CSFB问题优化指导书V2

CSFB问题优化指导书V2
CSFB问题优化指导书V2

CSFB指标分析指导书

1 概述

省公司每月根据健康度各项指标对各分公司进行考核,健康度指标中一项重要指标为CSFB指标,现写作CSFB指标优化指导书指导各分公司针对该项指标进行优化提升。

2 CSFB原理

目前,云南采用2-3-4G混合组网的方式,在4G优先的情况下。语音业务采用4G->2G的CSFB。

CSFB技术方案的实施前提是LTE覆盖区MSC支持SGs接口(是连接EPC与电路域MSC 的桥梁),以实现CSFB 终端的联合附着/位置更新、被叫寻呼和短信流程。

语音业务:单待终端驻留LTE网络,话音业务通过CSFB技术回落到电路域执行,业务结束后,再返回LTE网络。

当UE附着和驻留LTE网络时,为了接收被叫和使用短信业务,必须执行联合附着和联合位置更新,在CS域更新注册状态及位置信息。

联合附着

①UE附着LTE网络:在附着请求中携带“联合附着”指示

②触发联合位置更新:MME通过配置的TA-LA (MSC)映射关系,确定进行登记的MSC,并向MSC发起联合位置更新请求,即触发MSC向HLR注册和登记。

③附着成功:UE存储LA和MSC分配的TMSI

联合位置更新

发起TAU请求:

①当UE在LTE网络移动TA改变,或从2/3G返回LTE,或周期性位置更新定时器超时,

会发起位置更新请求给MME,携带“联合位置更新”指示。

②触发联合位置更新:MME判断LA改变,发起到MSC的联合位置更新请求,改变在原来MSC记录的LA;当MSC也改变时,位置更新导致用户在新的MSC登记和注册。

③位置更新成功:UE存储LA和MSC分配的TMSI

主叫语音业务

如下图所示,UE发起CS Fallback主叫语音业务,MME指示eNodeB(evolved NodeB)需要将UE回落到GERAN/UTRAN网络,eNodeB指示UE回落到GERAN/UTRAN网络,UE在GERAN/UTRAN网络发起主叫语音业务,在发起主叫语音业务之前有可能先发起位置更新流程。

主叫语音流程

UE发起CS Fallback语音业务请求。

Extended Service Request消息结构图

如上图所示,其中service-type信元指示业务类型为始发CSFB语音业务,同时携带该UE 在联合附着过程中CS域给它分配的TMSI。

MME发送Initial Context Setup Request消息给eNodeB,包含CS Fallback Indicator。该消息指示eNodeB,UE因CS Fallback业务需要回落到UTRAN/GERAN。

eNodeB要求UE开始系统的小区测量,并获得UE上报的测量报告,确定重定向的目标系统小区。然后向UE发送目标系统具体的无线配置信息,并释放连接。

UE接入目标系统小区,发起CS域的业务请求CM Service Request。

如果目标系统小区归属的MSC Server与UE附着EPS网络时登记的MSC Server不同,则该MSC Server收到UE的业务请求时,由于没有该UE的信息,可以采取隐式位置更新流程,接受用户请求。如果MSC Server不支持隐式位置更新,且MSC Server没有用户数据(即服务MSC Server与EPS/IMSI登记的MSC Server不同),则拒绝该用户的业务请求。如果MSC Server 拒绝用户的业务请求会导致UE发起一个CS域位置更新流程。

被叫语音业务

如下图所示,MSC Server收到对UE的被叫语音请求,通过存在的SGs关联和MME信息,向该MME发起寻呼请求。MME通过eNodeB在空口寻呼该UE,并指示UE回落到目标GERAN/UTRAN网络。UE接入到目标网络后,在电路域继续进行语音呼叫。

被叫语音流程

1.GMSC Server向被叫用户归属HLR发送取路由信息请求。

2.HLR收到该SRI消息后,向被叫用户当前附着到的old MSC Server获取漫游号码。

3.old MSC Server为该次呼叫分配漫游号码MSRN1,并返回给HLR。

4.HLR将该漫游号码发送给GMSC。

5.GMSC收到该漫游号码后,进行号码分析,根据分析结果将呼叫路由到old MSC

Server。

6.MSC Server收到IAM入局(例如中继ISUP入局)消息后,根据存在的SGs关联和

MME信息,发送SGsAP-PAGING-REQUEST(携带IMSI,TMSI,Service indicator ,CLI,LAC)消息给MME。

7.MME发送Paging消息给eNodeB。eNodeB发起空口的Paging流程。

8.UE建立连接并发送Extended Service Request消息给MME。

9.MME发送SGsAP-SERVICE-REQUEST消息给MSC Server。MSC Server收到此消息,

不再向MME重发寻呼请求消息。为避免呼叫接续过程中,主叫等待时间过长,MSC Server收到包含空闲态指示的SGs Service Request消息,先通知主叫,呼叫正在接续过程中。

10.

11.MME发送Initial UE Context Setup消息给eNodeB,包含CS Fallback Indicator。该消

息指示eNodeB,UE因CSFB业务需要回落到UTRAN/GERAN。

12.UE回落到CS域之后,UE检测到当前的小区信息和存储的小区不同,将发起位置

更新。MSC Server收到UE发送的LOCATION_UPDATE_REQUEST消息。这种情况下,

UE不需要回Paging Response给MSC Server,UE直接发送SETUP消息建立呼叫。

3 CSFB指标定义

健康度中CSFB主要考核三个指标:CSFB被叫寻呼成功率、CSFB回落到GSM成功率和CSFB被叫接通成功率。该项指标是通过话务网管统计的MSC侧指标,三个指标的详细定义如下:

CSFB被叫寻呼成功率:SGs接口语音业务请求次数/(SGs接口语音业务一次寻呼次数- SGs接口业务取消次数);

CSFB回落到GSM成功率:( CSFB寻呼响应次数+ CSMT呼叫他局回落次数) / CSFB呼叫移动用户终结试呼次数;

CSFB被叫接通成功率:(CSFB呼叫2G终结接通次数+ CSMT呼叫出局语音业务接通次数) / CSFB呼叫移动用户终结试呼次数;

CSFB指标信令打点图如下图所示:

图1 健康度CSFB指标信令打点图

根据健康度CSFB指标的公式定义及信令打点图,针对CSFB成功率优化可以从4G无线侧、2G无线侧和核心网MSC侧进行分析和优化。

4 CSFB优化手段

4.1 优化总体流程

处理流程图:

4.2 4G无线侧

4.2.1未部署MTRF功能情况下UE跨MSC POOL回落,导致CSFB失败

描述:终端注册在LAC1对应的MSC1上,MSC1在MSC POOL1内,终端回落时选择接入的GSM 小区为LAC2,对应的MSC为MSC2,MSC2在MSC POOL2内,导致paging和paging response不在同一个MSC POOL.

