影响图像质量的因素

影响图像质量的因素
为了保证CT的图像质量,CT使用者应当了解影响图像质量的因素,以便在操作中灵活恰当地应用这些参数组合,争取获得最佳图像质量,同时保持最低辐射剂量。
一、CT基本扫描模式
1.步进式扫描(incremental scan)
最基本的CT扫描方式,也称为轴位扫描:扫描时检查床不动,设定探测器准直宽度后启动曝光,球管围绕人体旋转一圈,采集到一个准直宽度厚的严格圆柱层块的全部数据,然后重建出该层块的一幅图像;移床后可以重复该过程完成第二层块图像的成像。单层常规CT步进式扫描的特点是一次采集重建一幅图像,层厚等于准直;上述过程的多次重复方能完成一个部位的检查。多层CT的步进式扫描与单层CT的不同是每一次扫描可以同时进行若干排探测器组合的数据采集,从而同时获得若干层图像。前置门控心血管扫描(心脏、冠状动脉、大血管)也是应用步进式扫描。与单层CT 不仅扫描的另一个不同是多层CT的步进式扫描在采样模式上与螺旋扫描相同,是三维采样,前者是二维采样。
2.螺旋扫描(spiral or helical scan)
螺旋扫描是在滑环技术应用的基础上发展起来的一项新的扫描方式。扫描过程中X线球管围绕机架连续旋转曝光,曝光的同时检查床同步匀速移动,探测器同时采集数据, 由于扫描轨迹呈螺旋状,故称螺旋扫描。螺旋扫描的特点是将传统常规CT 的二维采集数据发展为三维采集。一次采集到一个厚度大于准直宽度的长圆柱数据块(容积采集获得容积数据)。多层螺旋CT的一个不容忽视的优势,就是采集数据的重复应用。可以反复设定不同的层厚、重建间隔、视野、重建中心、滤过函数等参数重建图像,而不必重新扫描。
二、影响图像质量的参数
CT影像质量主要依赖于两种参数,一是与剂量相关的参数,二是与影像处理和影像观察条件相关的参数,这两者与硬件相关。剂量相关参数有曝光因素、层厚、螺距、扫描时间和检查容积。处理参数包括视野、重建矩阵大小、重建算法和与影像观察相关的窗技术的设定。与患者剂量相关参数的影响,可通过对测试体模的测量进行量化评估。
1、层厚
层厚定义为扫描野中心敏感断面的最大值处的整体宽度。它的厚度可由操作人员根据临床需要进行选择,通常位于1mm和10mm范围之间。一般来讲,层厚越大,对比分辨力(密度分辨力)越大;层厚越小,空间分辨力越大。如果采用较大的层厚,可以减低噪声的影响,但是图像也会由于部分容积效应的影响而减低诊断信息的可靠性;如果采用较小的层厚 (如1~2mm),可以减少部分容积效应,但是噪声的影响会增大,使图像的密

度分辨力下降。
2、检查容积
检查容积或成像容积是指检查区域的整体容积,定义为最先和最后检查层面的最外边界。检查容积的范围取决于临床要求,通常来讲,在其他扫描参数不变的前提下,容积值越大,患者的整体辐射剂量越高。所以,在满足诊断要求的前提下应当尽量缩小扫描容积。
3、视野(FOV)
视野定义为重建图像的最大直径,它的值可由操作人员灵活选择,通常位于12~50cm的范围内。选择较小的FOV可增加图像的空间分辨力,其原因同样大小的重建矩阵,面积越小,像素尺寸就越小。FOV的选择不能仅考虑增加空间分辨力的可能性,而且需要考虑是否能够包括所有可能的病变区域。如果FOV太小,相关区域可能会从可视图像中消失。
4、电压与电流
一般来说,管电压可选择1-3种数值(80~140kV的范围),但是常规扫描所参照的扫描程序已经设好了相应的电压,操作人员一般不需要自行调节。除非特殊人群或者特殊要求的扫描设计(例如婴幼儿的心脏扫描)。当管电压值和层厚设定以后,图像密度分辨力的提高和噪声的降低主要依赖于X线管电流(mA)和曝光时间(s)的增加,即mAs的增加。但是mAs的增加会提高患者的辐射剂量。基于此,与临床目的相关的影像质量应在患者剂量尽可能低的情况下获得。为了获取临床信息,在需要较高信噪比的情况下,应该选择较高的摄影曝光设定值(mAs)。
5、螺距
在螺旋扫描中,与常规方式扫描的一个不同是产生了一个新概念:螺距, 它是球管旋转一周扫描床移动距离与准直器宽度之间的比,具体公式为:
螺距=球管旋转360°床移动距离(mm)/准直器宽度[mm]
螺距越大单位时间扫描覆盖距离越长。意味着在其他条件不变得前提下,只需增加螺距即可在同一扫描时间内尽可能地多增加扫描距离。同样,相同的扫描范围,也可以通过增大螺距来缩短扫描时间。螺距的增大使得同样扫描范围内的光子量减少,当螺距大于1时,噪声明显增加,密度分辨力降低,减弱了软组织的对比度。然而对骨组织影响不大,因为骨本身与周围的软组织就具有很好的对比度。螺距的增加对空间分辨力的影响极小。为了弥补这个缺陷,新的CT采用了自动电流调节功能,在增加螺距的时候,自动增加电流,这样就避免了密度分辨力的降低。
6、重建算法
CT影像的外观和特性在很大程序上依赖于数学算法的选择。最常使用的一种是叫做平滑算法(软组织算法),它是优秀显示血管、实质性脏器(肝、胰腺、脾、肾等)、肌肉等软组织的算法。边缘增强算法(骨算法)使得组织边缘锐利化

