, 若f[f(0)]=4a ,则实数a 等于( ) A.12 B.45 C .2 D .9 4.(2013·银川模拟)设函数f(x)=??? x 2-4x +6,x ≥0,x +6,x<0, 则不等式f(x)>f(1)的解集是( A .(-3,1)∪(3,+∞) B .(-3,1)∪(2,+∞) C .(-1,1)∪(3,+∞) D .(-∞,-3)∪(1,3) 5.(文)函数f(x)=22x -2 的值域是( ) A .(-∞,-1) B .(-1,0)∪(0,+∞)C .(-1,+∞) D .(-∞,-1)∪(0,+∞) (理)若函数y =f(x)的值域是[12,3],则函数F(x)=f(x)+1f (x ) 的值域是( ) A .[12,3] B .[2,103] C .[52,103] D .[3,103] 6.a 、b 为实数,集合M ={b a ,1},N ={a,0},f 是M 到N 的映射,f(x)=x ,则a +b

高一数学函数的知识点和例题

高一数学函数的知识点和例题 (一)、映射、函数、反函数 1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射. 2、对于函数的概念,应注意如下几点: (1)掌握构成函数的三要素,会判断两个函数是否为同一函数. (2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式. (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数. 3、求函数y=f(x)的反函数的一般步骤: (1)确定原函数的值域,也就是反函数的定义域; (2)由y=f(x)的解析式求出x=f-1(y); (3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域. 注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起. ②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算. (二)、函数的解析式与定义域 1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型: (1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑; (2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如: ①分式的分母不得为零;

②偶次方根的被开方数不小于零; ③对数函数的真数必须大于零; ④指数函数和对数函数的底数必须大于零且不等于1; ⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等. 应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集). (3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可. 已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域. 2、求函数的解析式一般有四种情况 (1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式. (2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可. (3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域. (4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式. (三)、函数的值域与最值 1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下: (1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域. (2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.

高中数学常见函数图像

高中数学常见函数图像 1.指数函数: 定义 函数 (0x y a a =>且1)a ≠叫做指数函数 图象 1a > 01a << 定义域 R 值域 (0,)+∞ 过定点 图象过定点(0,1),即当0x =时,1y =. 奇偶性 非奇非偶 单调性 在R 上是增函数 在R 上是减函数 2.对数函数: 定义 函数 log (0a y x a =>且1)a ≠叫做对数函数 图象 1a > 01a << 定义域 (0,)+∞ 值域 R 过定点 图象过定点(1,0),即当1x =时,0y =. 奇偶性 非奇非偶 单调性 在(0,)+∞上是增函数 在(0,)+∞上是减函数 x a y =x y (0,1) O 1 y =x a y =x y (0,1) O 1 y =x y O (1,0) 1 x =log a y x =x y O (1,0) 1 x =log a y x =

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

4. 函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k ππ=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ? ?++??? ? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

2014高中数学抽象函数专题

2014高三数学专题 抽象函数 特殊模型和抽象函数 特殊模型 抽象函数 正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f(x)f(y) [或) y (f )x (f )y x (f =] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [) y (f )x (f )y x (f =-或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x) 正切函数 f(x)=tanx )y (f )x (f 1) y (f )x (f )y x (f -+= + 余切函数 f(x)=cotx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 一.定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ? ?-x f 3log 2 1 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。 []11log ,13 评析: 已知函数()()x f ?的定义域是A ,求函数f(x)的定义域。相当于求内函数()x ?的值域。

高一数学讲义完整版

高一数学复习讲义09年版 函数部分(1) 重点:1把握函数基本知识(定义域、值域) x(a>0、<0) 主要是指数函数y=a x(a>0、<0),对数函数y=log a 2二次函数(重点)基本概念(思维方式)对称轴、 开口方向、判别式 考点1:单调函数的考查 2:函数的最值 3:函数恒成立问题一般函数恒成立问题(重点讲) 4:个数问题(结合函数图象) 3反函数(原函数与对应反函数的关系)特殊值的取舍 4单调函数的证明(注意一般解法) 简易逻辑(较容易) 1. 2. 3. 4.