现象:SGS接口信令:SGS口信令持续正常,下发寻呼,并收到MME发送给MSC的sevice request。

MME-S1口:S1口信令持续正常,手机收到寻呼后,发起extend sevice request,并正常下发release command与 release response,之后手机脱离4G并在2G上发起驻留。

A口:UE尝试在2G网络上发起驻留,驻留完成之后发paging response,鉴权之后,网络下发clear的释放消息或者看不到A口任何消息,信令丢失了。

Uu口:Uu口信令正常持续,与A口的信令一致,上发paging response消息,完成立即指配后,网络下发clear command消息。

处理措施:

MTRF功能开启,保障MSC POOL边界地区的KPI指标;

如果无法开启请通过如下手段进行规避(目标:添加本MSC POOL边界的其他邻区频点,同时避免跨POOL同频情况;MSC POOL边界站点的覆盖范围要合理,避免过覆盖等导致回落失败):

删除跨POOL GSM邻区;

优化边界GSM同频情况;

GSM站点的MSC规划调整及基本RF调整;

4.2.24G TAC与GSM LAC不一致导致CSFB失败

描述:如果LTE站点的TAC配置与GSM邻区的LAC不一致,容易导致UE无法找到对应的GSM 服务小区,导致CSFB无法做业务。

现象:由于LTE站点的TAC配置与GSM邻区的LAC不一致,一直重复做附着分离,MSC不能接通,LTE不能重定向到GSM上做CSFB业务。

处理措施:

LTE侧TAC配置合理,避免插花或者与周围界限不清晰;

确保与GSM LAC一致;

热点区域如:火车站涉及高铁专网、地铁及周围多个TAC,由于人流较大,而且车站本身广场、站台都不属于同一个TAC,必然会存在大量的TAU,导致回落问题,建议将周围合并成一个TAC;

4.2.3频点邻区配置合理性核查

描述:CSFB频点配置过多,没有进行精选,导致UE做CSFB业务的时候回落到距离较远的GSM小区,该GSM小区的电平、质量等因素较差导致CSFB业务失败,UE做CSFB业务区域有更优的GSM小区可以进行语音业务(电平,质量,距离较近)。

现象:UE做CSFB业务,携带GSM频点释放后回落到GSM小区上,UE驻留在GSM小区进

行语音业务,但所占的GSM小区距离CSFB业务地点较远,电平较差,导致CSFB业务失败,周围存在更优电平的GSM小区,且距离更近,但携带的频点释放中没有距离更近,电平更

高小区的BCCH频点。

处理措施:

未配置频点组,数量非常少,多见于新站,需要补全;

频点组配置频点过少,存在大量只配置1~2个的小区,需要按照邻区尽量配满第一层;

密集市区未添加覆盖方向的室分频点;

频点组频点与邻区频点不一致,外部邻区数据与工参不一致;

4.2.4覆盖问题需要常规的RF优化手段

描述:在LTE弱覆盖区域测试时,CSFB手机拨打2G手机呼叫建立时延较长(一般为20S 左右)。

现象:LTE若覆盖情况下,UE存在一定概率漏收部分信令,如CSFB UE在4G网络并未

收到重定向命令(RRC Connection Release)。根据协议规定,当UE未收到重定向命令时,UE将启动定时器T3417ext(协议规定为10S),当UE为主叫方时,T3417ext超时后,UE主

动搜索其他RAT小区并尝试接入,一般UE将先搜索3G小区,后搜索2G小区;当UE为被叫

方时,T3417ext超时后,UE释放无线链路并不回落2G/3G。

处理措施:

问题小区的弱覆盖及干扰排查,存在弱覆盖和上行干扰会导致CSFB用户在被叫时空闲态建立RRC连接失败,或者在CSFB返回LTE时不能收到TAU请求,导致UE不能被寻呼。

4.3 2G无线侧

GSM侧涉及到CSFB无线接通率的主要是UE接入GSM网络并发起呼叫的过程,涉及到GSM

网络接入以及GSM侧的呼叫流程。

GSM侧主要涉及到如下指标:无线接入性、拥塞率、掉话率等等。由于4G回落2G后,主叫流程基本与GSM一致,被叫除寻呼消息在4G侧下发,其他流程与GSM侧一致。所以我们认为在CSFB接通率优化中,GSM侧所做工作就是确保能正常驻留GSM小区,能正常起呼通话。GSM侧优化分为三个部分:

4.3.1 能正常回落驻留正确GSM 小区,优化流程如下:

其中POOL 边界如果4G 配置频点存在问题,对该区域CSFB 接通率影响巨大。建议对POOL 边界的GSM 小区进行BCCH 分段规划,在POOL 交界区域,不同的POOL 使用不同的BCCH 段,同时4G 侧再修改为频率规划后的CSFB 频点,可彻底解决跨POOL 频点配置引起回落失败的

问题。

4.3.2 能正常起呼,优化流程如下:

整个优化流程由于目前无线网管无法区分对待CSFB 与普通的GSM 侧通话,故GSM 侧优化还是整体正对性优化,筛选现网各指标劣化TOP 小区,涉及指标主要有SDCCH 掉话率高、SDCCH 拥塞率高、TCH 分配成功率低、TCH 拥塞率高、TCH 掉话率高的小区进行针对性的TOP 小区整治,在优化GSM 网络的同时为CSFB 创造回落的良好条件。

4.3.3 CSFB 失败2G 侧原因分析:

描述:在CSFB 失败案例中,有如下情况:UE 已经正常回落到GSM 网络,但由于2G 侧小区的原因导致CSFB 失败;(注:已经核查了TAC 和LAC 一致性,也没有跨POOL )

现象:

1、UE 回落到GSM 小区A ,由于2G 的A 小区拥塞严重,会导致UE 在回落到A 小区后

无法正常分配C 信道及T 信号,从而导致CSFB 失败;

2、UE回落到GSM小区B,由于2G的B小区存在严重干扰,会造成该小区高质差,导致寻呼信令无法正常传输,最终导致CSFB失败;

测试分析过程中如果遇到以上情况,可以判定为2G侧问题;

处理措施:

针对G网小区拥塞,可通过数据查询,判定该2G小区是经常拥塞还是偶发拥塞,如果是经常拥塞,可在LTE侧删除该2G小区频点,避免回落到该小区;

针对G网小区干扰、质差,需要通过排查干扰、更换频点、RF优化等手段,及时处理2G小区干扰、质差问题;

高干扰优化指导书

优化作业指导书 干扰专项 1.优化计划 干扰是影响网络质量的关键因素之一,对通话质量、掉话、切换、拥塞指标均有较严重影响。如何降低和消除干扰是网络规划、优化的重要任务。 网络中的高干扰小区特别是常态高干扰小区是处理干扰问题的重点,常态高干扰小区由于其干扰的严重性,对网络kpi指标影响较大,网络质量提升首先得消除这类小区的干扰问题。 高干扰定义:6忙时(8:00-10:00,18:00-20:00)时段内干扰带4-5级占比>=30%; 常态高干扰小区定义:小区一周6忙时出现高干扰次数>=9次 2.工作指导 网络中的干扰按类型可分为硬件干扰、频率干扰和网外干扰,其中硬件干扰主要表现为天馈系统产生的互调干扰。各类干扰排查与处理方法如下: 频率干扰 由于网络规模的不断扩大,移动GSM频率资源有限,过度密集的频率复用将不可避免地带来网内频率干扰的问题。频率干扰排查步骤如下:1)首先查询该小区所在基站告警情况,排除了TRX板件故障等问题; 2)提取6忙时载频级4-5级干扰带统计,判断高干扰是否出现在个别载频上; 3)使用频规软件核对同邻频情况,判断是否存在近距离同邻频对打现象; 4)对于同邻频现象不明显的问题,可通过小区内频点倒换,查看高干扰转移情况进一步判断频点问题; 5)确定受干扰频点,进行重新规划入网,跟踪查看干扰指标是否消失。

