误差有效数字和数据处理

误差有效数字和数据处理
误差有效数字和数据处理

第一章 误差、有效数字和数据处理

第一节 测量误差的基本概念

一、测量误差

进行物理实验,不仅要观察物理现象、定性地研究物体变化规律,而且要定量地测量所观察物体的量值(量值是指用数和适当的单位表示的量,如2.30 m 、15.5 kg 等)。通过测量可以认识物理现象的内在关系,揭示物理过程的本质。所谓测量,就是把待测的物理量与一个被选做标准的同类物理量进行比较,以确定它是标准量的多少倍。这个标准量称为物理量的单位,这个倍数称为待测物理量的数值。一个物理量必须由数值和单位组成。本书使用国际单位制。

1. 直接测量和间接测量

测量可以分为直接测量和间接测量两类。凡是能以量具、仪器的刻度直接测得待测量的大小的测量,叫做直接测量。但是大多数物理量都没有直接测量的仪器,需要进行间接测量。所谓间接测量,就是先经过直接测量得到一些量值,然后再通过一定的数学公式计算,才能得出所求结果的测量。

2. 测量误差

任何物理量在一定条件下都客观地存在一个唯一确定的值,这个值称为真值。但是,由于实验条件、测量方法、测量仪器和测量者自身判断等原因,任何测量都不是绝对准确的,所以测得数值与真值之间总存在着差异。我们把所得测量值与真值之差定义为测量值的误差,用下式表示

i i x x x (1) 式中:x 为真值;i x 为第i 次测量值;i x 为第i 次测量误差。

产生误差的原因是多方面的,根据误差的性质及其产生原因,可将误差分为系统误差和偶然误差两大类。

(1)系统误差。

系统误差的特点是测量的结果总向某一定方向偏离,或按照一定的规律变化。产生系统误差有以下几个原因:仪器本身的缺陷、理论公式或测量方法的近似性、环境的改变(如测量过程中温度、压强的变化)、个人存在的不良测量习惯等。

由于系统误差的数值和符号(+、-)是定值或按某种规律变化,因此系统误差不能通过多次测量来消除或减小。但是,如果能找出产生系统误差的原因,就能采取适当的方法来消除或减小它的影响,或对测量结果进行修正。因此,实验中一定要注意消除系统误差。

(2)偶然误差。

即使在测量过程中已减小或消除了系统误差,但在同一条件下对某一物理量进行多次测量,总存在差异,误差时大时小、时正时负。这种现象的产生是由于观察者受到感官的限制,或由于实验过程中受到周围条件无规则变化的影响,或由于测量对象自身的涨落,或由于其他不可预测的偶然因素所引起的。这样的误差称为偶然误差。对某一次测量来说,偶然误差的大小、符号都无法预先知道,完全出于偶然。但是当测量次数足够多时,偶然误差就具有明显的规律性,即偶然误差遵循统计规律。理论和实验都表明,大量的偶然误差均服从“正态分布”。偶然误差有如下特点:

① 绝对值相等的正负误差出现的几率相等。

② 绝对值小的误差出现的几率比绝对值大的误差出现的几率大。

③ 偶然误差的算术平均值随测量次数的增加而减小,当测量次数趋于无穷时,它趋于零。 ④ 偶然误差存在一个“最大误差”,即误差的绝对值不超过某一限度。

由于偶然误差存在上述性质,我们可以用增加测量次数的方法来减小它。当测量次数足够多时,测量列的偶然误差趋于零,测量列的算术平均值就趋近于真值。

故在有限次测量中,我们应取测量列的算术平均值作为真值的估计值,或称之为最佳值。

二、直接测量的误差估算和测量结果的表示

1. 多次直接测量的误差及其表示

上面我们讲过,为了减小偶然误差,可以在同一条件下对同一物理量进行多次重复测量,用多次测量值的算术平均值作为被测量的最佳估计值。

设我们对某一物理量进行了n 次测量,测量值分别为12, , , n x x x 。其算术平均值为

121

11()n

n i i x x x x x n n (2) 由上所述,x 为该物理量的最佳值。那么,各次测量值与x 的偏差,就近似为各测量值与真值的误差。在一般的讨论中,我们不去严格区分“偏差”和“误差”。

在物理实验中,多次测量的误差常用算术平均绝对偏差和标准偏差来表示。

(1)算术平均绝对偏差。

在多次测量中,每次测量值与算术平均值的偏差的绝对值为

1122, , , n n x x x x x x x x x

则算术平均绝对偏差定义为

121

11()n

n i i x x x x x n n (3) 测量结果可表示为

x x x (4)

式(4)为测量结果的算术平均绝对偏差表示方式。它表明被测量值x 的最佳估计值是x ,测量值在()x x 到()x x 区间内包含真值的可能性最大。这是一种粗略的估算。

(2)标准偏差(又称方均根偏差)。

偶然误差最通常的表示方式为标准偏差。当测量次数足够多时,标准偏差的定义为

(5) 当测量次数有限时,标准偏差可表示为

x (6) 又称为样本标准差。由于实验中测量次数都是有限的,我们常用式(6)估算测量值的偶然误差。应当指出,式(6)是在某列测量中某一次测量结果的标准偏差。

如果进行多组重复测量,则每一组所得的算术平均值也存在误差。误差理论表明,n 次测量的算术平均值的标准偏差为x

的倍。即

x (7) x 称为样本平均值的标准偏差(或简称为标准偏差)。

当偶然误差用标准偏差来表示时,对某一次测量结果可写成

x x x (8)

对n 次测量结果的平均值,可写成

x x x (9)

标准偏差的大小,表示了在一列多次测量数据中各个数据之间的离散程度,它是对这组测量数据可靠性的一种评价。标准偏差小,说明绝对值小的误差占优势,正态分布曲线尖锐,

测量列的离散性小,测量的精密度高。从偶然误差的正态分布规律可以证明,对x 的任何一次测量值的误差介于[, ]x x 的几率为68.3%。

由式(7)可知,增加测量次数对于提高测量的精密度是有利的。但我们注意到x 的下降速度比n 的增长速度慢得多。因此测量次数应根据实际情况而定,并不是越多越好。测量次数太多,有时会出现“漂移”现象。“漂移”指的是计量仪器特性及所测对象随时间而变化的现象。在物理实验中,根据被测量对象的具体情况一般进行5~10次测量即可。测量次数取得过少,则测量数据将严重偏离正态分布。

2. 单次测量的误差及其表示

有些物理实验是在动态下测量的,不允许重复多次测量;有些实验的精密度要求不高;有些是间接测量,某一个物理量对结果影响不大,在这些情况下,对被测量可以只进行一次测量。单次测量的误差估计,一般总是估计误差的最大值。误差最大值的估计比较复杂,有各种方法。如果要求不高或不需要很精确时,常取仪器最小分度d 的一半来表示。其测量结果为

2

d x x 测 (10) 对于标出精度等级的仪器和仪表,可用仪器误差作为单次测量误差,表示为

x x x 测仪 (11)

仪器误差一般在仪器上或说明书上标明。例如,50分度游标尺的x 仪=0.02 mm ,螺旋测微器上的x 仪=0.004 mm ,电学仪表的x 仪=量程 精度等级%。

有可能会遇到这种情况:在多次测量中,经过计算得到的偶然误差很小,甚至趋近于零。从简单化问题而又不失其合理性考虑,这时仍可取仪器误差作为测量结果的最大误差。

3. 相对误差 上述算术平均绝对偏差x 和标准偏差x ,均是以绝对误差的形式表示测量值的误差。但有时为了全面评价测量的优劣,还需要考虑被测量自身的大小。为此,需引入相对误差的概念。相对误差的定义为

100%x x E x

(12) 当x 用算术平均绝对偏差或标准偏差来表示时,相对误差分别为

100 100x x x x E E x x

%,% 一般来说,在对同一物理量的测量中,相对误差小的精密度高。

由式(12)可见,相对误差与绝对误差的关系为

x x E x (13)

当被测量值有公认理论值或标准值时,在数据的处理中,还常常把测量值与理论值或标准值进行比较,并用相对误差来表示

100x E 测量值理论值或标准值理论值或标准值% (14)

