导数的求法

导数的求法
导数的求法

函数求导

1. 简单函数的定义求导的方法(一差、二比、三取极限) (1)求函数的增量)()(00x f x x f y -?+=?;

(2)求平均变化率

x

x f x x f x y ?-?+=

??)

()(00。 (3)取极限求导数=)(0'

x f x

x f x x f x ?-?+→?)()(lim 000

2.导数与导函数的关系:特殊与一般的关系。函数在某一点)(0'

x f 的导数就是导函数)(x f ,当0x x =时的函数值。 3.常用的导数公式及求导法则: (1)公式

①0'

=C ,(C 是常数) ②x x cos )(sin '

= ③x x sin )(cos '

-=

④1

'

)(-=n n nx

x

⑤a a a x x ln )('

=

⑥x

x e e ='

)(

⑦a x x a ln 1)(log '

=

⑧x x 1)(ln '

= ⑨x x 2'cos 1)(tan = ⑩(x

x 2'

sin 1)cot -

= (2)法则:'

'')]([)]([)]()([x g x f x g x f ±=±, )()()()()]()(['''x f x g x g x f x g x f += )

()

()()()(])()([2

'''x g x f x g x g x f x g x f -= 例: (1)()3

24y x x =- (2)sin x

y x

=

(3)3cos 4sin y x x =- (4)()2

23y x =+

(5)()ln 2y x =+

复合函数的导数

如果函数)(x ?在点x 处可导,函数f (u )在点u=)(x ?处可导,则复合函数y= f (u )=f [)(x ?]在点x 处也可导,并且

(f [)(x ?])ˊ= [])(x f ?')(x ?'

或记作 x y '=u y '?x u '

熟记链式法则

若y= f (u ),u=)(x ?? y= f [)(x ?],则

x y '=)()(x u f ?''

若y= f (u ),u=)(v ?,v=)(x ψ? y= f [))((x ψ?],则

x y '=)()()(x v u f ψ?'''

(2)复合函数求导的关键是正确分析已给复合函数是由哪些中间变量复合而成

的,且要求这些中间变量均为基本初等函数或经过四则运算而成的初等函数。在求导时要由外到内,逐层求导。

例1函数4

)31(1

x y -=

的导数.

解:4

)

31(1x y -=

4

)31(--=x . 设4

-=u y ,x u 31-=,则

x u x u y y '''?=x u x u )'31()'(4-?=-

)3(45

-?-=-u 55)31(1212---==x u 5

)

31(12

x -=

例2求5

1x

x

y -=的导数. 解:5

11??

?

??-=x x y , '5

41151'??? ??-??

?? ??-=-x x x x y 2

5

4)

1()

1(1151x x x x x ----?

??

? ??-=-

2

5

4)

1(1

151x x x -???

? ??-=-

56

54

)1(51---=x x . 例3 求下列函数的导数

x y 23-=

解:(1)x y

23-=

令 u=3 -2x ,则有 y=

u ,u=3 -2x

由复合函数求导法则x u x u y y '?'='

有y ′=

()x u x u )23('-

'

=

x

u

231)2(21--

=-?

在运用复合函数的求导法则达到一定的熟练程度之后,可以不再写出中间变量u ,于是前面可以直接写出如下结果:

y ˊ=

x

x x

231)23(2321--

='-?-

在运用复合函数求导法则很熟练之后,可以更简练地写出求导过程: y ˊ=x

x

231)2(2321--

=-?-

例4求下列函数的导数 (1)y=

x 21-cos x (2)y=ln (x +2

1x +)

解:(1)y=x 21-cos x

由于y=

x 21-cos x 是两个函数x 21-与cos x 的乘积,而其中x

21-又是复合函数,所以在对此函数求导时应先用乘积求导法则,而在求x 21-导数

时再用复合函数求导法则,于是

y ˊ=(x 21-)ˊcos x -x 21-sin x

=

x x

cos 212)

2(---x 21-sin x=

x

x 21cos ---x 21-sin x

(2)y=ln (x +21x +) 由于y=ln (x +

2

1x +)是u= x +

2

1x +与y=ln u 复合而成,所以对此函数

求导时,应先用复合函数求导法则,在求x u '时用函数和的求导法则,而求(

2

1x +)′的导数时再用一次复合函数的求导法则,所以

y ˊ=

2

11x x ++? [1+(

2

1x +)ˊ]=

2

11x x ++??

??? ??

++

21221x x

=2

11x x ++?

2

2

11x x x +++=

2

11x

+

例 5 设)1ln(++=x x y 求 y '. 解 利用复合函数求导法求导,得

)1(1

1])1[ln(222'

++++=

'++='x x x x x x y ])1(1[1

122'++++=

x x x

])1(1

211[1

122

2

'+++

++=x x x x 1

1]1

1[1

12

2

2

+=

++

++=

x x x x x .

1.求下函数的导数.

(1)cos 3

x

y = (2)y =

(1)y =(5x -3)4 (2)y =(2+3x )5 (3)y =(2-x 2)3 (4)y =(2x 3+x )2

(1)y =3

2)12(1-x (2)y =4131+x (3)y =sin(3x -6

π) (4)y =cos(1+x 2

)

?3

2)2(x y -=; ?2

sin x y =;?)4

c o s (x y -=π

?)13sin(ln -=x y .