互调干扰 互调干扰为天线老化、跳线接头氧化、或连接故障等原因造成,互调干扰需要对硬件、天馈维护处理。分析和排查步骤如下: 1)首先查询该小区所在基站告警情况,若存在硬件故障相关告警,应立即安排维护上站处理; 2)采集该小区载频级干扰带信息,发现忙时多载波均出现高干扰,排除频率干扰; 3)提取小区话务与4-5级干扰带指标,进行关联对比,判断小区干扰是否与话务量走势存在正向关系; 4)华为设备可通过测试空闲时隙模拟大话务来进一步定位分析,若测试空闲时隙时干扰上升明显,则可定位为互调干扰 5)安排维护人员上站排查,借助互调仪定位,重接跳线、馈头或者更换天线等,处理完毕进行后台指标验证 网外干扰 网外干扰是数量最多,影响最严重的干扰类型,目前主要以C网干扰和直放站干扰为主,特别是非法和自有直放站广泛存在,网外干扰排查存在难度大、周期长的问题。网外干扰的分析和定位排查步骤如下: 1)首先查询该小区所在基站告警情况,排除板件故障等问题; 2)采集该小区载频级干扰带信息,发现忙时所有载波均出现高干扰,排除频率干扰;A(干扰定位) 3)提取小区话务与4-5级干扰带指标,进行关联对比,若高干扰出现在全时段或与话务量走势无关联,则可判断小区存在网外干扰; 4)对于华为设备,可通过测试空闲时隙和后台频点扫描作进一步分析判断; 5)制作网外干扰小区分布图层,通过发现集中问题区域,对外场扫频人员进现场扫频提供方向性指导; 6)通过扫频发现干扰源后,对于非法直放站应当予以关闭或向无委申诉,移动自有直放站造成干扰的,应进行调试并根据覆盖情况安装衰减器或关闭,直放站关闭后应对相应区域进行覆盖测试并跟踪后台干扰指标;C网干扰则

TD-LTE重叠覆盖专题优化指导书

TD-LTE重叠覆盖优化指导书 (仅供内部使用) 拟制: 广西移动LTE专项项目组日期: 更新: 日期: 审核: 日期: 批准: 日期: 华为技术有限公司 版权所有侵权必究

目录 1重叠覆盖概述 (3) 2重叠覆盖的评估方法 (3) 3重叠覆盖的来源 (4) 3.1网络结构方面 (4) 3.2天馈设置方面 (4) 3.3无线环境方面 (4) 4重叠覆盖的影响 (4) 5重叠覆盖的优化 (5) 5.1分析的流程 (5) 5.2优化的手段 (6) 5.2.1调整天线下倾角 (6) 5.2.2调整天线方位角 (8) 5.2.3调整天线挂高 (8) 5.2.4站点整改或搬迁 (9) 5.2.5站点更换频段(F改D) (9) 5.2.6调整小区参考功率 (9) 5.3优化的步骤 (9) 5.4优化的案例 (10) 5.4.1站点过覆盖导致重叠覆盖 (10) 5.4.2弱信号导致重叠覆盖 (12) 5.4.3主服不明显导致重叠覆盖 (15) 6优化总结 (18) 7后续推广优化建议 (18)

在TD-LTE 同频网络中,可将弱于服务小区信号强度6dB 以内且RSRP 大于-105dBm 的重叠小区数超过3个(含服务小区)的区域,定义为重叠覆盖区域。重叠覆盖给TD-LTE 网络带来了严重的同频干扰,极大地降低了受影响区域的用户性能,相比于未受重叠覆盖的区域,重叠覆盖区域的吞吐量将会受到很大损失,且随着重叠覆盖程度的加深,同频干扰造成的性能损失会进一步加大。从重叠覆盖影响范围来看,不同场景所占的比例有所不同,可通过研究重叠覆盖影响的大小和范围来寻找规避和解决的方法。 重叠覆盖原理示意图如下: 上图四个小区中间的棕色椭圆处是重叠覆盖区域,实线覆盖的为主覆盖小区,虚线覆盖的为干扰小区。评估的目的是找出重叠覆盖区域,通过RF 优化达到改善甚至消除重叠覆盖。 由于市区内诸如密集型住宅小区、城中村这样的区域类型较多,从路测数据上难以完全将这些区域的重叠覆盖呈现出来,而通过采集MR 数据后进行栅格化分布,就能直观地反映出这些问题区域。 2 重叠覆盖的评估方法 工具:OMstar (网络评估); 评估数据源:MR 数据、ATU 数据、工参; 评估的基本思路如下: 1) 基于MR 数据,以栅格(50米*50米)为单位,通过OMstar 工具评估南宁市网格内 的重叠覆盖情况; 2) 重点分析存在成片重叠覆盖栅格的区域,结合路测数据、干扰贡献度给出优化建议。

CDMA网络优化指导书Part3干扰的分析

CDMA网络优化指导书Part3 干扰的分析

版本修订

目录 第1章干扰常用分析方法 (4) 1.1 路测网络干扰问题定位分析 (4) 1.1.1 前向链路干扰问题定位分析 (4) 1.1.2 反向链路干扰问题定位分析 (5) 1.2 RSSI的分析和网络干扰定位 (6) 1.2.1 对干扰的定位与描述 (6) 1.2.2 反向干扰定位分析 (6) 1.2.3 设备天馈的安装问题分析 (7) 1.2.4 射频器件以及部分安装问题 (8) 1.2.5 干扰的判定准则 (8) 1.2.6 干扰测试定位和排除 (8)

第1章干扰常用分析方法 对于CDMA网络中,网络干扰问题往往和其他一些问题有同样的现象,这里结合一些网络优化的实例,介绍了如何通过路测和网络RSSI的分析过程,来定位网络存在的干扰和网络性能问题; 1.1 路测网络干扰问题定位分析 路测是网络优化的重要手段,路测过程中可以采集到的网络主要信息包括手机的接收功率RX,手机发射功率TX,手机发射功率调整TX Adj,手机FER,以及相关信令信息。路测过程中可以根据测试到的信息定位系统可能存在的前向链路干扰问题和反向链路性能问题。 1.1.1 前向链路干扰问题定位分析 路测过程中可以采集到的重要信息包括前向发射功率,手机发射功率以及手机FER。前向干扰的典型特征是 RX良好,EcIo差或者FER差; 这些参数有相互的关系,手机接收功率,代表接收到的1.2288M频带内的所有功率。如果这些功率都是有效功率那Ec/Io将保持一个比较好的水平。如果前向链路接收功率Rx比较好的情况下,Ec/Io比较低,这种情况一般是有其他能量泄漏到了有效的1.2288M带宽内,具体来说就是网络存在前向干扰。 如果前向存在干扰,除了Ec/Io比较差之外,另外系统FER也比较高。下面一个例子就是前向干扰存在的典型。此时前向接收功率比较高大约为-87dBm,但Ec/Io比较差,达到-14dB,同时手机的FER也比较高到达18%,而且在不同的时间测试该区域表现的覆盖水平不一样。这些现象说明该区域存在不同时段的严重前向干扰。通过测试频率,该区域存在严重的间歇前向干扰。