三、间接测量误差的估算

间接测量值的最佳值,是把各直接测量列中的最佳值代入相对应的函数关系式进行计算而得到的。由于各直接测量值都存在误差,因此间接测量值也必然有一定的误差。这种由直接测量值的误差影响到间接测量值误差的现象,称为误差的传播。所传播的误差与直接测量值误差的大小以及函数关系式的具体形式有关。下面简要介绍算术平均绝对偏差和标准偏差的传播。

1. 算术平均绝对偏差的传播

设间接测量值N 与各独立的直接测量值x ,y ,z ,…有下列函数关系

, , , N f x y z (15)

用算术平均绝对偏差(通常把算术平均误差看成最大误差)表示各个独立的直接测量值为

x x x ,y y y ,, z z z

则间接测量值可表示为

N N N (16) 式中:N 是把各个直接测量的最佳值, x y z 代入式(15)求出来的值;N 的计算式导出如下: 对式(15)求全微分,得

d d d d f f f N x y z x y z

式中:d , d , d , , , , x y z x y z 为的微小变化量。由于误差都远小于测量值,我们可把d , d , d , , d x y z N 看做误差,并记以, , , , x y z N ,则绝对误差N 可表示为

f f f N x y z x y z

(17) 式中取绝对值是考虑到误差最大的情况。为了计算间接测量值的相对误差,可对式(15)取对数,即

ln ln (, , , )N f x y z

对上式求全微分,有

d ln ln ln d d d N f f f x y z N x y z

把微分号改为误差号,取各项绝对值,求算术和,得到间接测量的相对误差为

ln ln ln N N f f f E x y z N x y z

(18) 由式(17)和式(18)可见,对于加减运算的函数式,可通过直接求全微分的方法求得绝对误差;对于乘除运算的函数式,可用先取对数后求全微分的方法求得相对误差N N ,再用N N E N 的方法求得绝对误差。

2. 标准偏差的传播

上述算术平均绝对偏差的传播的计算,是在考虑各直接测量误差同时出现最坏的情况下,即取各直接测量误差的绝对值相加得到的。实际上测量中出现这种情况的几率是很小的,这样做往往夸大了间接测量误差。为了更真实地反映各直接测量误差对间接测量误差的贡献,我们常用标准偏差的传播公式。

可以严格证明,对某间接测量值 , , , N f x y z ,标准偏差的传播公式为

N (19) 其相对误差的传播公式为

N N E N (20) 第二节 有效数字及其运算

如第一节所述,任何实验的测量结果都存有误差。那么,当我们直接读取待测量的数值时,应取几位有效数字呢?在间接测量中,计算间接测量值时,又应取多少位有效数字呢?这些都是不能随意决定的,必须按照有效数字及其运算的法则来确定。有效数字及其运算法则对于物理实验,乃至将来从事的科学实验都非常重要,必须很好地掌握。

一、直接测量的有效数字

用量具或仪器直接读取测量值时所得的数值,都含有准确数字和可疑数字两部分。在直接读数时,我们必须在仪器的最小刻度后估读一位,即读数总是由准确数字与最后一位可疑数字组成。准确数字与最后一位可疑数字合称为有效数字。下面对有效数字作几点说明:

① 测量同一物理量时,有效数字的位数与所用测量仪器的精度有关。仪器精度愈高,有效数字的位数愈多。

② 有效数字的位数与测量方法有关。

③ 出现在数值中间的“0”与末尾的“0”均为有效数字。

④ 当进行十进制单位变换时,有效数字与小数点的位置无关。注意,数值前面的“0”不是有效数字。对于特大或特小的数值,一般应该用科学记数法,即用有效数字乘10的幂指数

的形式表达,如451.26410km 2.6710m ,等。一般小数点前只取一位数字,幂指数(如410 )

不是有效数字。如果用国际单位词头表示测量结果,习惯上不用科学记数法。例如,用1.2 s ,而不用631.210 s 1.3 k 1.310 ;用,而不用。

⑤ 常数不算有效数字。

⑥ 由于有效数字反映了仪器的精度,最末位的可疑数字是有误差的。因此,任何测量结果应截取的有效数字位数是由绝对误差决定的,有效数字的最末位应与误差(只取一位)所在位对齐。

⑦ 有效数字的位数越多,相对误差越少。

二、有效数字的运算

在计算间接测量的结果时,参与运算的各直接测量值的分量可能很多,有效数字也不一定相同,运算可能相当烦琐。怎样处理运算过程中的有效数字,使之尽快获得正确的结果,而且又不至于引进新的“误差”呢?下面介绍一些运算方法。

总的原则是:由误差决定测量结果应截取有效数字的位数;运算过程的中间数据,可以保留一位或两位可疑数字,最后结果只能按尾数舍入法保留一位可疑数字。尾数舍入法是:小于5则舍;大于5则入;等于5,则把尾数凑成偶数。

1. 有效数字的加减

① 25.3+4.24=29.54=29.5

② 37.9-5.62=32.28=32.3

③ 71.4+0.753=72.153=72.2

结论:几个数相加减,其和(或差)在小数点后所保留的位数,跟参与运算的诸数中小数点后位数最少的一个相同。

为了简化运算,也可以小数点后位数最少的数为准,把其余各数用尾数舍入法舍去多余

的位数(或保留多一位),再进行运算。

2. 有效数字的乘除

① 528 121=4.364=4.36

② 3.85 9.73=37.46=37.5

③ 39.3 4.084=160.5=160

结论:几个数相乘除,所得结果的有效数字位数,一般与诸数中有效数字位数最少的一个相同,有时也可多一位或少一位。

为了简化运算,也可以有效数字位数最少的因子为基准,把其他因子的位数用舍入法舍去多余的位数(或保留多一位),再进行运算。

3. 乘方与开方

某数的乘方(或开方)的有效数字位数,应与其底数相同。

例如,2

25.25637.6, 4.402 。

以上结论虽不十分严密,但都是可行的。最恰当的方法是先算出绝对误差,由此定出可疑数字所在位,最后再确定测量的有效数字。 第三节 数据处理的基本方法

在物理实验中,为了使实验结果能清楚明了地表达出来,需对数据进行处理。处理数据的常用方法有列表法、图示法、逐差法和最小二乘法等。这些方法在科学实验中经常用到,希望能掌握。

一、列表法

在记录数据和处理数据时,为了清楚明确地表示相关物理量的关系,常将数据或处理数据的结果列成表格。这样可以及时发现和分析所测数据是否合理,运算是否正确,并有助于找出各物理量间的规律,得出正确的结论。

列表应该简单明了,使之能看出有关量之间的关系,并便于数据处理。一般的要求是: ① 必须有表题,说明是什么量的关系表。

② 必须注明表中各符号所表示的物理量名称,并写明单位。如果各栏物理量不同,单位应写在标题栏内。

③ 表中的数据要正确反映测量值的有效数字。

④ 必要时可对某一项目加以说明。

二、作图法

为了能直观地表达所测物理量之间的关系,找出它们的变化规律,物理实验所得出的一系列数据,通常都用作图法进行研究。作图法是求经验公式的常用方法之一,也是物理实验中处理数据的常用方法。作出一张正确、实用、美观的图,是实验技能中的基本功。

1. 作图规则

作图前,先要将记录的有关数据列表,然后再按下列要求进行。

(1)选用合适的坐标纸。

常用的作图坐标纸有直角坐标纸、单对数坐标纸和双对数坐标纸等。可以根据具体情况选用适合的坐标纸。在物理实验中常用直角坐标纸。

(2)确定坐标轴。

通常以横坐标表示自变量,以纵坐标表示因变量。画坐标轴时,要标明坐标轴的方向以及所表示的物理量和单位。

(3)确定坐标轴的标度。

选取坐标轴标度时要注意使用测量数据的可靠数字,即最末位可靠数字应与坐标纸中最小分格对应,当然也可以适当扩大一些,可疑数字在图中应是估计的。为了使所作的图线比较对称地充满坐标纸,坐标轴的起点不一定从零开始。同时坐标轴的比例要适当,一般取1,2,5等比例,不取3,7,9等。选好比例后,在坐标轴上每隔一定间距标明该物理量的数值(注意:标明有效数字!)。