1.求下列函数的导数

(1) y =sin x 3+sin 33x ; (2)1

22sin -=

x x y (3))2(log 2

-x a

2.求)132ln(2

++x x 的导数

一、选择题(本题共5小题,每题6分,共30分) 1. 函数y =

2

)13(1

-x 的导数是( ) A. 3)13(6-x B. 2)13(6-x C. -3

)13(6-x

D. -

2

)13(6

-x

3. 函数y =sin (3x +4

π

)的导数为( )

A. 3sin (3x +

) B. 3cos (3x +

4π) C. 3sin 2(3x +4

π

D. 3cos 2(3x +4

π

4. 曲线n

x y =在x=2处的导数是12,则n=( ) A. 1 B. 2 C. 3 D. 4

5. 函数y =cos2x +sin x 的导数为( ) A. -2sin2x +x x

2cos B. 2sin2x +

x x 2cos C. -2sin2x +

x

x 2sin

D. 2sin2x -

x

x

2cos

6. 过点P (1,2)与曲线y=2x 2相切的切线方程是( ) A. 4x -y -2=0 B. 4x+y -2=0 C. 4x+y=0

D. 4x -y+2=0

二、填空题(本题共5小题,每题6分,共30分)

8. 曲线y =sin3x 在点P (3π

,0)处切线的斜率为___________。 9. 函数y =x sin (2x -2π)cos (2x +2π

)的导数是 。

10. 函数y =)32cos(π

-

x 的导数为 。

11. ___________

,2)(,ln )(00'

===x x f x x x f 则。

例2.计算下列定积分

(1)

2

(1)x x dx +?

; (2)2

21

1

()x

e dx x

+?

(3)20sin xdx π?

5.

4

2

x

e dx -?

的值等于 ( )

4

2

()A e e -- (B) 42e e + (C) 422e e +- (D) 42

2e e -+-

9.计算由曲线3

6y x x =-和2

y x =所围成的图形的面积.

复合函数的导数

1.C

2.B

3.B

4.A

5.A

6.A

7.y =u 3,u =1+sin3x

8.-3

9.y ′=2

1

sin4x +2x cos4x 10.

)

3

2cos()

32sin(π

π

--

-x x 11.x x x 1sin 1cos 122?

利用导数求函数值域

利用导数求函数最值 高二苏庭 导数是对函数的图像与性质的总结与拓展,导数是研究函数单调性极佳、最佳的重要工具,在掌握求函数的极值和最值的基础上学习用导数解决生产生活中的有关最大最小最有效等类似的应用问题广泛运用在讨论函数图像的变化趋势及证明不等式等方面。 导数是初等数学与高等数学的重要衔接点,是高考的热点,高考对导数的考查定位于作为解决初等数学问题的工具出现,高考对这部分内容的考查将仍会以导数的应用题为主,如利用导数处理函数的极值、最值和单调性问题和曲线的问题等,考题不难,侧重知识之意。 导数应用主要有以下三个方面: ①运用导数的有关知识研究函数的单调性和最值问题, ②利用导数的几何意义,研究曲线的切线斜率。函数y=f(x)在x=x0处的导数,表示曲线在点P(x0 , y0)处的切线斜率。 由导数来求最值问题的方法可知,解这类实际问题需先建立函数关系,再求极值点,确定最值点及最值.在设变量时可采用直接法也可采用间接法.

求函数极值时,导数值为0的点是该点为极值点的必要条件,但不是充分条件。 运用导数确定函数单调区间的一般步骤为: (1)求出函数y=f(x)的导函数; (2)在函数定义域内解不等式得函数y=f(x)的单调增区间;解不等式得函数y=f(x)的单调减区间。 例题剖析 例1、求函数的值域. 分析: 求函数的值域以前学过一些方法,也可利用求导的方法,根据函数的单调性求解. 解答: 函数的定义域由求得,即x≥-2.

当x>-2时,y′>0,即函数,在(-2,+∞)上是增函数,又f(-2)=-1,∴所求函数的值域为[-1,+∞). 点评: (1)从本题的解答过程可以看到,当单调区间与函数的值域相同时,才可使用此法,否则会产生错误. (2)求值域时,当x=-2,函数不可导,但函数 在[-2,+∞)上是连续的,函数图象是连续变化的,因此在x=-2时,取得最小值. 例2、把长度为16cm的线段分成两段,各围成一个正方形,它们的面积之和的最小值为多少? 分析:建立面积和与一正方形的周长的函数关系,再求最小值. 解答:设一段长为xcm,则另一段长(16-x)cm. ∴面积和 ∴S′=-2,令S′=0有x=8. 列表:

2-10高阶导数的概念及常见高阶导数公式

2-10高阶导数的概念及常见高阶导数公式

模块基本信息 一级模块名称 微分学 二级模块名称 基础模块 三级模块名称 高阶导数的概念及常见高阶导数 公式 模块编号 2-10 先行知识 导数的概念 模块编号 2-2 知识内容 教学要求 掌握程度 1、高阶导数的概念 1、理解高阶导的概念 一般掌握 2、常见初等函数的高阶导数 2、熟记常见初等函数的高阶导 3、莱布尼兹公式 3、掌握隐函数高阶导的求解(一般 是二阶) 4、隐函数的高阶导数 4、掌握参数方程高阶导的求解(一 般是二阶) 5、参数方程的高阶导数 5、熟记正弦、余弦等常见函数的n 阶导数公式 能力目标 1、提高学生的观察分析能力 2、培养学生的逻辑思维、类比推导能力 时间分配 45分钟 编撰 黄小枚 校对 方玲玲 审核 危子青 修订 肖莉娜 二审 危子青 一、正文编写思路及特点: 思路:本文先借助速度和加速度的概念引出高阶导数的定义,