TD-LTE速率优化指导书-v1.0

TD-LTE数据业务优化指导书 版权所有 大唐移动通信设备有限公司 本资料及其包含的所有内容为大唐移动通信设备有限公司(大唐移动)所有,受中国法律及适用之国际公约中有关著作权法律的保护。未经大唐移动书面授权,任何人不得以任何形式复制、传播、散布、改动或以其它方式使用本资料的部分或全部内容,违者将被依法追究责任。

文档更新记录

目录 第1章引言 (5) 1.1编写目的 (5) 1.2文档组织 (5) 1.3预期读者和阅读建议 (5) 第2章影响LTE速率的关键因素 (6) 2.1系统带宽 (6) 2.2常规子帧结构和特殊子帧结构 (6) 2.3调制编码方式 (7) 2.4高阶调制 (7) 2.5MIMO方式 (7) 2.6AMC(自适应调制编码方式) (8) 2.7UE能力等级 (11) 2.8重要的几个测量值............................................................. 错误!未定义书签。 2.9TD-LTE系统速率的计算 (11) 第3章速率问题 (13) 3.1速率问题定位思路 (13) 3.2速率异常排查 (14) 3.2.1查询基站告警信息 (14) 3.2.2参数配置核查 (14) 3.2.3空口问题排查 (14) 3.2.4打BO分析空口速率 (16) 3.2.5服务器侧问题排查 (17) 3.2.6传输侧问题排查 (18) 3.2.7其他原因 (19) 3.2.8UE PC侧问题排查 (20) 3.3基于TCP/UDP的传输 (21) 3.3.1UDP和TCP异同 (21) 3.3.2TCP窗口优化排查/本地PC (22) 第三章:案例 (24) 3.4文苑路单验下载速率较低: (24) 3.4.1问题现象: (24) 3.4.2分析过程: (25) 3.4.3优化措施 (27)

网格优化指导书

网格优化指导书 1总述 无线网络覆盖问题产生的原因是各种各样的,总体来讲有四类:一是无线网络规划结果和实际覆盖效果存在偏差;二是覆盖区无线环境变化;三是工程参数和规划参数间的不一致;四是增加了新的覆盖需求。良好的无线覆盖是保障移动通信质量和指标要求的前提,因此,覆盖的优化非常重要,并贯穿网络建设的整个过程。 移动通信网络中涉及到的覆盖问题主要表现为覆盖空洞、覆盖弱区、越区覆盖、导频污染和邻区设定不合理等几个方面。本章结合覆盖优化相关案例,主要介绍了处理覆盖问题的一般流程和典型解决方法。 2整体优化思路 每个县城都是一张各有特色的网络,每位驻县工程师需要对这张网络了如指掌,哪里是密集城区、哪些是VIP区域、哪里有河流、有几条桥梁、是否与高架铁路横跨、哪些站点过高、哪些站点无法调整导致越区等等。 针对现场网格,拿到测试数据主要从以下三个方面逐步着手: ?解决弱覆盖,各项指标覆盖是基础,必须把覆盖解决到位才能进行下一步的SINR值提升; ?梳理整个县城道路的主服务小区,对每个小区控制好覆盖区域,避免越区覆盖、切换不及时、邻区漏配等现象; ?最后对网格不需要覆盖的小区进行天馈调整,控制覆盖,降低MOD3干扰与重叠覆盖情况,在调整的同时也需要考虑深度覆盖问题,若不能两者兼顾可考虑深度覆盖差的区域新建小基站解决覆盖问题。 针对问题点也有一定的先后顺序,优先解决采样点连片差的问题点,其次解决零星采样点差,最大幅度的提升网络质量。

3RF优化流程 RF优化一般一次很难达到优化目标,经常会出现多次迭代,优化后需要采集数据进行分析判断看是否能够达到最初确定的优化目标,若不能达到则需要继续对数据进行分析输出优化建议。一般人工优化时凭工程师的经验,无法进行全面的预测,可能会经过2~3轮的

RF优化指导书

RF优化指导书 (2) 1当前主要问题 (2) 2覆盖目标制定 (3) 3问题的切入及解决思路 (4) 3.1弱覆盖路段 (4) 3.2越区覆盖路段 (5) 3.3无主导小区路段 (6) 3.4切换不合理路段 (7) 3.5导频污染 (8) 4调整方案的制定方法 (11) 4.1FAD天线、单D天线调整原则 (11) 4.2第一步:默认SINR分布图 (13) 4.3第二步:去除扇区图层,拉近基站名,以便于查看和分析 (13) 4.4第三步,改后的SINR测试分布图十分直观,很容易选出弱覆盖路段 (15) 4.5第四步,结合PCI分布图分析出问题路段的主导扇区(以问题路段9为例) (16) 4.6第五步,分析出辅助和多余的扇区信号,找到SINR差的原因,设计合理的覆盖 方案(继续以问题路段9为例)。 (17) 4.7第六步,整合整个网格的调整方案 (19) 5实际的方案实施 (21)

RF优化指导书 随着LTE的商用网络的陆续铺设,为了满足网络验收标准而需要进行有针对性的优化,其中RF作为每个实际网络中最常用的优化手段是相当重要的一环。RF优化是对无线射频信号的优化,目的是在优化信号覆盖的同时控制越区覆盖、减少乒乓切换、控制负载平衡和提升容量等。根据用户的分布不同保障合理的网络拓扑,在合理的网络拓扑基础上再进行无线参数的优化能保障网络达到更优的网络性能。 1 当前主要问题 当前阶段,北京移动TD-LTE网络需借助RF优化手段主要解决下面三大问题: 1. 覆盖问题 覆盖问题优化主要是针对信号强度和合理网络拓扑的优化,信号强度是保障一定的覆盖概率,导频信号覆盖的优化,保障网络尽量不出现弱覆盖或覆盖盲区,用户都能接入网络;合理的网络拓扑是指每个小区有明确的覆盖范围不出现过覆盖和小小区的现象,交叠不严重。 2. 切换问题 一方面检查邻区漏配情况,验证和完善邻区列表,解决因此产生的切换、掉话和下行干扰等问题;另一方面进行必要的工程参数调整,解决因为不合理的RF参数导致的切换区域不合理问题。本文主要讲述后者。 3. 导频污染问题 由于LTE属于同频网络,因此同频干扰问题是LTE RF优化关注的重点对象。在进行RF优化时,需要针对同频干扰进行识别,除了外界干扰外,其明显的表现即为导频污染。 导频污染问题是指多个小区存在深度交叠,RSRP比较好,但是SINR比较差,或者多个小区之间乒乓切换用户感受差。由于导频污染主要是多个基站作用的结果,因此,导频污染主要发生在基站比较密集的城市环境中。正常情况下,在城市中容易发生导频污染的几种典型的区域为:高楼、宽的街道、高架、十字路口、水域周围的区域。 导频污染一般带来的用户感受非常差,会出现接入困难、频繁切换、掉话、业务速率不高等现象。 针对上述三大问题,RF优化必须明确优化目标,采取有效的优化方法,从每一条路的优化开始,积跬步以至千里。