(4)标数据点。

根据测量数据,在坐标纸上找出两个相关数据构成的数据点,并在其对应位置上用削尖的铅笔画上“+”号。“+”号的交叉点应是数据的最佳值点,交叉点到“+”号端点的距离应为该点数据的误差大小。如果一张坐标纸上要画几条曲线,每条曲线的数据点可用不同的标记,如“ ”“ ”“△”等,予以区别。各种符号的交叉点或中心应对应数据的最佳值点。

(5)连线。

用透明直尺、曲线板等作图工具,把数据点连成光滑的直线或曲线(校准曲线可连成折线,除此之外,一般不连成折线)。连直线时,需反复移动直尺,使直线各段两侧分布的数据点大致相等,而且与直线的距离也大致相同。连曲线时,应使各数据点差不多都在曲线的边缘附近。一般采用“连四画三”的方法,即分段选用四个点,使每个点都差不多与曲线板某段曲线吻合,画出中间三点的连线,然后移到下一段,用同样的方法继续画。注意,连线时应保证各段曲线光滑、连贯。

(6)图注或说明。

有时要标明图线名称或当时所处的温度、压强和湿度等。

2. 图解法求图线参数

对已作出的图线,用解析的方法可求得图线的一些参数或图线的方程。

(1)求直线的斜率和截距。

如果图线是直线,则由解析几何可知,它满足y =kx +b 。在直线上取两点(为减小相对误差,这两点相距要尽量远些,但不取原始实验数据点)。把两点坐标代入直线方程,解得直线斜率为

2121

y y k x x (21) k 的单位由x ,y 的单位决定。

如果横坐标起点为零,则截距b 的数值可由图中直线读出。如果横坐标起点不为零,则截距b 的数值为

211221

x y x y b x x

(22) (2)外推法。 求出直线的斜率后,我们还可以用“外推法”求得测量范围外的数据点。所谓“外推法”就是把图线向外延伸,对应于某一自变量x 值,求得函数y 值的方法。例如,测量电阻温度系数时,可以把直线延长外推而求得0 C 时的电阻0R 。应该注意的是,使用“外推法”时,必须假定物理关系在外延范围内也是成立的。

3. 函数关系的线性化和曲线改直

在实验中,许多物理量之间的关系都不是线性的,但经过适当的变换,可以使函数具有线性关系,这种方法称为函数关系的线性化。如果原来的函数关系是用曲线表示的,则函数关系线性化后,可以用直线来表示,这称为“曲线改直”。现举例如下:

(1)b y ax ,其中a ,b 均为常数,两边取对数,得

lg lg lg y a b x

若以lg x 为自变量,lg y 为函数(或因变量),则得到斜率为b ,截距为lg a 的直线。

(2)22y px ,其中p 为常数,把上式改写为

y

则自变量为,函数为y

,斜率为

(3)pV C ,其中C 为常数,把上式改写为

1p C

V 则p 为

1V

的线性函数。

4. 用对数坐标纸作图

常用的对数坐标纸有双对数坐标纸和单对数坐标纸。对数坐标纸的尺度与所标数的对数值成正比。对数坐标纸的每一级(一组1,2,3,…,10)对应一个数量级。

三、逐差法

逐差法是物理实验中经常使用的一种处理数据的方法。设有012, , , , n x x x x 共(n +1)个测量数据,用逐差法处理这些数据时,把它们对半分成两组,对应项相减,再求平均值和误差。

例如,设有0127, , , , x x x x 共8个数据,把它们对半分成两组,则对应项的差值为

140251362473, , , x x x x x x x x

再求平均值

4123411i i n n

和算术平均绝对偏差 4

1

1i i n 实际上,这样处理的结果是达到了在大量数据中求平均,以减少误差的目的。

当然,按理也可采用相邻项逐差的方法(逐项逐差),再求其平均值和误差。例如,对上例进行逐项逐差,求平均值为

10213243546576701

717x x x x x x x x x x x x x x x x

即实际上只有首项和末项起作用。如果这两个数据误差较大,势必影响测量结果。所以,使用逐差法处理数据,一般是采用隔多项逐差的方法。

四、最小二乘法

用作图法虽然可以求得函数间的关系,但具有较大的任意性。如果我们能从实验数据直接求得经验公式,就更为明确。这种从实验数据直接求得经验公式的方法,称为方程回归法。为简单起见,这里只介绍一元函数线性回归。

设物理量x ,y 具有线性关系,其测量值(等精度)为

1x x ,2x ,…,n x

y =1y ,2y ,…,n y

这些数据一一对应,具有

y =ax +b

函数关系。现要从n 组实验数据中求得系数a ,b ,可确定出一条直线,如图0.1所示。假定直线AB 为所求,则在这条直线上对应于测量值i x 点,就有一点i y =i ax +b 与之对应,而在实验中与之对应的测量值为i y 。一般来说,i y 与i y 存在偏差。设偏差为

()i i i i i e y y y ax b

对应于任意点,i e 的大小、符号不尽相同。但是,如果

我们选取的点与实验点 i i y y 与都尽量接近,则这条直线就

为所求。根据最小二乘法原理,通过一批点的最佳直线是使

21

n i i e 最小的直线。

由数学分析可知,要使21n

i i e 最小,必须令

221

1()0n n i i i i i e y ax b a

a 2211()0n n i i i i i e y ax

b b

b

联立解上两式,得 22()()i i i i

i i n x y x y a n x x (23)

222()()

i i i i i i i x y x x y b n x x (24) 求出系数a ,b ,则方程y =ax +b 可求。

由上述方法从一组实验数据中拟合直线,在理论上比较严格,函数形式也是唯一的,但计算量很大,常用计算机来进行。

图0.1 最小二乘法确定直线

有效数字及其运算法则

有效数字及其运算法则 物理实验中经常要记录很多测量数据,这些数据应当是能反映出被测量实际大小的全部数字,即有效数字。但是在实验观测、读数、运算与最后得出的结果中。哪些是能反映被测量实际大小的数字应予以保留,哪些不应当保留,这就与有效数字及其运算法则有关。前面已经指出,测量不可能得到被测量的真实值,只能是近似值。实验数据的记录反映了近似值的大小,并且在某种程度上表明了误差。因此,有效数字是对测量结果的一种准确表示,它应当是有意义的数码,而不允许无意义的数字存在。如果把测量结果写成54.2817±0.05(cm)是错误的,由不确定度0.05(cm)可以得知,数据的第二位小数0.08 已不可靠,把它后面的数字也写出来没有多大意义,正确的写法应当是:54.28±0.05(cm)。测量结果的正确表示,对初学者来说是一个难点,必须加以重视,多次强调,才能逐步形成正确表示测量结果的良好习惯。 一、有效数字的概念 任何一个物理量,其测量的结果既然都或多或少的有误差,那么一个物理量的数值就不应当无止境的写下去,写多了没有实际意义,写少了有不能比较真实的表达物理量。因此,一个物理量的数值和数学上的某一个数就有着不同的意义,这就引入了一个有效数字的概念。若用最小分度值为1mm的米尺测量物体的长度,读数值为5.63cm。其中5和6这两个数字是从米尺的刻度上准确读出的,可以认为是准确的,叫做可靠数字。末尾数字3是在米尺最小分度值的下一位上估计出来的,是不准确的,叫做欠准数。虽然是欠准可疑,但不是无中生有,而是有根有据有意义的,显然有一位欠准数字,就使测量值更接近真实值,更能反映客观实际。因此,测量值应当保留到这一位是合理的,即使估计数是0,也不能舍去。测量结果应当而且也只能保留一位欠准数字,故测量数据的有效数字定义为几位可靠数字加上一位欠准数字称为有效数字,有效数字数字的个数叫做有效数字的位数,如上述的5.63cm称为三位有效数字。 有效数字的位数与十进制单位的变换无关,即与小数点的位置无关。因此,用以表示小数点位置的0不是有效数字。当0不是用作表示小数点位置时,0和其它数字具有同等地位,都是有效数字。显然,在有效数字的位数确定时,第一个不为零的数字左面的零不能算有效数字的位数,而第一个不为零的数字右面的零一定要算做有效数字的位数。如0.0135m是三位有效数字,0.0135m和1.35cm及13.5mm三者是等效的,只不过是分别采用了米、厘米和毫米作为长度的表示单位;1.030m是四位有效数字。从有效数字的另一面也可以看出测量用具的最小刻度值,如0.0135m是用最小刻度为毫米的尺子测量的,而1.030m是用最小刻度为厘米的尺子测量的。因此,正确掌握有效数字的概念对物理实验来说是十分必要的。 二、直接测量的有效数字记录 物理实验中通常仪器上显示的数字均为有效数字(包括最后一位估计读数)都应读出,并记录下来。仪器上显示的最后一位数字是0时,此0也要读出并记录。对于有分度式的仪表,读数要根据人眼的分辨能力读到最小分度的十分之几。在记录直接测量的