启示:对此部分重点把握第3题、第4题的解法(与集合的关系) 问题1:恒成立问题解法及题型总结(必考) 一般有5类:1、一次函数型:形如:给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m, n]内恒有f(x)>0(<0) 练习:对于满足0-4x+p-3恒成立的x的取值范围 2、二次函数型:若二次函数y=ax2+bx+c=0(a≠0)大于0恒成立,则有a>0Δ<0若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解 练习:1设f(x)=x2-2ax+2,当x∈[-1, +∞)时,都有f(x)>a恒成立, a的取值范围 2关于x的方程9x+(4+a)3x+4=0恒有解,求a的范围。 3、变量分离型 若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解 练习:若1-ax>1/(1+x),当对于x∈[0, 1]恒成立,求实数a的取值范围。 4利用图象 练习:当x∈(1, 2)时,不等式(x-1)2

高一数学函数的基本性质知识点梳理

高一数学函数的基本性质知识点梳理 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=fx,x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{fx| x∈A }叫做函数的值域. 注意:如果只给出解析式y=fx,而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式. 定义域补充 能使函数式有意义的实数 x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是: 1 分式的分母不等于零; 2 偶次方根的被开方数不小于零; 3 对数式的真数必须大于零; 4 指数、对数式的底必须大于零且不等于 1. 5 如果函数是由一些基本函数通过四则运算结合而成的 . 那么,它的定义域是使各部分都有意义的 x 的值组成的集合 . 6指数为零底不可以等于零 2.构成函数的三要素:定义域、对应关系和值域 再注意: 1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等或为同一函数 2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致两点必须同时具备 值域补充 1 、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域 . 2 . 应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的

高一数学函数图象练习题(精编)

1、已知01,1a b <<<-,则函数 x y a b =+的图像必定不经过………………………( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 2、函数 (0,1)x y a a a a =->≠的图象可能是( ) 3、设1a >,函数x y a =的图像形状大致是( ) 4、将指数函数()x f 的图象向右平移一个单位,得到如图的()x g 的图象, 则()=x f ( ) A B C D

A. x ??? ??21 B. x ??? ??31 C. x 2 D. x 3 5、下列区间中,函数f(x)=|ln(2-x)|在其上为增函数的是( ) A .(-∞,1] B .[-1,4/3] C .[0,3/2) D .[1,2] 6、已知函数()log a f x x =(0a >且1a ≠).(Ⅰ)若函数()f x 在[23], 上的最大值与最 小值的和为2,(1)求a 的值;(2)将函数()f x 图象上所有的点向左平移2个单位长度,再向下平移1个单位长度,所得函数图象不经过第二象限,求a 的取值范围. 7、把函数()(0,1)x f x a a a =>≠的图象1C 向左平移一个单位,再把所得图象上每一个点的纵坐标扩大为原来的2倍,而横坐标不变,得到图象2C ,此时图象1C 恰与2C 重合, 则 a 为()

A .4 B .2 C .1 2 D .14 8、已知函数31()()log 5x f x x =-,若0x 是函数()y f x =的零点,且100x x <<, 则1()f x ( A ) A .恒为正值 B .等于0 C .恒为负值 D .不大于0 9、关于x 的方程0|34|2=-+-a x x 有三个不相等的实数根,则实数a 的 值是_________________。 10、已知关于x 的方程 012=-+-a x x 有四个不等根,则实数a 的取 值范围是________ 11、若存在负实数使得方程 11 2-=-x a x 成立,则实数a 的取值范围是 ( ) A .),2(+∞ B. ),0(+∞ C. )2,0( D. )1,0(

(推荐)高中数学会考专题集锦-函数的概念与性质专题训练

函数的概念与性质专题训练 一、选择题:(本大题共12小题,每小题4分,共48分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 得分 答案 1、映射f :X →Y 是定义域到值域的函数,则下面四个结论中正确的是 A 、Y 中的元素不一定有原象 B 、X 中不同的元素在Y 中有不同的象 C 、Y 可以是空集 D 、以上结论都不对 2、下列各组函数中,表示同一函数的是 A 、||2x y x y ==与 B 、2 lg lg 2x y x y ==与 C 、23) 3)(2(+=--+= x y x x x y 与 D 、10 ==y x y 与 3、函数1+=x y 的定义域是 A 、( ,+) B 、[1,+ ) C 、[0,+] D 、(1,+) 4、若函数y f x =()的图象过点(0,1), 则y f x =+()4的反函数的图象必过点 A 、(4,—1) B 、(—4,1) C 、(1,—4) D 、(1,4) 5、函数)10(≠>+=+=a a b ax y b a y x 且与函数的图像有可能是 A B C D 6、函数241x y --=的单调递减区间是 A 、 ?? ? ? ?∞-2 1, B 、 ?? ????+∞,21 C 、 ?? ? ???- 0,21 D 、 ?? ????2 1,0 7、函数f(x)()R x ∈是偶函数,则下列各点中必在y=f(x)图象上的是 A 、())(,a f a - B 、())(,a f a -- C 、())(,a f a --- D 、())(,a f a -- 8、如果奇函数f(x)在区间[3,7]上是增函数且最大值为5,那么f(x)在区间[-7,-3]上是 x y O x y O x y O x y O