LTE切换问题定位和优化指导书

L T E切换问题定位和优 化指导书 SANY GROUP system office room 【SANYUA16H-

LTE切换问题定位指导 (仅供内部使用) Forinternaluseonly 拟制:LTE性能专家组日 期: 审核: 日期: 审核: 日期: 批准: 日 期: 华为技术有限公司HuaweiTechnologiesCo.,Ltd. 版权所有侵权必究 Allrightsreserved

目录 概述 (3) 1切换问题定位思路 (3) 1.1切换失败问题 (5) 1.1.1UE发多条测量报告仍没有收到切换命令 (5) 1.1.2切换过程随机接入失败 (5) 1.1.3测量报告丢失 (6) 1.1.4切换命令丢失 (9) 1.1.5下行信道质量差导致发送preamble达最大次数仍未收到RAR (9) 1.1.6eNB下发RRC信令等待UE反馈,不处理切换命令 (11) 1.1.7X2_IPPATH配置错误导致切换失败为例进行分析 (11) 1.1.8X2切换,源侧发出切换请求,没有收到切换响应 (13) 1.1.9X2切换,目标侧发送S1AP_PATH_SWITCH_REQ未收到响应 (13) X2切换准备时间过长错过最佳切换时间 (14) S_RSRP、N_RSRP都比较高的站内切换,用较小的HO_TTT(64ms),可以在信号恶化之前及时进行切换 (15) 切换门限改小后乒乓切换次数增多,但是由于切换更加及时,切换失败次数减少 18 1.2CHR分析切换问题 (19) 1.2.1站内切换,随机接入失败导致切换失败 (19) 1.2.2站内切换,切换完成丢失导致切换失败 (21) 1.2.3X2切换,源侧等待上下文释放命令超时 (23) 1.2.4X2切换,S1PathSwitch失败导致切换失败 (25) 1.2.5切换随机接入失败触发重建,重建重配失败而掉话 (28) 1.2.6eNB未响应UE切换测量报告,信道质量恶化而掉话 (29) 1.2.7切换命令丢失导致切换失败 (31) 1.2.8X2切换,Preamble丢失导致切换失败 (32) 1.2.9X2切换,目标侧等待S1PathSwitchAck超时导致切换失败 (34) X2切换,随机接入失败触发重建,重建完成丢而掉话 (37) 站内切换,随机接入失败触发重建,重建失败而掉话 (38) 站内切换,切换完成丢失触发重建,重建失败而掉话 (41)

LTE专项优化KPI优化指导手册无线接通率

L T E专项优化K P I优化指导手册无线接通率公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

秒田 秒田 秒田 2015/3/14

目录 1 概述 (2) 2 指标定义 (2) 3 RRC建立成功率分析 (2) 理论介绍 (2) 正常信令流程 (2) 指标定义 (3) 详细counter统计节点 (4) RRC接入成功率处理经验及流程 (7) 4 S1 建立成功率 (9) 正常信令流程 (9) 指标定义 (9) 详细counter统计节点 (9) S1建立成功率处理经验及流程 (11) 5 ERAB建立成功率分析 (11) 正常信令流程 (11) 指标定义 (12) 详细counter统计节点 (12)

ERAB建立成功率处理经验及流程 (14) 6 相关案例 (14) PRB资源受限 (14) 告警导致接入成功率低 (16) GPS故障导致接入成功率低 (17) 天线接反导致模3干扰 (18) 7 KPI指标相关counter (20) 1 概述 无线接通率可以统计UE成功接入LTE网络的性能。无线接入主要发生在开机附着、异系统重选回LTE、位置更新、收到pagging等过程中,无线接入是用户使用LTE网络的前提。无线接通率由RRC建立成功率、S1建立成功率和ERAB建立成功率3部分构成。 2 指标定义 无线接通率= RRC建立成功率*ERAB建立成功率*100%。 RRC建立成功率=RRC接入成功率次数/RRC接入尝试次数*100%

=pmRrcConnEstabSucc/pmRrcConnEstabSucc*100% ERAB建立成功率=ERAB建立成功率次数/ERAB建立尝试次数*100% =(PmErabEstabSuccInit+PmErabEstabSuccAdded)/(PmErabEstabAttInit +PmErabEstabAttAdded)*100% 3 RRC建立成功率分析 理论介绍 RRC连接建立过程分为两个阶段:准备阶段和实施阶段。 在准备阶段中,UE会根据NAS 层的触发原因和系统广播中的接入限制信息,通过一系列检查来判断自己是否被允许进行接入过程,如果可以,则执行后续的实施阶段;否则UE的RRC将启动相应的定时器,在该定时器超时前UE无法发起任何接入过程。上述机制的目的是负荷拥塞控制,当网络负荷较重时限制某些UE进行接入 正常信令流程 RRC建立流程如下图所示,其中红点处为RRC建立重要counter (PmRrcConnEstabAtt和pmRrcConnEstabSucc)统计节点。

优化设计实验指导书(完整版)

优化设计实验指导书 潍坊学院机电工程学院 2008年10月 目录

实验一黄金分割法 (2) 实验二二次插值法 (5) 实验三 Powell法 (8) 实验四复合形法 (12) 实验五惩罚函数法 (19)

实验一黄金分割法 一、实验目的 1、加深对黄金分割法的基本理论和算法框图及步骤的理解。 2、培养学生独立编制、调试黄金分割法C语言程序的能力。 3、掌握常用优化方法程序的使用方法。 4、培养学生灵活运用优化设计方法解决工程实际问题的能力。 二、实验内容 1、编制调试黄金分割法C语言程序。 2、利用调试好的C语言程序进行实例计算。 3、根据实验结果写实验报告 三、实验设备及工作原理 1、设备简介 装有Windows系统及C语言系统程序的微型计算机,每人一台。 2、黄金分割法(0.618法)原理 0.618法适用于区间上任何单峰函数求极小点的问题。对函数除“单峰”外不作 其它要求,甚至可以不连续。因此此法适用面相当广。 0.618法采用了区间消去法的基本原理,在搜索区间内适当插入两点和,它们把 分为三段,通过比较和点处的函数值,就可以消去最左段或最右段,即完成一次迭代。 然后再在保留下来的区间上作同样处理,反复迭代,可将极小点所在区间无限缩小。 现在的问题是:在每次迭代中如何设置插入点的位置,才能保证简捷而迅速地找到极小点。 在0.618法中,每次迭代后留下区间内包含一个插入点,该点函数值已计算过,因此以后的每次迭代只需插入一个新点,计算出新点的函数值就可以进行比较。 设初始区间[a,b]的长为L。为了迅速缩短区间,应考虑下述两个原则:(1)等比收缩原理——使区间每一项的缩小率不变,用表示(0<λ<1)。 (2)对称原理——使两插入点x1和x2,在[a,b]中位置对称,即消去任何一边区间[a,x1]或[x2,b],都剩下等长区间。 即有 ax1=x2b 如图4-7所示,这里用ax1表示区间的长,余类同。若第一次收缩,如消去[x2,b]区间,则有:λ=(ax2)/(ab)=λL/L 若第二次收缩,插入新点x3,如消去区间[x1,x2],则有λ=(ax1)/(ax2)=(1-λ)L/λL