第二章 误差和分析数据处理

第二章误差和分析数据处理 1.指出下列各种误差是系统误差还是偶然误差?如果是系统误差,请区别方法误差、仪器和试剂误差或操作误差,并给出它们的减免办法。 (1)砝码受腐蚀;(2)天平的两臂不等长;(3)容量瓶与移液管未经校准;(4)在重量分析中,试样的非被测组分被共沉淀;(5)试剂含被测组分;(6)试样在称量过程中吸湿;(7)化学计量点不在指示剂的变色范围内;(8)读取滴定管读数时,最后一位数字估计不准;(9)在分光光度法测定中,波长指示器所示波长与实际波长不符。(10)在HPLC测定中,待测组分峰与相邻杂质峰部分重叠。 答:(1)系统误差;校准砝码。 (2)系统误差;校准仪器。 (3)系统误差;校准仪器。 (4)系统误差;控制条件扣除共沉淀。 (5)系统误差;扣除试剂空白或将试剂进一步提纯。 (6)系统误差;在110℃左右干燥后称重。 (7)系统误差;重新选择指示剂。 (8)偶然误差;最后一位是估计值,因而估计不准产生偶然误差。 (9)系统误差;校准仪器。 (10)系统误差;重新选择分析条件。 2.表示样本精密度的统计量有哪些? 与平均偏差相比,标准偏差能更好地表示一组数据的离散程度,为什么? 3.说明误差与偏差、准确度与精密度的区别和联系。 4.什么叫误差传递?为什么在测量过程中要尽量避免大误差环节? 5.何谓t分布?它与正态分布有何关系? 6.在进行有限量实验数据的统计检验时,如何正确选择置信水平? 7.为什么统计检验的正确顺序是:先进行可疑数据的取舍,再进行F检验,在F检验通过后,才能进行t检验? 8.说明双侧检验与单侧检验的区别,什么情况用前者或后者? 9.何谓线性回归?相关系数的意义是什么? 10.进行下述运算,并给出适当位数的有效数字。

误差和分析数据处理

第一章绪论 第一节药物分析学科的性质、目的与任务 药物分析主要是采用化学、物理化学或生物化学等方法和技术,研究化学合成药物和结构已知的天然药物及其制剂的组成、理化性质、真伪鉴别、纯度检查以及有效成分的含量测定等,同时也涉及生化药物、基因工程药物以及中药制剂的质量控制。 药物分析是一门研究和发展药品质量控制的方法性学科。 药品是用于预防、治疗和诊断疾病,有目的地调节人体生理功能并规定有适应征或者功能主治、用法和用量的物质。药品是一种特殊商品,药品质量的好坏关系到用药的安全和有效,关系到人民的身体健康和生命安全。 药物分析的目的是检验药品质量,保证人民用药的安全、合理、有效。 药物分析就是运用各种有效的分析方法和手段,如化学分析法,仪器分析法,生物化学和生物学等方法全面控制药品的质量。 药物分析的主要的任务包括药物成品的理化检验,药物生产过程中的质量控制,药物贮存过程中的质量考察,医院调配制剂的快速分析;新药研究开发中的质量标准制订以及体内药物分析等。 由此可见,从药物的研制、生产、贮藏、供应、使用到临床血药浓度监测一系列过程,都离不开药物分析的方法和手段。 第二节药品质量标准和药典 一、药品质量标准 药品质量标准是国家对药品的质量、规格和检验方法所作出的技术性规定,是保证药品质量,进行药品生产、经营、使用、管理及监督检验等部门共同遵循的法定依据。 我国药品质量标准分为中华人民共和国药典(简称中国药典)和国家药品监督管理局颁发的药品质量标准(简称局颁标准),二者均属于国家药品质量标准,具有等同的法律效力。 二、中华人民共和国药典 《中华人民共和国药典》现行版本为2000年版,简称中国药典(2000年版)。中国药典还出版英文版,缩写为ChP。 我国已出版了7版药典(1953、1963、1977、1985、1990、1995和2000年版)。 中国药典分为两部(一、二部),各部有凡例和有关的附录。一部收载中药材、成方及单味制剂等;二部收载化学药品、抗生素、生化药品、放射性药品和生物制品等。 (一)中国药典主要内容

误差与有效数字练习答案

误差与有效数字练习题答案 1.有甲、乙、丙、丁四人,用螺旋测微计测量一个铜球的直径,各人所得的结果表达如下:d 甲 =(±)cm ,d 乙 =(±)cm ,d 丙 =(±)cm ,d 丁 =(±)cm ,问哪个人表达得正确其他人错在哪里 答:甲对。其他人测量结果的最后位未与不确定度所在位对齐。 仪 =0.0002g 请计算这一测量的算术平均值,测量标准误差及相对误差,写出结果表达式。 3.61232i m m g n ∑= = A 类分量: (0.6831 1.110.0001080.000120S t n g =-=?= B 类分量: 0.6830.6830.00020.000137u g =?=?=仪 合成不确定度:0.000182U g == 取 ,测量结果为: (3.612320.00018)m U g ±=± ( P= ) 相对误差: 0.000180.005%3.61232 U E m = == 试求其算术平均值,A 类不确定度、B 类不确定度、合成不确定度及相对误差,写出结果表达式。 cm n L L i 965.98=∑= , A 类分量: (0.6831S t n =-=?0.0064cm 类分量: 0.6830.6830.050.034u cm =?=?=仪 合成不确定度: 0.035U cm ==== 相对误差: %04.096 .9804.0=== L U E ( P= ) 结果: cm U L )04.096.98(±=±

4.在测量固体比热实验中,放入量热器的固体的起始温度为t 1 ±S t 1= ± 0.3℃,固体放入水中后,温度逐渐下降,当达到平衡时,t 2 ±S t 2= ± 0.3℃,试求温度降低值t =t 2 – t 1的表示式及相对误差。 处理:t =t 2 – t 1= U ==+=+2 222t 21t 3.03.0S S ℃ , %7.03 .735 .0=== t U E ( 或 ℅) t =( ± ℃ ( P= ) 5.一个铅质圆柱体,测得其直径为d ±U d =(±) cm ,高度为 h ±U h =( ± )cm , 质量为m ±U m =( ± )g 。试求:(1)计算铅的密度ρ;(2)计算铅的密度ρ的相对误差和不确定度;(3)表示ρ的测量结果。 处理:(1)072.11120 .4040.214159.310 .149442 2=???=== h d m V m πρg/㎝3 (2)%3.00030.0120.4003.0040.2003.0410.14905.02 22==?? ? ??+??? ??+??? ??==ρρ U E 3cm g 04.0033.0003.0072.11U ==?=?=E ρρ (3) )04.007.11(±=±ρρU g/㎝3 ( P= ) 6.按照误差理论和有效数字运算规则改正以下错误: (1)N =± 正:N =(±)cm ,测量误差决定测量值的位数(测量结果存疑数所在位与误差对齐) (2)有人说有五位有效数字,有人说只有三位,请纠正,并说明其原因。 答:有效数字的位数应从该数左侧第一个非零数开始计算,应有四位有效数字。其左端的“0”为定位用,不是有效数字。右端的“0”为有效数字。 (3)L =28cm =280mm 正:L =×102mm ,改变单位时,其有效数字位数不变。 (4)L =(28000±8000)mm 正:L =(±)×104mm ,误差约定取一位有效数字。 7.试计算下列各式(在书写计算过程中须逐步写出每步的计算结果): (1)已知y = lg x ,x ±σx =1220 ± 4 ,求y : 处理: y = lg x = lg 1220 = 10 ln 12204 10ln = =x Ux Uy = 0014.00864.3±=±Uy y ( P= ) (2)已知y = sin θ ,θ±S θ=45°30′±0°04′ ,求y : 处理: y = sin45°30′= U y =∣cos θ∣U θ =∣cos 45°30′∣60 1804 ???π= , 0008.07133.0±=±Y U y ( P= )