然后分别介绍常见的初等函数的高阶导数、莱布尼兹公式、隐函数的高阶导数、参数方程的高阶导数。 特点:通过实际问题引出高阶导数的概念,在求解高阶导数时分类进行讲解,层层递进,有助于学生理解和掌握。 二、授课部分 1.引例 (1) 变速直线运动的速度)(t v 是位置函数)(t s 对时间t 的导数,即 )()('t s t v = 或dt ds t v = )( (2) 速度函数)(t v 对时间t 的变化率就是加速度)(t a ,即)(t a 是)(t v 对t 的导数: []' ')(')()(t s t v t a ==或)()(dt ds dt d t a = (3)加速度)(t a 就是位置函数)(t s 对时间t 的导数的导数,称 为)(t s 对t 的二阶导数,记为)(' 't s 或22dt s d 2.高阶导数的定义 设y=f(x)在某区间上可导,即有 ()x f ' 存在,如果()x f '也可导,则称()x f ' 的导数为函数 f(x) 的二阶导数。记 y '', 或 )(x f '', 22dx y d , dx x f d ) (2 根据导数的定义可知:''0()() ()lim x f x x f x f x x →+-''=V V V 类似地, 二阶导数的导数, 叫做三阶导数, 三阶导数的导数叫做四阶导数, 一般地, (n -1)阶导数的导数叫做n 阶导数, 分别记作 y ''', y (4), ? ? ? , y (n ) 或33dx y d , 44dx y d , ? ? ? , n n dx y d .

导数运用最大值与最小值(含答案)

最大值与最小值 一、基础过关 1.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是________,________. 2.f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是________. 3.函数y =ln x x 的最大值为________. 4.函数f (x )=x e x 的最小值为________. 5.已知函数y =-x 2-2x +3在区间[a ,2]上的最大值为15 4 ,则a 等于________. 6.已知f (x )=-x 2+mx +1在区间[-2,-1]上最大值就是函数f (x )的极大值,则m 的取值范围是________. 7.求函数f (x )=1 3x 3-4x +4在[0,3]上的最大值与最小值. 二、能力提升 8.函数y =4x x 2+1 的值域为________. 9.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当MN 达到最小时t 的值为________. 10.已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是________. 11.已知函数f (x )=2x 3-6x 2+a 在[-2,2]上有最小值-37,求a 的值及f (x )在[-2,2]上的最大值. 12.已知函数f (x )=x 3-ax 2+bx +c (a ,b ,c ∈R ). (1)若函数f (x )在x =-1和x =3处取得极值,试求a ,b 的值; (2)在(1)的条件下,当x ∈[-2,6]时,f (x )<2|c |恒成立,求c 的取值范围. 三、探究与拓展 13.已知函数f (x )=(x -k )e x . (1)求f (x )的单调区间; (2)求f (x )在区间[0,1]上的最小值.

(完整版)导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

导数在函数求最大值和最小值中的应用解读

导数在函数求最大值和最小值中的应用 例1.求函数f (x )=5x + . 解析:由3040x x +??-? ≥≥得f (x )的定义域为-3≤x ≤4,原问题转化为求f (x )在区间[-3, 4]上的最值问题。 ∵ y ’=f ’(x ) =5 在[-3,4]上f ’(x )>0恒成立, ∴ f (x )在[-3,4]上单调递增. ∴ 当x =-3时y min =-15-7, 当x =4时y max =20+27, ∴ 函数的值域为[-15-7,20+27]. 例2.设32f (a ),f (-1)0,∴ f (x )的最大值为f (0)=b -1, 又f (-1)-f (a )=21(a 3-3a -2)=21(a +1)2(a -)<0, ∴ f (x )|min =f (-1),∴ -23a -1+b =-23a = ∴ a b =1. 例3.若函数f (x )在[0,a ]上单调递增且可导,f (x )<0,f (x )是严格单调递增的,求 ()f x x 在(0,a ]上的最大值。 解析:2()'()()[]'f x f x x f x x x ?-=,∵ f (x )是严格单调递增的, ∴ f ’(x )>0,∵ f (x )<0,x >0,∴f ’(x )·x -f (x )>0, ∴ 2()'()()[ ]'f x f x x f x x x ?-=>0,∴ ()f x x 在(0,a ]上是增函数。 ∴ ()f x x 在(0,a ]上最大值为()f a a . 例4.设g (y )=1-x 2+4 xy 3-y 4在y ∈[-1,0]上最大值为f (x ),x ∈R , ① 求f (x )表达式;② 求f (x )最大值。 解析:g ’(y )=-4y 2(y -3x ), y ∈[-1, 0], 当x ≥0时,g ’(y )≥0,∴ g (y )在[-1, 0]上递增, ∴ f (x )=g (0)=1-x 2. 当-3 10,在[-1,3x ]上恒成立,在(3x ,0)上恒成立, ∴ f (x )=g (3x )=1-x 2+27x 4 .