LTE高铁优化指导手册范本

L T E高铁优化指导手册20160610 V1.0

1TD-LTE高铁特征影响简介 (4) 1.1 列车运行速度快 (4) 1.2 列车车体穿透损耗大 (4) 1.3 频繁切换 (5) 2组网原则 (5) 2.1为确保网络性能建议专网覆盖 (5) 2.1.1 铁路桥场景覆盖 (6) 2.1.2 单隧道场景覆盖 (7) 2.1.3 普通场景覆盖 (8) 3高铁无线网络规划与监控原则 (8) 3.1RRU安装 (8) 3.2天线类型 (9) 3.3站址选择 (9) 3.3.1 重叠覆盖距离 (10) 3.3.2 站点与轨道垂直距离 (10) 3.3.3 站点高度 (11) 3.3.4 基站间距 (12) 3.4站点落地监控 (12) 4无线参数规划 (13) 4.1 频率及时隙配比规划 (13) 4.2 邻区规划 (13) 4.3 PCI规划 (14) 4.4 PRACH规划 (14) 4.5 功率规划 (14) 4.6 TA规划 (14) 5高铁优化调整 (16) 5.1 优化思路 (16) 5.2 公专网干扰排查 (16) 5.3 RF优化调整 (16) 5.4 参数优化 (19)

5.4.1 场景描述 (19) 5.4.2 高铁优化策略 (19) 5.4.3 参数优化明细 (20) (1)关闭半永久调度 (20) (2)关闭频选调度 (20) (3)关闭DRX (21) (4)CQI报告配置参数优化 (21) (5)preamble前导码参数设置建议 (21) (6)传输模式参数设置建议 (22) (7)速度状态参数优化 (23) (8)切换类参数设置建议 (23) (9)TimeAlignmenttimer定时器参数设置建议 (24) (10)高速状态参数设置建议 (25) (11)逻辑根序列规划 (25)

华为TDLTE低接入优化指导书

华为低接入优化指导书 1、小区无线接通率低 【指标定义】 在无线接通率计算中,指标的计算包括RRC连接成功率和E-RAB建立成功率这两个部分。 六忙时无线接通率小于95%且RRC连接建立请求次数(6小时之和)>1000定义为低接入小区。无线接通率=E-RAB建立成功数/E-RAB建立请求数*RRC连接建立成功次数/ RRC连接建立请求次数*100%。 【处理流程图】 【处理流程说明】 1、问题发现(T1处理) 网优平台待办工单目录:集中质量分析平台->集中质量分析->待办工单,接入和保持性能劣化小区工单点击处理 图1 2、指标查询(T1处理) 网优平台零流量查询目录:数据查询与维护->自定义查询与模板创建->指标选择,时间选择劣化周至最近一日,对象选择同站3个小区以及坏小区覆盖方向的两个近距离小区 图2 根据查询到的结果,如果在劣化周单站3个小区接通率都很差,查看是RRC还是E-RAB建立成功率低,针对RRC建立成功率低排查基

站是否存在星卡告警,E-RAB建立成功率低核查基站传输是否正常; 对于单扇区以及覆盖方向较近的邻小区同时存在RRC接通率低的问题,需核查小区接入参数配置以及时隙配比/子帧配置情况,以及是否存在外部干扰;如果仅落单小区接通率低,则需查看最近7天该小区接入是否变好,如果接入正常,则T1组直接对工单进行归档,归档操作见图3,归档原因写小区劣化指标已恢复;如果最近7天接入类指标仍然很差,则继续以下操作 图3 3、查询基站告警(T1处理) 目前在OMC上查询告警,查询命令为LST ALMAF;是否存在时钟告警、传输闪断等告警,存在则T1组需派单给地市维护处理;处理意见需按三步走,第一步描述问题现象,第二步描述问题原因,第三步描述处理建议 地市维护接单后上站排查告警,如果告警短期内无法排查完成,则回复原因及处理计划,包括处理时间,进度等,T1组则对该类工单进行工单挂起,挂起操作见图4,挂起原因填写地市反馈原因,挂起时限填写地市反馈处理时长,如下图 图4 没有告警则继续如下操作 4、查询小区的接入信道配置情况(T1处理) 查询目录:待办工单->点击处理->工单流转->辅助分析信息->厂家私有参数

KPI优化指导手册更新

KPI指标处理指导手册

目录 1、无线接通率 (4) 1.1、指标定义 (4) 1.2、RRC建立成功率分析 (4) 1.2.1、理论介绍 (4) 1.2.2、正常信令流程 (4) 1.2.3、指标定义 (5) 1.2.4、详细counter统计节点 (6) 1.2.5、RRC接入成功率处理经验及流程 (9) 1.3、S1建立成功率 (10) 1.3.1、正常信令流程 (10) 1.3.2、指标定义 (11) 1.3.3、详细counter统计节点 (11) 1.3.4、S1建立成功率处理经验及流程 (12) 1.4、ERAB建立成功率分析 (13) 1.4.1、正常信令流程 (13) 1.4.2、指标定义 (13) 1.4.3、详细counter统计节点 (14) 1.4.4、ERAB建立成功率处理经验及流程 (15) 1.5、相关案例 (15) 1.5.1、PRB资源受限 (15) 1.5.2、告警导致接入成功率低 (17) 1.5.3、GPS故障导致接入成功率低 (18) 1.5.4、天线接反导致模3干扰 (20) 2、掉线率 (22) 2.1、理论介绍 (22) 2.2、正常信令流程 (22) 2.3、指标定义 (22) 2.4、详细counter统计节点 (23) 2.5、掉线率处理经验及流程 (25) 2.6、相关案例 (25)

2.6.1、高上行干扰导致高掉线率 (25) 2.6.2、驻波告警导致高掉线率 (26) 3、切换成功率 (31) 3.1、理论介绍 (31) 3.2、正常信令流程 (31) 3.2.1、站内切换正常信令流程 (31) 3.2.2、X2切换正常信令流程 (32) 3.2.3、S1切换正常信令流程 (33) 3.3、指标定义 (34) 3.4、详细counter统计节点 (34) 3.5、切换成功率处理经验及流程 (37) 3.6、相关案例 (38) 3.6.1、邻区PCI冲突 (38) 3.6.2、弱覆盖 (39) 3.6.3、模3干扰 (41) 3.6.4、目标小区高上行干扰 (43) 3.6.5、漏加邻区与现有邻区PCI冲突 (44) 3.6.6、ENBID配置错误 (45) 3.6.7、室分向宏站切换问题 (46) 4、KPI指标相关counter (57)

TD-LTE掉线优化指导书

TD-LTE掉线分析指导书R1.3

版本更新说明 作者

适用对象:TDD网优工程师 使用建议:在阅读本文档之前,建议先了解下面的知识和技能: 后继资料:在阅读完本文档之后,你可能需要下面资料:

关于这篇文档摘要

目录 1概述 (1) 2TD-LTE完整业务流程 (2) 2.1自研UE信令 (5) 2.2CNT信令 (5) 3掉线问题分析 (7) 3.1掉线率公式 (9) 3.2重建原因 (10) 3.2.1定时器不合理 (10) 3.2.2上行干扰 (10) 3.2.3下行干扰 (15) 3.2.4切换准备问题 (16) 3.2.5有MR但无重配 (19) 3.3UE触发重建 (22) 3.3.1UE触发重建未果 (24) 3.3.2UE触发重建被拒 (24) 3.4RRCCONNECTIONRELEASE掉线 (26) 3.5其他类掉线 (26) 4后台掉线率定义.................................................................................... 错误!未定义书签。 4.1掉线原因分类及公式.................................................................. 错误!未定义书签。 4.2KPI分析方法 ............................................................................. 错误!未定义书签。5总结. (27)

(完整版)LTE精品网格优化指导手册-20150120

广州杰赛 精品网格优化手册基于2014长春移动LTE专项编写 范永明 2015/2/12

目录 1.概述 (2) 2.精品优化目的及背景 (2) 2.1精品优化目的 (2) 2.2精品优化背景 (2) 3.精品优化指标说明 (2) 4.精品优化方法概述 (4) 4.1覆盖类问题分析处理 (4) 4.2干扰类问题分析处理 (5) 4.3低占用小区问题分析处理 (5) 4.4重叠覆盖问题分析处理 (6) 4.5模三干扰问题分析处理 (6) 4.6传输模式与SINR不匹配分析处理 (6) 5.精品优化案例分析 (7) 5.1覆盖问题分析处理 (7) 5.1.1福民街与福禄街交汇处,LTE弱覆盖 (7) 5.2干扰问题分析处理 (10) 5.2.1东环城路与长吉北路,SINR差。 (10) 5.3小区低占用问题分析处理 (11) 5.3.1铁北三路北十条3小区与君子兰2小区低占用情况 (13) 5.4重叠覆盖率问题分析处理(网格3内重叠覆盖问题较少不典型,故选择网格19 重叠覆盖部分加以补充) (15) 5.4.1通达路与南四环路交汇处附近路段重叠覆盖度高 (16) 5.5模三干扰问题分析处理 (18) 5.5.1远达大街与惠工路交汇模三干扰 (20) 5.6传输模式与SINR不匹配问题分析处理 (21)

1.概述 本指导书讲述基于CDS测试软件的网格精品优化方法。通过方法阐述和案例分析使读者能够更好的开展网格精品优化工作。由于能力有限,不足之处还请各位读者斧正,不胜感激! 2.精品优化目的及背景 2.1精品优化目的 随着网格站点开通率的不断提高(>80%),目前LTE网络已经进入网络基础优化的攻坚阶段,通过网格精品优化既可以全面提升网络指标、发掘网络优化亮点又可以充分锻炼网优工程师的网络优化技能,因此有必要针对部分覆盖基础较好的网格开展精品优化。 2.2精品优化背景 网格精品优化是建立在基础优化之上的,因此在网格基础优化阶段优化工程师要尽量将网格内的基站覆盖情况进行深入摸底分析(掌握网格内80%以上基站的覆盖情况)以确保网格精品优化的有效开展。 3.精品优化指标说明 精品优化前有必要对网格进行摸底测试分析并统计相应测试指标,方便优化后进行优化效果评估。

VoLTE优化指导手册

专业服务部 2015年10月 VoLTE 优化指导手册

目录 1.概述 (3) 2.VoLTE部署条件 (3) 3.VoLTE优化思路及流程 (3) 3.1.开网优化思路 (3) 3.2.开网优化流程 (4) 3.3.无线网络优化介绍 (7) 4.专题优化提升 (10) 4.1.未接通类问题定位 (10) 4.2.掉话类问题定位 (13) 4.3.时延优化 (15) 4.4.RTP丢包率优化 (18) 4.4.1.SINR提升及高干扰质差小区处理 (18) 4.4.2.参数优化 (18) 4.4.3.切换优化 (19) 4.5.eSRVCC优化 (20) 4.5.1.eSRVCC优化思路 (20) 4.5.2.B2测量优化 (20) 4.5.3.邻区数量优化 (21) 5.案例分享 (22) 5.1.1.MATE 7在大唐站下VOLTE语音业务卡顿,在HW站下正常 (22) 5.1.2.大量VoLTE用户呼叫起呼失败,并伴有VoLTE呼叫时异常回落2G的现象 24 6.投诉处理流程 (25) 7.总结 (26)

1.概述 全国至10月份除广州、杭州、长沙、南京、福州等5个VoLTE试点城市外,北京、上海、深圳、苏州、无锡、济南、株洲、温州、绍兴、湖州、丽水等城市已经正式宣布VoLTE商用,并开展了VoLTE相关优化工作,至2015年底,中国移动计划全国范围内全面实现VoLTE商用。 随着中国移动全面推进VoLTE商用的步伐,VoLTE商用前的网络质量保障及商用后网络日常优化闲的格外重要,对此我们总结已有的VoLTE网络优化工作经验,梳理出各类指标优化方法及思路,整理出在目前优化过程中遇到的问题,总结各类问题分析思路,期望传递已有经验对后期各地市范围内展开VoLTE网络优化工作有所帮助,让大家在VoLTE优化的过程中找准方向,少走弯路。 对于VoLTE的基本原理以及测试方法,我们不再赘述,相关资料大家可在59服务器上自行下载学习,地址:/客服中心/专业服务/TD-LTE/专业服务业务部文档发布/第二批文档/VOLTE相关。 2.VoLTE部署条件 3.VoLTE优化思路及流程 3.1.开网优化思路 VoLTE语音相对数据业务,对网络覆盖、邻区规划、系统干扰、传输质量等的影响会更敏感,对网络优化的要求会更高。RF性能是“基础”、Volte语音质量是“重点”、端到端定位是“难点”。

安徽:VoLTE丢包率优化指导手册(1010)

VoLTE丢包率优化指导手册本文针对弱覆盖、干扰、切换差、大话务等造成VoLTE高丢包的4大类主要原因,分别从分原因处理高丢包小区、利用质量切换和功控调优等策略提升网络级指标、运用新功能针对性改善特性区域指标等方面,开展VoLTE丢包分析和优化,根据优化成果,总结了VoLTE 丢包优化方法,以供日常丢包优化工作中使用,提高优化效果和处理效率。 1. 基于劣化原因快速处理VOLTE高丢包小区 1.1. VoLTE高丢包问题原因分析 通过统计分析日常督办VoLTE高丢包小区问题原因,主要存在4方面,分别为弱覆盖、干扰、切换问题和高话务造成的资源受限,4类问题小区占比分别达87.5%、3.55%、2.13%、1.7%。而在TDD制式中,VoLTE上行覆盖受限和资源受限问题较突出,在分析高丢包小区时,重点需定位上行弱覆盖、上行干扰、切换及上行CCE等资源受限问题,先通过参数优化,快速降低丢包率,改善语音感知。 现网VoLTE高丢包小区4类主要原因: 大话务,资源受限,导致大量CCE分配失败; 弱覆盖场景(现网的主要问题是上行弱覆盖); 上行干扰 切换问题(包括切换失败、乒乓切换、切换不及时、邻区缺失等) 2019-7-14 第1页, 共50页