实验数据误差分析和数据处理

第二章 实验数据误差分析和数据处理 第一节 实验数据的误差分析 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。 一、误差的基本概念 测量是人类认识事物本质所不可缺少的手段。通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。科学上很多新的发现和突破都是以实验测量为基础的。测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。 1.真值与平均值 真值是待测物理量客观存在的确定值,也称理论值或定义值。通常真值是无法测得的。若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。但是实际上实验测量的次数总是有限的。用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种: (1) 算术平均值 算术平均值是最常见的一种平均值。 设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为 n x n x x x x n i i n ∑==+???++=121 (2-1) (2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。即 n n x x x x ????=21几 (2-2) (3)均方根平均值 n x n x x x x n i i n ∑==+???++= 1 222221均 (2-3) (4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。 设两个量1x 、2x ,其对数平均值

有效数字和误差

误差与有效数字 武汉市第六中学物理教研组 朱克生 物理实验离不开误差分析和测量值与计算值的有效数问题。本文主要目的是了解误差的有关概念,并对测量值与计算值的有数数字的保留个数做一个定量的描述。 一、误差 1、误差的定义 测量值与被测物体的真实值之间的差异叫误差。误差是绝对不能避免的,但是可以减小。 2、误差的分类 (1)、从误差来源上分为偶然误差与系统误差。 ①偶然误差是由于实验人和读数的不准确等偶然因素造成的。它的特点是:当多次重复同一测量时,偏大和偏小的机会比较接近,可以用取平均值的方法来减小偶然误差。 比如长度的测量,多次测量同一个物体的长度,估计值就会或大或小,为了减小误差可以取平均值。 ②系统误差是由仪器结构缺陷、实验方法不完善造成的。系统误差的特点:多次重复同一测量的结果总是大于(或小于)被测量的真实值,呈现单一倾向。比如采用打点计时器来验证机械能守恒定律,由于空气阻力和计时器与纸带的摩擦,造成物体增加的动能总比..物体减小的重力势能小。 (2)、从误差分析上分为绝对误差与相对误差。 ①绝对误差,测量值与真实值之差。注意:绝对误差有正负之分的。比如长度的测量,要估计到最小分度的下一位,估读总是不准确的,测量值有时比真实值大,有时比真实值小,所以绝对误差有正有负,但绝对误差的大小一般不大于最小分度值(天平指感量)。 ②绝对误差的绝对值与测量值的百分比称为相对误差。如果绝对误差用Δx 表示,测量值用x 表示,则相对误差就是η=%100??x x 。严格讲,式中分母应为真实值。实验估算时则用测量值代替。(人教版高中物理必修一P99) 绝对误差由于仪器本身的原因造成,一般很难减小,所以在相同的条件下为了提高测量的准确程度,应该考虑尽量减小相对误差。 比如用逐差法求匀变速直线运动的加速度。如果所给的长度有五段,此时应该舍去一段,我们就舍弃长度小的哪一段,因为在绝对误差相同的情况下,长度小的相对误差要大一些。 二、有效数字 1、定义:具体地说,是指在实验中实际能够测量到的数字。比如某一物体的长度测量值

数据处理与误差分析报告

物理实验课的基本程序 物理实验的每一个课题的完成,一般分为预习、课堂操作和完成实验报告三个阶段。 §1 实验前的预习 为了在规定时间内,高质量地完成实验任务,学生一定要作好实验前的预习。 实验课前认真阅读教材,在弄清本次实验的原理、仪器性能及测试方法和步骤的基础上,在实验报告纸上写出实验预习报告。预习报告包括下列栏目: 实验名称 写出本次实验的名称。 实验目的 应简单明确地写明本次实验的目的要求。 实验原理 扼要地叙述实验原理,写出主要公式及符号的意义,画上主要的示意图、电路图或光路图。若讲义与实际所用不符,应以实际采用的原理图为准。 实验内容 简明扼要地写出实验内容、操作步骤。为了使测量数据清晰明了,防止遗漏,应根据实验的要求,用一张A4白纸预先设计好数据表格,便于测量时直接填入测量的原始数据。注意要正确地表示出有效数字和单位。 §2 课堂操作 进入实验室,首先要了解实验规则及注意事项,其次就是熟悉仪器和安装调整仪器(例如,千分 尺调零、天平调水平和平衡、光路调同轴等高等)。 准备就绪后开始测量。测量的原始数据(一定不要加工、修改)应忠实地、整齐地记录在预 先设计好的实验数据表格里,数据的有效位数应由仪器的精度或分度值加以确定。数据之间要留有间隙,以便补充。发现是错误的数据用铅笔划掉,不要毁掉,因为常常在核对以后发现它并没有错,不要忘记记录有关的实验环境条件(如环境温度、湿度等),仪器的精度,规格及测量量的单位。实验原始数据的优劣,决定着实验的成败,读数时务必要认真仔细。运算的错误可以修改,原始数据则不能擅自改动。全部数据必须经老师检查、签名,否则本次实验无效。两人同作一个实验时,要既分工又协作,以便共同完成实验。实验完毕后,应切断电源,整理好仪器,并将桌面收拾整洁方能离开实验室。 §3 实验报告 实验报告是实验工作的总结。要用简明的形式将实验报告完整而又准确地表达出来。实验报告 要求文字通顺,字迹端正,图表规矩,结果正确,讨论认真。应养成实验完后尽早写出实验报告的习惯,因为这样做可以收到事半功倍的效果。 完整的实验报告应包括下述几部分内容: 数据表格 在实验报告纸上设计好合理的表格,将原始数据整理后填入表格之中(有老师签 名的原始数据记录纸要附在本次报告一起交)。 数据处理 根据测量数据,可采用列表和作图法(用坐标纸),对所得的数据进行分析。按照 实验要求计算待测的量值、绝对误差及相对误差。书写在报告上的计算过程应是:公式→代入数据→结果,中间计算可以不写,绝对不能写成:公式→结果,或只写结果。而对误差的计算应是:先列出各单项误差,按如下步骤书写,公式→代入数据→用百分数书写的结果。 结果表达 按下面格式写出最后结果: )N ()(N )N (总绝对误差测量结果待测量?±=.. %100(??=N N )Er 相对误差

误差和分析数据处理

第二章 误差和分析数据处理 第一节 概 述 定量分析的任务是要准确地解决“量”的问题,但是定量分析中的误差是客观存在的,因此,必须寻找产生误差的原因并设法减免,从而提高分析结果的可靠程度,另外还要对实验数据进行科学的处理,写出合乎要求的分析报告。 第二节 测量误差 一、绝对误差和相对误差 1. 绝对误差 测量值与真实值之差称为绝对误差。δ = x - μ 2. 相对误差 绝对误差与真值的比值称为相对误差。 %100%100?-=?μ μμδ x 若真实值未知,但δ 已知,也可表示为 %100?x δ 3. 真值与标准参考物质 理论真值:如某化合物的理论组成等。 约定真值:如国际计量大会上确定的长度、质量、物质的量单位等。 相对真值:如标准参考物质的含量。 标准参考物质:经权威机构鉴定并给予证书的,又称标准试样。 实际工作中,常把最有经验的人用最可靠的方法对标准试样进行多次测定所得结 果的平均值作为真值的替代值。 二、系统误差和偶然误差 1. 系统误差(可定误差) 由某种确定的原因引起,一般有固定的方向,大小在试样间是恒定的,重复测定 时重复出现。