高一《对数与对数函数》讲义【解析版】

对数与对数函数 【高考要求】 1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化为自然对数或常用对数,了解对数在简化运算中的作用. 2.理解对数函数的概念,理解对数函数的单调性与函数图象通过的特殊点,知道指数函数y =a x 与对数函数y =log a x 互为反函数(a>0,a ≠1),体会对数函数是一类重要的函数模型. 【知识梳理】 1.对数的概念 (1)对数的定义 如果a x =N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作___ x =log a N ___,其中__ a __叫做对数的底数,__ N __叫做真数.真数N 为正数(负数和零无对数). 说明:①实质上,上述对数表达式,不过是指数函数x a y =的另一种表达形式,例如:8134=与 81log 43= 这两个式子表达是同一关系,因此,有关系式.log N x N a a x =?= ②“log ”同“+”“×” “ ”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这 种运算叫对数运算,不过对数运算的符号写在数的前面。 ③对数的底数和真数 从对数的实质看:如果a b =N (a >0且a ≠1),那么b 叫做以a 为底N 的对数,即b =log a N .它是知道底数和幂求指数的过程.底数a 从定义中已知其大于0且不等于1;N 在对数式中叫真数,在指数式中,它就是幂,所以它自然应该是大于0的. (2)几种常见对数 2.对数的性质与运算法则 (1).对数基本性质:log 10a =,log 1a a =,log a N a N =---对数恒等式 (2).对数运算性质:若0,1,0,0a a M N >≠>>且,则: ①log ()log log a a a MN M N =+ ②log log log a a a M M N N =- ③log log ()n a a M n M n R =∈ (3).换底公式:log log (0,1;0,1;0)log c a c b b a a c c b a = >≠>≠> 推论:①log log (,,0)m n a a n M M m n R m m = ∈≠ ②1log log a b b a = 点评:(1)要熟练掌握公式的运用和逆用。 (2)在使用公式的过程中,要注意公式成立的条件。 例如:真数为两负数的积,).5(log ).3(log 22--不能写成).5(log ).3(log 22--=).5(log )3(log 22-+-

高中常见函数图像及基本性质

常见函数性质汇总及简单评议对称变换 常数函数 f (x )=b (b ∈R) 1)、y=a 和 x=a 的图像和走势 2)、图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线 一次函数 f (x )=kx +b (k ≠0,b ∈R) 1)、两种常用的一次函数形式:斜截式—— 点斜式—— 2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势: 3)、|k|越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R 单调性:当k>0时 ;当k<0时 奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 例题:y=f (x ); y=g (x )都有反函数,且f (x-1)和g -1 (x)函数的图像关于y=x 对称,若g (5)=2016,求)= 周 期 性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法: b

反比例函数 f (x )= x k (k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f (x )的图象分别在第一、第三 象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞ 单 调 性:当k> 0时;当k< 0时 周 期 性:无 奇 偶 性:奇函数 反 函 数:原函数本身 补充:1、反比例函数的性质 2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此) 3、反函数变形(如右图) 1)、y=1/(x-2)和y=1/x-2的图像移动比较 2)、y=1/(-x)和y=-(1/x )图像移动比较 3)、f (x )= d cx b ax ++ (c ≠0且 d ≠0)(补充一下分离常数) (对比标准反比例函数,总结各项内容) 二次函数 一般式:)0()(2 ≠++=a c bx ax x f 顶点式:)0()()(2 ≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f 图象及其性质:①图形为抛物线,对称轴为 ,顶点坐标为 ②当0>a 时,开口向上,有最低点 当00时,函数图象与x 轴有两个交点( );当<0时,函数图象与x 轴有一个交点( );当=0时,函数图象与x 轴没有交点。 ④)0()(2 ≠++=a c bx ax x f 关系 )0()(2 ≠=a ax x f 定 义 域:R 值 域:当0>a 时,值域为( );当0a 时;当0