用导数法求函数的最值的练习题解析

用导数法求函数的最值的练习题解析 一、选择题 1.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x )( ) A .等于0 B .大于0 C .小于0 D .以上都有可能 [答案] A [解析] ∵M =m ,∴y =f (x )是常数函数 ∴f ′(x )=0,故应选A. 2.设f (x )=14x 4+13x 3+1 2x 2在[-1,1]上的最小值为( ) A .0 B .-2 C .-1 D.1312 [答案] A [解析] y ′=x 3+x 2+x =x (x 2+x +1) 令y ′=0,解得x =0. ∴f (-1)=512,f (0)=0,f (1)=13 12 ∴f (x )在[-1,1]上最小值为0.故应选A. 3.函数y =x 3+x 2-x +1在区间[-2,1]上的最小值为( ) A.22 27 B .2 C .-1 D .-4 [答案] C [解析] y ′=3x 2+2x -1=(3x -1)(x +1) 令y ′=0解得x =1 3或x =-1

当x =-2时,y =-1;当x =-1时,y =2; 当x =13时,y =22 27;当x =1时,y =2. 所以函数的最小值为-1,故应选C. 4.函数f (x )=x 2-x +1在区间[-3,0]上的最值为( ) A .最大值为13,最小值为3 4 B .最大值为1,最小值为4 C .最大值为13,最小值为1 D .最大值为-1,最小值为-7 [答案] A [解析] ∵y =x 2-x +1,∴y ′=2x -1, 令y ′=0,∴x =1 2,f (-3)=13,f ? ?? ??12=34,f (0)=1. 5.函数y =x +1-x 在(0,1)上的最大值为( ) A. 2 B .1 C .0 D .不存在 [答案] A [解析] y ′=1 2x -121-x =12·1-x -x x ·1-x 由y ′=0得x =1 2,在? ????0,12上y ′>0,在? ????12,1上 y ′<0.∴x =1 2时y 极大=2, 又x ∈(0,1),∴y max = 2. 6.函数f (x )=x 4-4x (|x |<1)( ) A .有最大值,无最小值 B .有最大值,也有最小值

高阶导数和高阶微分 泰勒公式

§2-9 高阶导数和高阶微分·泰勒公式 1.高阶导数和高阶微分 在§2-3中,我们讲了函数的二阶导数和二阶微分。一般地,函数 )(x y y =的n 阶导数就是 h x y h x y x y x y n n h n n ) ()(lim ])([)()1()1(0) 1() (--→--+='= (0)()()y x y x =???? 而n 阶微分就是 n n n n n n n n x x y x x x y x x y y y d )(d ]d )([]d )(d[]d[d d )(1)(1)1(1-====--- (x 是自变量;x d 被看成与x 无关的有限量) 因此,按照莱布尼茨的记法,函数)(x y y =的n 阶导数)()(x y n 也可记成 n n x x y d )(d 或简记成 n n x y d d (注意..n 的位置...) 这样,导数与微分之间的那种“乘或除”的转换关系被保留到n 阶导数与n 阶微分的关系中. 例33 因为指数函数e x 的导数(e )e x x '=,所以(e )(e )e x x x '''==. 依次类推,则有 ()()(e )e ,d (e )(e )d e d (1,2,)x n x n x x n n x n x x n ==== 例34 对于函数x y sin =,则 cos sin , sin sin 2,22 2y x x y x x '??πππ?? ???? '''==+=+=?+ ? ? ????? ?????? 一般地, ()sin 2n n y x π??=+ ???; ()d d sin d 2n n n n n y y x x x π??==+ ??? ),2,1( =n . 同理,对于函数cos y x =,有 ()cos 2n n y x π??=+ ???; ()d d cos d 2n n n n n y y x x x π?? ==+ ??? ),2,1( =n . 例35 对于函数ln(1)y x =+,则 2 23 112,,(1),1(1)(1)y y y x x x ''''''= =-=-+++ 一般地, (n 阶导数)() 1 (1)! (1)(1,2,)(1)n n n n y n x --=-=+ (n 阶微分)()1(1)!d d (1)d (1,2,)(1) n n n n n n n y y x x n x --==-=+ 例36 设函数1()e (0),(0)0x f x x f - =≠=.证明:),2,1(0)0()( ==n f n . 证 一方面,函数)(x f 在点0是连续的,因为

导数及极值、最值练习题

. .. . 三、知识新授 (一)函数极值的概念 (二)函数极值的求法:(1)考虑函数的定义域并求f'(x); (2)解方程f'(x)=0,得方程的根x 0(可能不止一个) (3)如果在x 0附近的左侧f'(x)>0,右侧f'(x)<0,那么f(x 0)是 极大值;反之, 那么f(x 0)是极大值 题型一 图像问题 1、函数()f x 的导函数图象如下图所示,则函数()f x 在图示区间上 ( ) (第二题图) A .无极大值点,有四个极小值点 B .有三个极大值点,两个极小值点 C .有两个极大值点,两个极小值点 D .有四个极大值点,无极小值点 2、函数()f x 的定义域为开区间()a b ,,导函数()f x '在()a b ,的图象如图所示,则函数()f x 在 开区间()a b ,有极小值点( ) A .1个 B .2个 C .3个 D .4个 3、若函数2 ()f x x bx c =++的图象的顶点在第四象限,则函数()f x '的图象可能为( )