按系统误差的来源分类:方法误差、仪器或试剂误差、操作误差。 方法误差:滴定分析反应进行不完全、干扰离子的影响、滴定终点与化学计量点 不符、副反应的发生、沉淀的溶解、共沉淀现象、灼烧时沉淀的分解或挥发。 仪器或试剂误差:砝码、容量器皿刻度不准、试剂中含有被测物质或干扰物质。 操作误差:称样时未注意防止吸湿、洗涤沉淀过分或不充分、辨别颜色偏深(浅)、 读数偏高(低)。 按系统误差的数值变化规律分类:恒定误差、比例误差。 系统误差可用加校正值的方法予以消除。 2. 偶然误差(随机误差、不可定误差) 由于偶然的原因如温度、湿度波动、仪器的微小变化、对各份试样处理时的微小 差别等引起,其大小和正负都不固定。 偶然误差服从统计规律,可用增加平行测定次数加以减免。 三、准确度和精密度 1. 准确度与误差 准确度表示分析结果与真实值接近的程度。准确度的大小用绝对误差或相对误差 表示。评价一个分析方法的准确度常用加样回收率衡量。 2. 精密度与偏差 精密度表示平行测量的各测量值之间互相接近的程度。精密度的大小可用偏差、 相对平均偏差、标准偏差和相对标准偏差表示。重复性与再现性是精密度的常见别名。 偏差:d = x i - x 平均偏差: n x x d n i i ∑=-=1 相对平均偏差: %100/)(%1001?-=?∑=x n x x x d n i i 标准偏差(标准差): 1 )(1 2 --= ∑=n x x S n i i

第7章 定量分析中的误差及有效数字答案

思考题 1. 指出在下列情况下,各会引起哪种误差如果是系统误差,应该用什么方法减免 (1) 砝码被腐蚀; 答:引起系统误差(仪器误差),采用校准砝码、更换砝码。 (2) 天平的两臂不等长; 答:引起系统误差(仪器误差),采用校正仪器(天平两臂等长)或更换仪器。 (3) 容量瓶和移液管不配套; 答:引起系统误差(仪器误差),采用校正仪器(相对校正也可)或更换仪器。 (4) 试剂中含有微量的被测组分; 答:引起系统误差(试剂误差),采用空白试验,减去空白值。 # (5) 天平的零点有微小变动; 答:随机(偶然)误差。 (6) 读取滴定管体积时最后一位数字估计不准; 答:随机(偶然)误差。采用读数卡和多练习,提高读数的准确度。 (7) 滴定时不慎从锥形瓶中溅出一滴溶液; 答:过失,弃去该数据,重做实验。 (8) 标定HCl 溶液用的NaOH 标准溶液中吸入CO2。 答:系统误差(试剂误差)。终点时加热,除去CO2,再滴至稳定的终点(半分钟不褪色)。 2. 判断下列说法是否正确 (1) 要求分析结果达到%的准确度,即指分析结果的相对误差为%。 | (2) 分析结果的精密度高就说明准确度高。 (3) 由试剂不纯造成的误差属于偶然误差。 (4) 偏差越大,说明精密度越高。 (5) 准确度高,要求精密度高。 (6) 系统误差呈正态分布。 (7) 精密度高,准确度一定高。 (8) 分析工作中,要求分析误差为零。 (9) 偏差是指测定值与真实值之差。 (10) 随机误差影响测定结果的精密度。 (11) 在分析数据中,所有的“0”均为有效数字。 … (12) 方法误差属于系统误差。 (13) 有效数字中每一位数字都是准确的。 (14) 有效数字中的末位数字是估计值,不是测定结果。

误差分析和数据处理

误差分析和数据处理

误差和分析数据处理 1 数据的准确度和精度 在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多 少次测定,但是测定结果总不会是完全一样。这 说明在测定中有误差。为此我们必须了解误差产 生的原因及其表示方法,尽可能将误差减到最 小,以提高分析结果的准确度。 1.1 真实值、平均值与中位数 (一)真实值 真值是指某物理量客观存在的确定值。通常一个物理量的真值是不知道的,是我们努力要求 测到的。严格来讲,由于测量仪器,测定方法、 环境、人的观察力、测量的程序等,都不可能是 完善无缺的,故真值是无法测得的,是一个理想 值。科学实验中真值的定义是:设在测量中观察 的次数为无限多,则根据误差分布定律正负误差 出现的机率相等,故将各观察值相加,加以平均, 在无系统误差情况下,可能获得极近于真值的数 值。故“真值”在现实中是指观察次数无限多时, 所求得的平均值(或是写入文献手册中所谓的 “公认值”)。

(二)平均值 然而对我们工程实验而言,观察的次数都是 有限的,故用有限观察次数求出的平均值,只能 是近似真值,或称为最佳值。一般我们称这一最 佳值为平均值。常用的平均值有下列几种: (1)算术平均值 这种平均值最常用。凡测量值的分布服从正 态分布时,用最小二乘法原理可以证明:在一组 等精度的测量中,算术平均值为最佳值或最可信 赖值。 n x n x x x x n i i n ∑=++==121 式中: n x x x 21、——各次观测值;n ――观察 的次数。 (2)均方根平均值 n x n x x x x n i i n ∑=++==12 22221 均 (3)加权平均值 设对同一物理量用不同方法去测定,或对同 一物理量由不同人去测定,计算平均值时,常对 比较可靠的数值予以加重平均,称为加权平均。

误差与有效数字

分享 ?丁铖 ? ?丁铖的分享 ? ?当前分享 返回分享首页? 分享 大物实验 - 误差与有效数字练习来源:姚晨炜的日志 误差与有效数字练习题答案 1.有甲、乙、丙、丁四人,用螺旋测微计测量一个铜球的直径,各人所得的结果表达如下:d甲 =(1.2832±0.0003)cm ,d乙 =(1.283±0.0003)cm ,d丙 =(1.28±0.0003)cm ,d丁 =(1.3±0.0003)cm ,问哪个人表达得正确?其他人错在哪里? 答:甲对。其他人测量结果的最后位未与不确定度所在位对齐。 2.一学生用精密天平称一物体的质量m,数据如下表所示:Δ仪 =0.0002g 请计算这一测量的算术平均值,测量标准误差及相对误差,写出结果表达式。 A类分量: B类分量: 合成不确定度:=0.00018g 取0.00018g ,测量结果为: ( P=0.683 ) 相对误差: 3.用米尺测量一物体的长度,测得的数值为

试求其算术平均值,A类不确定度、B类不确定度、合成不确定度及相对误差,写出结果表达式。 , A类分量: =1.060.006=0.0064cm B类分量: 合成不确定度: =0.04cm 相对误差: ( P=0.683 ) 结果: 4.在测量固体比热实验中,放入量热器的固体的起始温度为t1±S t1= 99.5 ± 0.3℃,固体放入水中后,温度逐渐下降,当达到平衡时,t2±S t2= 26.2 ± 0.3℃,试求温度降低值t =t2–t1的表示式及相对误差。 处理:t =t2–t1=26.2-99.5=-73.3℃, U =0.5℃ , (或 -0.7℅) t =( -73.3 ± 0.5)℃ ( P=0.683 ) 5.一个铅质圆柱体,测得其直径为d ±U d=(2.040±0.003) cm ,高度为h±U h=(4.120 ± 0.003)cm, 质量为m±U m =(149.10 ± 0.05)g。试求:(1)计算铅的密度ρ;(2)计算铅的密度ρ的相对误差和不确定度;(3)表示ρ的测量结果。 处理:(1)g/㎝3 (2) (3) g/㎝3 ( P=0.683 ) 6.按照误差理论和有效数字运算规则改正以下错误: (1)N=10.8000±0.3cm 正:N =(10.8±0.3)cm ,测量误差决定测量值的位数(测量结果存疑数所在位与误差对齐)