1.2. 高丢包小区劣化原因的定义和识别 处理VoLTE高丢包小区的第一步是要对丢包原因进行定位。将上述的4类丢包原因定义为4个劣化场景,通过MR大数据关联分析,并结合前期已优化解决小区详情,找到小区劣化场景识别标准和方法,可大大提高问题分析效率。 场景定义: 空口的丢包主要为弱覆盖,干扰和大话务、切换差4种场景,每种场景会有对应的外在表现,通过网管的相关指标可以识别。识别思路如下: 上行弱覆盖场景下,PUSCH PRSP<-124dBm比例打,同时CCE聚合比例和上行iBler也变大;MR统计时,主要表现为无上行干扰但小区PUSCH SINR低于 0dBm的比例和PHR<0占比较高。 上行干扰场景下,上行每PRB干扰噪声抬升,明显特征为上行每PRB的干扰噪声>-110dBm。 大话务场景的频繁调度PDCCH CCE资源受限,导致CCE分配失败。 切换差场景下,存在大量切换失败、无邻区导致无法切换、切换过晚和乒乓切换等问题统计。 通过丢包处理大数据分析,4种场景小区识别标准如下:

TD-LTE邻区优化指导书

LTE邻区核查与优化指导书 (仅供内部使用) 拟制: 广西LTE精品网项目组日期: 更新: 日期: 审核: 日期: 批准: 日期: 华为技术有限公司 版权所有侵权必究

目录 目录 (2) 1邻区优化工作概述 (3) 2邻区优化工作内容和原则 (3) 2.1邻区优化工作内容 (3) 2.2邻区优化工作原则 (3) 3邻区优化工作方法 (4) 3.1PEAC工具核查原理 (4) 3.2数据(PEAC分析的结果)后续处理 (5) 4邻区优化典型案例 (7) 4.1漏配邻区检测依据如下原则 (7) 4.2漏配邻区案例: (7) 4.3单向邻区检测依据如下原则: (8) 4.4单向邻区案例1: (8) 4.5过远邻区检测依据如下原则: (9) 4.6过远邻区案例: (9) 4.7过少邻区检测依据如下原则: (10) 4.8过少邻区案例: (10) 4.9过多邻区检测依据如下原则: (11) 4.10过多邻区案例: (11) 4.11外部数据不一致检测依据如下原则: (13) 4.12外部数据不一致案例: (13) 5PCI混淆核查优化 (14) 5.1PCI混淆核查检测依据如下原则: (14) 5.2PCI混淆案例1: (14) 5.3PCI混淆案例2: (15) 5.4PCI混淆案例3: (16)

1邻区优化工作概述 随着网络中不断的工程建设、割接等网络操作,不可避免的会带来一些小区的邻区关系出现漏加、单向、多加等现象,另外,日常优化过程中对天线的调整也会带来邻区关系的变化,所以邻区优化工作一直是网络优化过程中一个必不可少的部分。 通常对邻区的优化主要通过测试分析、后台性能分析、地理化观察分析以及邻区自动优化工具等方式来进行。主要优化内容包括:漏配邻区、单向邻区、多配或少配邻区,邻区外部数据配置错误等,LTE网络是快速硬切换网络,合理的邻区关系对网络来说非常重要,邻区关系过少,会造成大量掉话;邻区关系过多,会导致测量报告的精确度降低;因此定期进行邻区关系优化是十分必要的。 本次专项优化主要利用华为工具PEAC梳理现网配置的邻区关系,完成基础的邻区关系优化,为后续的网络性能优化奠定基础。 2邻区优化工作内容和原则 2.1邻区优化工作内容 邻区优化主要做如下几方面给工作: ?LTE系统内漏配邻区核查; ?LTE外部小区一致性核查; ?LTE系统内邻区中PCI冲突核查; ?LTE系统内过远邻区核查; ?LTE系统内邻区过多过少核查; ?LTE系统内单向邻区核查; 2.2邻区优化工作原则 ?地理位置上直接相邻的小区一般要作为邻区; ?邻区一般都要求互为邻区,即A扇区把B作为邻区,B也要把A作为邻区。如果在某些场景 下,如高速覆盖,需要设单向邻区,如A扇区可以切换到B扇区而不希望B扇区切换到A 扇区,那么可以通过将A扇区加入到B扇区的Black list中实现。 ?对于密集城区和普通城区,由于站间距比较近(0.3~1.0公里),邻区应该多做。目前 我司产品对于同频、异频和异系统邻区分别都最大可以配置64个,所以在配置邻区时,需要注意邻区个数,遵循先删除后添加的原则。

LTE专项优化KPI优化指导手册无线接通率

湖南移动专项优化KPI优化指导手册-无线接通率 2015/3/14

目录 1 概述 (2) 2 指标定义 (2) 3 RRC建立成功率分析 (2) 3.1 理论介绍 (2) 3.2 正常信令流程 (2) 3.3 指标定义 (3) 3.4 详细counter统计节点 (4) 3.5 RRC接入成功率处理经验及流程 (7) 4 S1 建立成功率 (8) 4.1 正常信令流程 (8) 4.2 指标定义 (8) 4.3 详细counter统计节点 (8) 4.4 S1建立成功率处理经验及流程 (10) 5 ERAB建立成功率分析 (10) 5.1 正常信令流程 (10) 5.2 指标定义 (11) 5.3 详细counter统计节点 (11) 5.4 ERAB建立成功率处理经验及流程 (12) 6 相关案例 (13) 6.1 PRB资源受限 (13) 6.2 告警导致接入成功率低 (14) 6.3 GPS故障导致接入成功率低 (15) 6.4 天线接反导致模3干扰 (17) 7KPI指标相关counter (19)

1 概述 无线接通率可以统计UE成功接入LTE网络的性能。无线接入主要发生在开机附着、异系统重选回LTE、位置更新、收到pagging等过程中,无线接入是用户使用LTE网络的前提。无线接通率由RRC建立成功率、S1建立成功率和ERAB建立成功率3部分构成。 2 指标定义 无线接通率= RRC建立成功率*ERAB建立成功率*100%。 RRC建立成功率=RRC接入成功率次数/RRC接入尝试次数*100% =pmRrcConnEstabSucc/pmRrcConnEstabSucc*100% ERAB建立成功率=ERAB建立成功率次数/ERAB建立尝试次数*100% =(PmErabEstabSuccInit+PmErabEstabSuccAdded)/(PmErabEstabAttInit+PmErabEstabAttAdded)*1 00% 3 RRC建立成功率分析 3.1 理论介绍 RRC连接建立过程分为两个阶段:准备阶段和实施阶段。 在准备阶段中,UE会根据NAS 层的触发原因和系统广播中的接入限制信息,通过一系列检查来判断自己是否被允许进行接入过程,如果可以,则执行后续的实施阶段;否则UE的RRC将启动相应的定时器,在该定时器超时前UE无法发起任何接入过程。上述机制的目的是负荷拥塞控制,当网络负荷较重时限制某些UE 进行接入 3.2 正常信令流程 RRC建立流程如下图所示,其中红点处为RRC建立重要counter(PmRrcConnEstabAtt和pmRrcConnEstabSucc)统计节点。

相关文档
最新文档