D. C. B. A. x y O x y O x y O O y x 4、设() f x '是函数() f x的导函数,() y f x ' =的图象如下图所示,则() y f x =的图象可能是()-1 2 1 O y x D. A. 12 12 1 2 2 1x y O x y O x y O O y x 5、已知函数 () f x的导函数() f x ' 的图象如右图所示,那么函数 () f x的图象最有可能的是() -1 1 f '(x) y x O 6、() f x '是() f x的导函数,() f x '的图象如图所示,则() f x的图象只可能是() 2x O

导数及极值、最值练习题

三、知识新授 (一)函数极值的概念 (二)函数极值的求法:(1)考虑函数的定义域并求f'(x); (2)解方程f'(x)=0 ,得方程的根x0(可能不止一个) (3)如果在x0附近的左侧f'(x)>0, 右侧f'(x)<0, 那么f(x0)是 极大值;反之,那么f(x0)是极大值 y 题型一图像问题 y 1、函数f(x)的导函数图象如下图所示,则函数 f(x)在图示区间上() O x b a O x (第二题图) A.无极大值点,有四个极小值点 B .有三个极大值点,两个极小值点 C.有两个极大值点,两个极小值点 D .有四个极大值点,无极小值点 2、函数f(x)的定义域为开区间(a,b),导函数f(x)在(a,b)内的图象如图所示,则函数f(x)在 开区间(a,b)内有极小值点() A.1个B.2个C.3个D .4个 3、若函数f(x)x2bxc的图象的顶点在第四象限,则函数f(x)的图象可能为()

. y y y y O x O x O x O x A. B. C. D. 4、设f(x)是函数f(x)的导函数,y f(x)的图象如下图所示,则y f(x)的图象可能是() y y y y y O 2 12x O1 x O 12x O12x O 1 2 x -1 A. B. C. D. 5、已知函数fx的导函数f x的图象如右图所示,那么函数fx的图象最有可能的是() y f'(x) O 1 x -1 6、f(x)是f(x)的导函数,f(x)的图象如图所示,则f(x)的图象只可能是() y O 2x

.

. y y y y y -2 3 x O 24 O 2xO 2xO 2xO 2 x A. B. C. D. 7、如果函数y fx 的图象如图,那么导函数 yf(x)的图 象可能是( ) y -3 3 8、如图所示是函数yf(x)的导函数y f(x)图象, -2-1 1 0 12 45x 2 则下列哪一个判断可能是正确的( ) A .在区间(2,0)内y f(x)为增函数 B .在区间(0,3) 内y f(x)为减函数 C .在区间(4, )内y f(x)为增函数 y D .当x2时y f(x)有极小值 y=f (x) y y y y x x x x x A B C D 9、如果函数

2-10高阶导数的概念及常见高阶导数公式

模块基本信息 一级模块名称 微分学 二级模块名称 基础模块 三级模块名称 高阶导数的概念及常见高阶导数公式 模块编号 2-10 先行知识 导数的概念 模块编号 2-2 知识内容 教学要求 掌握程度 1、高阶导数的概念 1、理解高阶导的概念 一般掌握 2、常见初等函数的高阶导数 2、熟记常见初等函数的高阶导 3、莱布尼兹公式 3、掌握隐函数高阶导的求解(一般是二阶) 4、隐函数的高阶导数 4、掌握参数方程高阶导的求解(一般是二阶) 5、参数方程的高阶导数 5、熟记正弦、余弦等常见函数的n 阶导数公式 能力目标 1、提高学生的观察分析能力 2、培养学生的逻辑思维、类比推导能力 时间分配 45分钟 编撰 黄小枚 校对 方玲玲 审核 危子青 修订 肖莉娜 二审 危子青 一、正文编写思路及特点: 思路:本文先借助速度和加速度的概念引出高阶导数的定义, 然后分别介绍常见的初等函数的高阶导数、莱布尼兹公式、隐函数的高阶导数、参数方程的高阶导数。 特点:通过实际问题引出高阶导数的概念,在求解高阶导数时分类进行讲解,层层递进,有助于学生理解和掌握。 二、授课部分 1.引例 (1) 变速直线运动的速度)(t v 是位置函数)(t s 对时间t 的导数,即 )()('t s t v = 或dt ds t v =)( (2) 速度函数)(t v 对时间t 的变化率就是加速度)(t a ,即)(t a 是)(t v 对t 的导数: []'')(')()(t s t v t a ==或)()(dt ds dt d t a =

(3)加速度)(t a 就是位置函数)(t s 对时间t 的导数的导数,称 为)(t s 对t 的二阶导数,记为)(' 't s 或22dt s d 2.高阶导数的定义 设y=f(x)在某区间上可导,即有 ()x f ' 存在,如果()x f '也可导,则称()x f ' 的导数为函数 f(x) 的二阶导数。记 y '', 或 )(x f '', 22dx y d , dx x f d )(2 根据导数的定义可知:''0()()()lim x f x x f x f x x →+-''= 类似地, 二阶导数的导数, 叫做三阶导数, 三阶导数的导数叫做四阶导数, 一般地, (n -1)阶导数的导数叫做n 阶导数, 分别记作 y ''', y (4), ? ? ? , y (n ) 或33dx y d , 44dx y d , ? ? ? , n n dx y d . 函数f (x )具有n 阶导数, 也常说成函数f (x )为n 阶可导. 注:(1)如果函数f(x)在点x 处具有n 阶导数, 那么函数f(x)在点x 的某一邻域内必定具有一切低于n 阶的导数. (2)二阶及二阶以上的导数y '' y ''' y (4) ?? y (n )统称高阶导数. 3.常见初等函数的高阶导数 例1 已知3y x = 求()n y (一级) 解: ()()423;6;6;0;,0.n y x y x y y y ''''''===== 课堂练习:已知y =e x 求它的n 阶导数. 例2 已知sin y x =求它的n 阶导数. (一级) 解:)2 sin(cos π+=='x x y , )2 2sin()2 2 sin()2 cos(ππππ?+=++=+=''x x x y ,