高一数学函数练习题

高一数学函数练习题 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

高一数学第二章函数练习题 一、选择题 1、设集合A 和集合B 都是自然数集合N ,映射B A f →:把集合A 中的元素 n 映射到集合B 中的元素n n +2,则在映射f 下,象20的原象是 (A )2 (B )3 (C )4 (D )5 2、已知不等式为2733 1<≤x ,则x 的取值范围 (A )321<≤- x (B )32 1 <≤x (C )R (D ) 31 21<≤x 3、函数1 1 2 -=x y 在定义域上的单调性为 (A )在()1,∞-上是增函数,在()+∞,1上是增函数 (B )减函数 (C )在()1,∞-上是减增函数,在()+∞,1上是减函数 (D )增函数 4、函数x x x f -+= 11)(的定义域为A ,函数)]([x f f y =的定义域为B ,则 (A )B B A = (B )B A ? (C )B B A = (D )B A = 5、若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点 (A))1,4(- (B))4,1(-- (C))1,4(-- (D))4,1(- 6、下列式子或表格 ①)1)(1(log 1>-+-=a x a y a x ②x y 2=,其中}3,2,1,0{∈x ,}4,2,0{∈y ③122=+y x ④)0(122≥=+y y x ⑤

其中表示y 是x 的函数的是 (A )①②③④⑤ (B )②③⑤ (C )③④ (D )④⑤ 7、已知函数)(x f y =的反函数)(1 x f -的定义域为]1,0[,那么函数 ))((R m m x f y ∈+=的值域是 (A )]1,[m m -- (B )]0,1[- (C )]1,0[ (D )R 8、已知函数1)()(32+-+=x a a ax x f 在]1,(--∞上递增,则a 的取值范围是 (A )3≤a (B )33≤≤-a (C )30≤a ,且1≠a )的图象必经过点 (A)(0,1) (B)(1,1) (C) (2, 0) (D) (2,2) 11、下列函数中值域为()∞+, 0的是 (A) x y -=21 5 (B) x y -? ? ? ??=131 (C) 121-?? ? ??=x y (D) x y 21-= 12、甲乙二人同时从A 地赶往B 地,甲先骑自行车到中点改为跑步,而乙则是先跑步到中点改为骑自行车,最后两人同时到达B 地,又知甲骑自行车比乙骑自行车的速度快,并且二人骑车速度均比跑步速度快。若某人离开A 地的距离S 与所用时间t 的函数关系可用图象表示,则下列给出的四个函数图象中,甲、乙各

笔记(高一数学基础-对数函数)

高一数学基础-对数函数 1、lg 5·lg 8000+06.0lg 6 1lg )2(lg 23++.2、 lg 2(x +10)-lg(x +10)3=4. 3、23log 1log 66-=x .4、9-x -2×31-x =27.5、x )81(=128. 6、5x+1=1 23-x . 7、10log 5log )5(lg )2(lg 2233++·.10 log 188、lg 25+lg2·lg50; (log 43+log 83)(log 32+log 92). 9、求121log 8.0--= x x y 的定义域.10、log 1227=a,求log 616. 11、f(x)=1322+-x x a ,g(x)=522-+x x a (a >0且a ≠1),确定x 的取值范围,使得f(x)>g(x). 12、已知函数f(x)=321121x x ?? ? ??+-. (1)求函数的定义域;(2)讨论f(x)的奇偶性;(3)求证f(x)>0. 13、求关于x 的方程a x +1=-x 2+2x +2a(a >0且a ≠1)的实数解的个数. 14、求log 927的值. 15、设3a =4b =36,求a 2+b 1的值. 16、log 2(x -1)+log 2x=1 17、4x +4-x -2x+2-2-x+2+6=0 18、24x+1-17×4x +8=0 19、2 2)223()223(=-++-x x ±2 20、01433214111=+?------x x 21、042342222=-?--+-+x x x x 22、log 2(x -1)=log 2(2x+1) 23、log 2(x 2-5x -2)=2 24、log 16x+log 4x+log 2x=7 25、log 2[1+log 3(1+4log 3x)]=1 26、6x -3×2x -2×3x +6=0 27、lg(2x -1)2-lg(x -3)2=2 28、lg(y -1)-lgy=lg(2y -2)-lg(y+2) 29、lg(x 2+1)-2lg(x+3)+lg2=0 30、lg 2x+3lgx -4=0 31.2 22lg5lg8lg5lg20(lg2)3 +++;32.()()24525log 5+log 0.2log 2+log 0.5. 33.若()()lg lg 2lg2lg lg x y x y x y -++=++,求x y 的值. ①a b a c c c a log log log - ②42938432log )2log 2)(log 3log 3(log -++ 1.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4)

相关文档
最新文档