分析化学中的有效数字及其运算

2.2 分析化学中的有效数字及其运算 一、分析结果的有效数字及其处理 1. 有效数字的概念 既然真值表示分析对象客观存在的数量特征,那么分析结果作为真值的估计值,就应正确反映分析对象的量的多少。由于随机误差不可避免,测定值都是些近似值,都有一定的不确定度,因此测定值包含确定的数字(重复测定时不会发生变化的准确数字)和它后面的不定数字(重复测定时会发生变化的数字),但是只有确定的数字和它后面第一位具有一定不确定度的不定数字才能正确反映分析对象的量的多少..........................................。 能够正确反映分析对象的量的多少的数字称为有效数字 ...................,由确定的数字和它后面第 ....................................(significant figure) 一位具有一定不确定度的不定数字构成,决定于单位的数字和多余的不定数字不能正确反映分析对象的量.............................................. 的多少因而不是有效数字。 ............如用示值变动性为±0.0001 g的分析天平称得样品0.203 16g,则末位数字6是多余的不定数字而首位数字0是决定于单位大小的数字,都不是有效数字;但数字2、中间的0、3和1能够正确反映对象的量的多少,都是有效数字,因此该数据只有四位有效数字。可见,实际能够测量到的数字就是有效数字的观点是错误的,但可以说准确测定的数字都是有效数字。 有效数字最后一位的不确定度常写在它后面的括号里,最后一位的不确定度为±0.02,最末一位不定数字9的不确定度为2。再如标称值为100mL的A级容量瓶量取溶液的体积为100.0 mL,其不确定度为±0.1 mL,最末一位不定数字0的不确定度为1,省略不写。 2. 有效数字的确定 有效数字不但表明了分析对象的量的多少,还反映了分析结果的准确度或不确定度 ....................................。例如,称得样品的质量为(0.200 0±0.000 2)g,可见其不确定度为±0.0002 g,相对不确定度±1‰。又如,氯的相对原子质量为35.452 7(9),可见其不确定度为±0.000 9,相对不确定度为±0.03‰。 所以,根据分析结果的准确度或不确定度可确定分析结果的有效数字 ...........).,或 .............................(.准确数字和末位不定数字 者说分析结果的有效数字可根据分析结果的准确度或不确定度来确定,有效数字最后一位数字必须是不定.............................................. 数字并且只有最后一位数字是不定数字 .................。 [例2-8] 有效数字的确定举例如下: ①(0.305 0±0.000 2)g(样品质量),78.96(3)(Se的相对原子质量)和20.43 mL(标准溶 液体积)均为四位有效数字;31.05%(百分含量,计算结果)也为四位有效敷字。 ②0.095 7(3)mol/L(标准溶液浓度,其中0为与单位有关的数字即不是有效数字), 20.0 mL(试剂体积)和1.75×10-5 g/mol(HAc的酸度常数),均为三位有效数字。 ③0.50 g(试剂质量),7.8 mL(试剂体积),2.0 mol/L(试剂浓度)和pH=8.35(溶液酸度,其中8是与单位有关的数字;即8不是有效数字,[H+]=0.45×10-8 mol/L),均为两位有效数字。 ④0.000 3 mol/L(标准偏差)和一0.3%(相对误差),±2‰。(相对不确定度),都只有一位有效数字。 由于误差、偏差、标准偏差和不确定度等衡量的是分析结果的最后—位不定数字的差异程度,因而分. 析结果的误差、偏差、标准偏差和不确定度等参数都只有一位有效数字,允许保留一位参考数字的做法是.............................................. 错误的 ...。 3. 数字修约规则 舍弃多余数字的过程称为数字修约,它所遵循的规则称为数字修约规则。过去人们习惯采用“四舍五

误差有效数字和数据处理

第一章 误差、有效数字和数据处理 第一节 测量误差的基本概念 一、测量误差 进行物理实验,不仅要观察物理现象、定性地研究物体变化规律,而且要定量地测量所观察物体的量值(量值是指用数和适当的单位表示的量,如2.30 m 、15.5 kg 等)。通过测量可以认识物理现象的内在关系,揭示物理过程的本质。所谓测量,就是把待测的物理量与一个被选做标准的同类物理量进行比较,以确定它是标准量的多少倍。这个标准量称为物理量的单位,这个倍数称为待测物理量的数值。一个物理量必须由数值和单位组成。本书使用国际单位制。 1. 直接测量和间接测量 测量可以分为直接测量和间接测量两类。凡是能以量具、仪器的刻度直接测得待测量的大小的测量,叫做直接测量。但是大多数物理量都没有直接测量的仪器,需要进行间接测量。所谓间接测量,就是先经过直接测量得到一些量值,然后再通过一定的数学公式计算,才能得出所求结果的测量。 2. 测量误差 任何物理量在一定条件下都客观地存在一个唯一确定的值,这个值称为真值。但是,由于实验条件、测量方法、测量仪器和测量者自身判断等原因,任何测量都不是绝对准确的,所以测得数值与真值之间总存在着差异。我们把所得测量值与真值之差定义为测量值的误差,用下式表示 i i x x x (1) 式中:x 为真值;i x 为第i 次测量值;i x 为第i 次测量误差。 产生误差的原因是多方面的,根据误差的性质及其产生原因,可将误差分为系统误差和偶然误差两大类。 (1)系统误差。

系统误差的特点是测量的结果总向某一定方向偏离,或按照一定的规律变化。产生系统误差有以下几个原因:仪器本身的缺陷、理论公式或测量方法的近似性、环境的改变(如测量过程中温度、压强的变化)、个人存在的不良测量习惯等。 由于系统误差的数值和符号(+、-)是定值或按某种规律变化,因此系统误差不能通过多次测量来消除或减小。但是,如果能找出产生系统误差的原因,就能采取适当的方法来消除或减小它的影响,或对测量结果进行修正。因此,实验中一定要注意消除系统误差。 (2)偶然误差。 即使在测量过程中已减小或消除了系统误差,但在同一条件下对某一物理量进行多次测量,总存在差异,误差时大时小、时正时负。这种现象的产生是由于观察者受到感官的限制,或由于实验过程中受到周围条件无规则变化的影响,或由于测量对象自身的涨落,或由于其他不可预测的偶然因素所引起的。这样的误差称为偶然误差。对某一次测量来说,偶然误差的大小、符号都无法预先知道,完全出于偶然。但是当测量次数足够多时,偶然误差就具有明显的规律性,即偶然误差遵循统计规律。理论和实验都表明,大量的偶然误差均服从“正态分布”。偶然误差有如下特点: ① 绝对值相等的正负误差出现的几率相等。 ② 绝对值小的误差出现的几率比绝对值大的误差出现的几率大。 ③ 偶然误差的算术平均值随测量次数的增加而减小,当测量次数趋于无穷时,它趋于零。 ④ 偶然误差存在一个“最大误差”,即误差的绝对值不超过某一限度。 由于偶然误差存在上述性质,我们可以用增加测量次数的方法来减小它。当测量次数足够多时,测量列的偶然误差趋于零,测量列的算术平均值就趋近于真值。 故在有限次测量中,我们应取测量列的算术平均值作为真值的估计值,或称之为最佳值。 二、直接测量的误差估算和测量结果的表示 1. 多次直接测量的误差及其表示 上面我们讲过,为了减小偶然误差,可以在同一条件下对同一物理量进行多次重复测量,用多次测量值的算术平均值作为被测量的最佳估计值。 设我们对某一物理量进行了n 次测量,测量值分别为12, , , n x x x 。其算术平均值为 121 11()n n i i x x x x x n n (2) 由上所述,x 为该物理量的最佳值。那么,各次测量值与x 的偏差,就近似为各测量值与真值的误差。在一般的讨论中,我们不去严格区分“偏差”和“误差”。 在物理实验中,多次测量的误差常用算术平均绝对偏差和标准偏差来表示。 (1)算术平均绝对偏差。