导数--函数的最大值与最小值练习题

导数--函数的最大值与最小值练习题 【典型例题】 例1:求下列各函数的最值: (1)()[]32362,1,1f x x x x x =-+-∈-;(2)( )[]0,4f x x x =+∈。 例2:设 213a <<,函数()3232f x x ax b =-+在区间[]1,1-上的最大值为1 ,最小值为数的解析式。 【当堂练习】 1、函数()3223125f x x x x =--+在区间[]0,3上的最大值和最小值分别是( ) A 、5,15- B 、5,4- C 、4,15-- D 、5,15-- 2、函数()[],0,4x f x x e x -=?∈的最大值为( ) A 、0 B 、 1 e C 、 4 4e D 、 2 2e 3、已知函数()2 23f x x x =--+在[],2a 上的最大值为154 ,则a =( ) A 、32- B 、12 C 、12- D 、12-或32 - 4、若函数()1sin sin 33f x a x x =+在3 x π =处有最值,则a =( ) A 、2 B 、1 C D 、0 5、当0,2x π?? ∈ ???时,函数()()sin f x tx x t R =-∈的值恒小于零,则t 的取值范围是( ) A 、2t π≤ B 、2t π≤ C 、2t π≥ D 、2 t π< 6、点P 是曲线2ln 2y x =-上任意一点,则点P 到直线y x =-的最小距离为( ) A 、 4 B 、 4 C D 7.下列说法正确的是 A.函数的极大值就是函数的最大值 B.函数的极小值就是函数的最小值 C.函数的最值一定是极值 D.在闭区间上的连续函数一定存在最值 8.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x ) A.等于0 B.大于0 C.小于0 D.以上都有可能 9.函数y = 2 342 13141x x x ++,在[-1,1]上的最小值为( ) A.0 B.-2 C.-1 D.12 13 10.函数y =1 22+-x x x 的最大值为( )A.33 B.1 C.21 D. 2 3 11.设y =|x |3,那么y 在区间[-3,-1]上的最小值是( )A.27 B.-3 C.-1 D.1 12.设f (x )=ax 3-6ax 2+b 在区间[-1,2]上的最大值为3,最小值为-29,且a >b ,则( ) A.a =2,b =29 B.a =2,b =3 C.a =3,b =2 D.a =-2,b =-3 二、填空题 13.函数y =2x 3-3x 2-12x +5在[0,3]上的最小值是___________. 14.函数f (x )=sin2x -x 在[- 2π,2 π ]上的最大值为_____;最小值为____ 15.将正数a 分成两部分,使其立方和为最小,这两部分应分成____和____. 16.使内接椭圆22 22b y a x +=1的矩形面积最大,矩形的长为_____,宽为______ 17.在半径为R 的圆内,作内接等腰三角形,当底边上高为______时,它的面积最大. 18、函数()3 2 43365f x x x x =+-+在[)2,-+∞上的最大值为 ,最小值为 。 19、若函数()3 32f x x x m =+ +在[]2,1-上的最大值为9 2,则m = 。 20、设函数()3 31f x ax x =-+对于任意[]1,1x ∈-,都有()0f x ≥成立,则a = 。 21、已知()()()2 4 f x x x a =--,若()10f '-=,求()f x 在[]2,2-上的最大值和最小值。 三、解答题 22、已知0a >,函数()ln f x x ax =-。 (1)设曲线()y f x =在点()( ) 1,1f 处的切线为l ,若l 与圆()2 2 11x y ++=相切,求a 的值;(2) 求()f x 的单调区间;(3)求函数()f x 在(]0,1上的最大值。 23.一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD 的面积为定值S 时,使得湿周l =AB +BC +CD 最小,这样可使水流阻力小,渗透少,求此时的高h 和下底边长b . b

导数求最值(含参)

含参导数求最值问题(1—2) 编制人:闵小梅审核人:王志刚 【使用说明及学法指导】 1.完成预习案中的相关问题; 2.尝试完成探究案中合作探究部分,注意书写规范; 3.找出自己的疑惑和需要讨论的问题准备课堂讨论质疑。 【学习目标】 1.掌握利用导数求函数最值的方法 2.会用导数解决含参函数的综合问题 【预习案】 一、知识梳理 函数的最值与导数 (1)函数f(x)在[a,b]上有最值的条件 如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值. (2)求y=f(x)在[a,b]上的最大(小)值的步骤 ①求函数y=f(x)在(a,b)内的极值. ②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值. 二、尝试练习 1.设函数f(x)=x3-x2 2 -2x+5,若对任意的x∈[-1,2],都有f(x)>a,则实 数a的取值范围是________ (-∞,7 2) 2.已知函数f(x)=ax3-3x+1对x∈(0,1]总有f(x)≥0成立,则实数a的取值范围是________ [4,+∞)