,因而适合用来观察骨结构和肺纹理、支气管的结构与变化。重建算法对密度分辨力和空间分辨力的影响是一对矛盾,边缘增强算法使图像的边缘更清晰、锐利,但降低了图像的密度分辨力;平滑算法提高了密度分辨力,而边缘、轮廓表现不及边缘增强算法。两者是相互制约的,参数的优化不能同时提高密度分辨力和空间分辨力,因此在观察软组织等低对比结构时,所选参数要有利于密度分辨力的提高(软组织算法);观察骨骼、颅底、肺纹理等高对比结构时要侧重于空间分辨力的优化(骨算法)。多层螺旋CT由于采集数据可以重复应用,同样一组采集数据,可以分别根据不同的要求,使用几种重建算法,重建出不同特点的CT图像。
7、重建间隔
当螺旋扫描的容积采样结束后,二维图像可以从任何一点开始重建,而且数据可以反复使用。这样就出现了一个新的概念:重建间隔。 其定义是每两层重建图像之间的间隔。例如:扫描范围为100mm,准直宽度为10mm,如果重建间隔为10mm,将获得类似常规断层扫描的10幅图像,如果重建间隔为5mm,将获得20幅10mm层厚图像,产生数据交叉重叠的图像。同样扫描范围内,重建间隔越小,重建出的图像数量越多。当然每幅图像的重建时间一样,重建间隔的增加势必增加整个图像重建的时间,即总重建时间等于重建层数乘以每层重建时间。减小重建间隔的一个优势是降低部分容积效应的影响,例如,层厚10mm,病灶直径也是10mm,重建间隔等于层厚时,一旦病灶正好落入两层之间,要么病灶被遗漏,要么病灶的显示密度不真实,可能误诊或漏诊。缩小重建间隔则会避免这种机会的发生。缩小重建间隔的另一个优点是提高MPR及三维后处理图像的质量,如果重叠30~50%,会明显改善MPR以及MIP、SSD、VR、VE等的图像质量。
8.窗宽与窗位
监视器上CT图像的亮度变化是以灰阶形式显示的,而数字图像中用以代表象素CT值的亮度则是人为设置的,这样在视窗技术中就出现了两个新的概念:窗宽(window width)和窗位(window level),后者又称窗水平或窗中心。窗宽是指监视器中最亮灰阶所代表CT值与最暗灰阶所代表CT值的跨度,窗位是指窗宽上限所代表CT值与下限所代表CT值的中心值。如骨窗( 2000,400)是指最亮灰阶所代表CT值与最暗灰阶所代表CT值的差是2000个Hu,最亮设为1400Hu,最暗设为-600Hu,窗中心为400Hu。换句话说,窗宽确定所观察图像中CT值变化的跨度,窗位则决定观察变化的区域。
要观察不同的组织或病变,必须选择适当的窗宽和窗位。窗位一般与需要显示的组织即靶结构的密度相近,这样比靶结构密度高的病变和密度低

的病变都能有亮度差别而容易分辨;窗宽则以尽可能既覆盖所要观察的结构的密度变化范围,又显示正常与病变组织间最小差别为宜。在一幅图像上,可能同时需要多个视窗才能体现病变特点,因此,视窗的应用是灵活、多样的。
三、注意解剖学标准与物理学标准的差异
在CT检查中诊断要求所表述的影像标准有两种,即解剖学影像和物理学影像标准。解剖学影像标准包括能够显示不同正常组织之间的差别,使其能够被明确辨认;能够显示正常组织与病变组织之间的差别,以保证病变组织的检出;能够显示不同病变组织间的差别,以分析病变组织的性质。
物理学影像标准是通过物理学方法进行测量,它们包括图像像素的噪声、低对比分辨力和空间分辨力 、线性、CT值的均匀性和稳定性、层厚和剂量参数。它是从事CT工作的单位实施的质量保证程序,以保持CT性能处在最佳状态。物理学影像标准被定义为常规检验。
我们对图像质量的要求,更重要的是解剖学的标准。有些时候,在没有达到物理学标准的情况下,就可以满足解剖要求,此时我们没有必要过分强调物理学的标准,例如有时虽然解剖结构清晰可辨,不影响诊断,但是背景噪声较大,此时我们应当容忍适当背景噪声,以尽量降低病人的辐射剂量。有些时候则即使达到物理学标准,仍不能满足解剖学的标准要求。

相关文档
最新文档