【探究案】 一、合作探究: 例1. 设函数f (x )=ln x +ln(2-x )+ax (a >0). (1)当a =1时,求f (x )的单调区间; 增(0,2),减(2,2) (2)若f (x )在(0,1]上的最大值为12,求a 的值. a =1 2 二、拓展探究: 例2. 已知函数f(x)=lg(x +a x -2),其中a >0且为常数. (1)当a∈(1,4)时,求函数f(x)在[2,+∞)上的最小值;ln a 2 (2)若对任意x∈[2,+∞)恒有f(x)>0,试确定实数a 的取值范围.(2,+∞) 三、深层探究:单调性的应用 例3.求f (x )=ax x e -? (a >0)在x ∈[1,2]上的最大值

利用导数求函数的极值

1 函数专题(导数内容为主) 彬县范公中学 张登峰 一、利用导数定义的求解 例1.已知f(x)在x=a 处可导,且f ′(a)=b ,求下列极限: (1)h h a f h a f h 2)()3(lim 0--+→?; (2)h a f h a f h )()(lim 20-+→? 解:(1)h h a f a f a f h a f h h a f h a f h h 2)()()()3(lim 2)()3(lim 00--+-+=--+→→ b a f a f h a f h a f h a f h a f h h a f a f h a f h a f h h h h 2)('2 1)('23)()(lim 213)()3(lim 232)()(lim 2)()3(lim 0000=+=---+-+=--+-+=→→→→ (2)?? ????-+=-+→→h h a f h a f h a f h a f h h 22020)()(lim )()(lim 00)('lim )()(lim 0220=?=?-+=→→a f h h a f h a f h h 二、利用导数求函数的极值 例 求下列函数的极值: 1. x e x x f -=2)(;2. .6)(2--=x x x f 3. 1ln 2+=x y 解:函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f ,∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f ,∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f ,当2=x 时,函数取得极大值24)2(-=e f . 2.?????<<-++-≥-≤--), 32(,6),32(,6)(22x x x x x x x x f 或 ∴?? ???=-=<<-+->-<-').32(,),32(,12),32(,12)(x x x x x x x x f 或不存在或

《函数的最大值和最小值与导数》教学设计说明书

《函数的最大值和最小值与导数》教学设计 【课本教材内容分析】 本节教材知识间的前后联系,以及在课堂教学中的地位与作用: 导数(导函数的简称)是一个特殊函数,它的引出和定义始终贯穿着函数思想。 新课程增加了导数的内容,随着课改的不断深入,导数知识考查的要求逐渐加强,而且导数已经由前几年只是在解决问题中的辅助地位上升为分析和解决问题时的不可缺少的工具。众所周知,函数又是中学数学研究导数的一个重要载体,因此函数问题涉及高中数学比较多的知识点和数学思想方法。 导数作为研究函数的一种重要工具,在宁夏高考进入新课标实验区之后,不但成为宁夏高考文理科数学的必考题,而且也逐渐成为高考试卷中起到拔高作用的热点难题。在学习时应引起我们教师和学生的充分重视。 本节主要研究闭区间上的连续函数最大值和最小值的求法与函数导数之间的关系及其简单的应用问题,分两课时,这里是第一课时,它是在学生已经会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,并且以本节知识为基础,可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.为下一节“生活中的优化问题”的教学打下坚实的基础。这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有重要的理论价值和现实价值. 高中阶段对用导数求可导函数在闭区间上的最值的方法不要求作严密的理论推导,这一方法完全可以由学生通过对函数图象的观察、归纳得到,所以本节教材还有一个重要的教育功能,那就是培养学生的探索精神,体验自主学习的成功愉悦. 【课堂教学三维目标】 根据本节教材特点,结合学生已有的认知水平,制定本节如下的三维教学目标: 1.知识和技能目标 (1).使学生理解函数的最大值和最小值的概念,掌握可导函数在闭区间上所有点(包括端点)处的函数中的最大(或最小)值必有的充分条件;并且能理解函数最值与极值的区别和联系 (2)理解可导函数的最值存在的可能位置. (3)掌握用导数法求上述函数的最大值与最小值的方法和步骤. 2.过程和方法目标 (1)通过函数图象的直观,让学生发现函数极值与最值的关系,掌握利用导数求函数最值的方法。 (2) 在学习过程中,观察、归纳、表述、交流、合作,最终形成认识. (3) 培养学生的数学能力,能够自己发现问题,分析问题并最终解决问题. 3.情感态度和价值观目标 (1) 渗透数形结合的思想,体会导数在求函数最值中的优越性,优化学生的思维品质。 (2) 认识事物之间的的区别和联系,体会事物的变化是有规律的唯物主义思想.

用导数法求函数最值

用导数法求函数最值 中学数学的最值知识是进一步学习高等数学中最值问题的基础,因此最值问题历来是各类考试的热点。利用中学数学知识解决最值问题方法很多,如:配方法、不等式法、数形结合法、换元法、判别式法等等,但在我们学习了导数知识后,发现用导数法来求函数的最值要比初等方法快捷简便,因此导数法求最值也是一种不可忽视方法: 在闭区间[,]a b 上连续的函数()f x 在[,]a b 上必有最大值与最小值。 设函数()f x 在[,]a b 上连续,在(,)a b 上可导,求()f x 的最大值与最小值的步骤如下: (1) 求()f x 在(,)a b 内的极值; (2) 将()f x 的各极值与(),()f a f b 比较,其中最大的 一个是最大值,最小的一个是最小值。 应注意:(1)()f x 的极值是局部概念,而最大(小)是值 则可看作整体概念,即在定义域内最大或最小如图所示 : (2)求函数的最值与求函数极值不同的是,在求可导函数的最值时,不需对各导数为0的点讨论其是极大值还是极小值,只需将导数为零的点和端点的函数值进行比较即可。 (3)可利用函数的单调性求()f x 在区间上的最值,若()f x 在[a,b]上单调增加,则()f x 的最大值为()f b ,最小值为()f a ;若()f x 在[a,b]上单调减少,则()f a 为函数最大值,()f b 为最小值。 例1:求函数53231y x x x =--+在[2,2]-上的最大值与最小值。 解:由 53231y x x x =--+得'42221091(101)(1)y x x x x =--=+-令'0y =解得 121,1x x =-=,列表讨论如下: 又因为当1x =-时y =532(1)3(1)(1)1-----+ =3 当1x =时5213111y =--+ =1- 而函数在两个端点的函数值分别为37-,39,因此函数y 的最大值为39,最小值为37- 例2:(1)求函数()f x 32 11232 x x x = --在闭区间[1,1]-最小值及[2,3]-上的最大值。 (2)求函数2()(10),f x x x x N +=-∈的最大值。

利用导数求函数的极值习题

利用导数求函数的极值 例 求下列函数的极值: 1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21 2)(2-+=x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数)(x f 定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值. 解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f 令0)(='x f ,得2±=x . 当2>x 或2-'x f , ∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f , ∴函数在(-2,2)上是减函数. ∴当2-=x 时,函数有极大值16)2(=-f , 当2=x 时,函数有极小值.16)2(-=f 2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f , ∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f , 当2=x 时,函数取得极大值2 4)2(-=e f . 3.函数的定义域为R . .) 1()1)(1(2)1(22)1(2)(22222++-=+?-+='x x x x x x x x f

令0)(='x f ,得1±=x . 当1-x 时,0)(<'x f , ∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f , ∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f , 当1=x 时,函数取得极大值.1)1(-=f 说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数)(x f 在0x 处有极值的必要条件,如果再加之0x 附近导数的符号相反,才能断定函数在0x 处取得极值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误. 复杂函数的极值 例 求下列函数的极值: 1.)5()(32-=x x x f ;2..6)(2--=x x x f 分析:利用求导的方法,先确定可能取到极值的点,然后依据极值的定义判定.在函数)(x f 的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点.这两类点就是函数)(x f 在定义内可能取到极值的全部“可疑点”. 解:1..3)2(533)5(2)5(32 )(33323x x x x x x x x x f -=+-=+-=' 令0)(='x f ,解得2=x ,但0=x 也可能是极值点. 当0x 时,0)(>'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是增函数; 当20<

求高阶导数常见方法

求函数的高阶导数常用方法 (一)逐阶整理法 例1、 求()sin x f x e x =的n 阶导数(解略) (二)将函数分解为若干个简单函数的和,再利用已知的常见的函数的高阶导数公式 (1)()()(1)(1)n n x n x ααααα?=??+" (2)()()(ln )x n x n a a a =, ()(e )e x n x = (3)()(sin())sin ()2n n ax b a ax b n π??+=?++???? ?, ()(cos())cos ()2n n ax b a ax b n π??+=?++???? ? (4)()11(1)!n n n n x x +???=????, ()1 1(1)!()n n n n n a ax b ax b +????=??++?? (5)1()(1)(1)!(ln )n n n n x x ???=, 1()(1)(1)!(ln())()n n n n n a ax b ax b ????+=+ 例2、求下列函数的n 阶导数 (1)1()(1) f x x x =? (2)()1n x f x x =? (3)2221()f x a b x =? (4)()cos cos2f x x x =? (三)利用莱布尼茨公式 例3、求函数ln ()x f x x =的n 阶导数 例4、求函数2()(1)n f x x =?的n 阶导数 (提示:()(1)(1)n n f x x x =??+) (四)先求一阶或二阶导数,变成乘积形式,再利用莱布尼茨公式,得到高阶导数的递推公式

例5 、设arctan y x =,求() 0n x y = 解:由211y x ′=+, 得 2(1)1y x ′?+= 对上式两边求n 阶导数(左边利用莱布尼茨公式),得 (1)2()(1)(1)(1)2202 n n n n n y x n y x y +???++??+ ??= 即 2(1)()(1)(1)2(1)0n n n x y nxy n n y +?+?++?= (高阶导数的递推公式) 令0x =,得 (1) (1)00(1)n n x x y n n y +?===?? 又由(0)0y =,(0)1y ′=,故 () 0 0 , 2(1)(2)!, 21n k x n k y k n k ==?=???=+?当当 例6 、设arcsin y x =,求() 0n x y = 解:由y ′= ,32221(1)x x y y x x ′??′′′===???,则 2(1)y x y x ′′′??=? 对上式两边求n 阶导数(两边利用莱布尼茨公式),得 (2)2(1)()(1)()(1)(1)(2)(2)12 n n n n n n n y x n y x y y x n y +++???+???+ ???=?+?? 整理,得 2(2)(1)2()(1)(21)0n n n x y n xy n y ++??+?= 令0x =,得 (2)2()n n y n y += (高阶导数的递推公式)

相关文档
最新文档