高中物理实验误差和有效数字

高中物理实验误差和有效数字 一、考试大纲中实验能力的要求 能独立的完成知识列表中的实验,能明确实验目的,能理解实验原理和方法,能控制实验条件,会使用仪器,会观察、分析实验现象,会记录、处理实验数据,并得出结论,对结论进行分析和评价;能发现问题、提出问题,并制定解决方案;能运用已学过的物理理论、实验方法和实验仪器去处理问题,包括简单的设计性实验. 二、考试大纲对实验的说明 1.要求会正确使用的仪器主要有:刻度尺、游标卡尺、螺旋测微器、天平、秒表、电火花计时器或电磁打点计时器、弹簧秤、电流表、电压表、多用电表、滑动变阻器、电阻箱等. 2.要求认识误差问题在实验中的重要性,了解误差的概念,知道系统误差和偶然误差;知道用多次测量求平均值的方法减少偶然误差;能在某些实验中分析误差的主要来源;不要求计算误差.3.要求知道有效数字的概念,会用有效数字表达直接测量的结果.间接测量的有效数字运算不做要求. 三、有效数字

1.带有一位不可靠数字的近似数字叫做有效数字. 2.有效数字的位数:从左侧第一个不为零的数字起到最末一位数字止,共有几个数字,就是几位有效数字. 例:0.092 3、0.092 30、2.014 0有效数字的位数依次为3位、4位和5位. 3.科学记数法:大的数字,如36 500,如果第3位数5已不可靠时,应记作3.65×104;如果是在第4位数不可靠时,应记作 3.650×104. 四、误差 1.系统误差产生的原因及特点 (1)来源:一是实验原理不够完善;二是实验仪器不够精确;三是实验方法粗略.例如,在验证力的平行四边形定则实验中,弹簧测力计的零点未校准;在验证牛顿第二定律的实验中,用砂和砂桶的重力代替对小车的拉力等. (2)基本特点:实验结果与真实值的偏差总是偏大或偏小. (3)减小方法:改善实验原理;提高实验仪器的测量精确度;设计更精巧的实验方法. 2.偶然误差产生的原因及特点

物理误差分析及数据处理

第一章 实验误差评定和数据处理 (课后参考答案) 制作:李加定 校对:陈明光 3.改正下列测量结果表达式的错误: (1)± 625 (cm ) 改:±(cm ) (2) ± 5(mm ) 改: ± 5(mm ) (3)± 6 (mA ) 改: ± (mA ) (4)96 500±500 (g ) 改: ± (kg ) (5)±(℃) 改: ±(℃) 4.用级别为,量程为10 mA 的电流表对某电路的电流作10次等精度测量,测量数据如下表所示。试计算测量结果及标准差,并以测量结果形式表示之。 解:①计算测量列算术平均值I : 10 1 19.548 ()10i i I I mA ===∑ ②计算测量列的标准差I σ: 0.0623 (cm)I σ= = ③根据格拉布斯准则判断异常数据: 取显著水平a =,测量次数n =10,对照表1-3-1查得临界值0(10,0.01) 2.41g =。取max x ?计算i g 值,有 6 60.158 2.536 2.410.0623 I I g σ?= = => 由此得6I =为异常数据,应剔除。 ④用余下的数据重新计算测量结果

重列数据如表1-3-3。 计算得 9 1 19.564 ()9i i I I mA ===∑ ,0.0344 ()I mA σ== 再经过格拉布斯准则判别,所有测量数据符合要求。 算术平均值I 的标准偏差为I σ 0.01145I σ= = = (mA ) 按均匀分布计算系统误差分量的标准差σ仪 为 0.0289σ?=仪0.5%10 (mA ) 合成标准差σ为 0.031σ (mA ) 取0.04σ= (mA),测量结果表示为 9.560.04x x σ=±=± (mA ) 5.用公式24m d h ρπ= 测量某圆柱体铝的密度,测得直径d =±(cm ),高h =±(cm ),质量m =±(g )。计算铝的密度ρ和测量的标准差ρσ,并以测量结果表达式表示之。 解 (1)计算铝的密度ρ: 322 4436.488 2.7003g /m 3.1416 2.042 4.126 m c d h ρπ?= =??=() (2)计算g 标准差相对误差: 对函数两边取自然对数得 ln ln 4ln ln 2ln ln m d h ρπ=-+-- 求微分,得

误差分析和数据处理

误差和分析数据处理 1 数据的准确度和精度 在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多少次测定,但是测 定结果总不会是完全一样。这说明在测定中有误差。为此 我们必须了解误差产生的原因及其表示方法,尽可能将误 差减到最小,以提高分析结果的准确度。 1.1 真实值、平均值与中位数 (一)真实值 真值是指某物理量客观存在的确定值。通常一个物理量的真值是不知道的,是我们努力要求测到的。严格来讲,由于测量仪器,测定方法、环境、人的观察力、测量的程 序等,都不可能是完善无缺的,故真值是无法测得的,是 一个理想值。科学实验中真值的定义是:设在测量中观察 的次数为无限多,则根据误差分布定律正负误差出现的机 率相等,故将各观察值相加,加以平均,在无系统误差情 况下,可能获得极近于真值的数值。故“真值”在现实中 是指观察次数无限多时,所求得的平均值(或是写入文献 手册中所谓的“公认值”)。 (二)平均值 然而对我们工程实验而言,观察的次数都是有限的,故用有限观察次数求出的平均值,只能是近似真值,或称

为最佳值。一般我们称这一最佳值为平均值。常用的平均 值有下列几种: (1)算术平均值 这种平均值最常用。凡测量值的分布服从正态分布 时,用最小二乘法原理可以证明:在一组等精度的测量中, 算术平均值为最佳值或最可信赖值。 式中: n x x x 21、——各次观测值;n ――观察的次数。 (2)均方根平均值 (3)加权平均值 设对同一物理量用不同方法去测定,或对同一物理量 由不同人去测定,计算平均值时,常对比较可靠的数值予 以加重平均,称为加权平均。 式中;n x x x 21、——各次观测值; n w w w 21、——各测量值的对应权重。各观测值的 权数一般凭经验确定。 (4)几何平均值 (5)对数平均值 以上介绍的各种平均值,目的是要从一组测定值中找 出最接近真值的那个值。平均值的选择主要决定于一组观 测值的分布类型,在化工原理实验研究中,数据分布较多 属于正态分布,故通常采用算术平均值。 (三)中位数(xM )

实验中的误差和有效数字-教学设计

实验中的误差和有效数字 【教材分析】 本节选自鲁科版必修一第二章第三节,是在学习了匀变速直线运动速度变化规律、位移变化规律的内容之后,本节课的学习为高中物理实验探究的误差和数据分析打下基础,为下节课“科学测量:做直线运动物体的瞬时速度”做好铺垫。 【教学目标与核心素养】 物理观念:能理解相对误差与绝对误差的概念;掌握有效数字的表示和其位数的表达。 科学思维: 1.能根据实验目的和实验器材判断实验操作中存在的误差。 2.掌握减小误差的方法。 科学探究:能发现并提出物理问题;能分析纸带数据并找出实验中的误差,并制定解决方案。 科学态度与责任:知道实验器材的改进能促进人们认知的发展;知道物理实验的探究需要实事求是。 【教学重难点】 教学重点:有效数字的概念;科学测量中所存在的误差。 教学难点: 1.能在实验中分析误差的主要来源。 2.会用有效数字表达直接测量的结果。 【教学过程】 导入新课: 问题:1.能否确定在光滑斜面上下滑的小球是否做匀变速直线运动? 学生:需要测得小球在斜面上的运动信息 问题:2.实验探究时,如何获得有效的、可信的数据? 引发学生对实验误差的思考,引出本节内容 新课讲授: 一、科学测量中的误差 (一)绝对误差和相对误差 待测体

待测体在客观上存在着准确的数值,称为真实值(a) 实际测量得到的结果称为测量值(x) 思考:测量总存在误差。 1.绝对误差:测量值(x)与真实值(a)之差称为绝对误差(?x) ?x=x?a 问题:如何判断多个测量结果的可靠性?引出相对误差的概念。 2.绝对误差(?x)与真实值(a)的比值称为绝对误差(δ) 问题:如何获得真实数据? 结论:科学测量中常用多次测量的平均值代替真实值。 思考:绝对误差相同时,相对误差也一定相同么? 甲乙 真实值3.46cm真实值1.45cm 测量值3.47cm测量值1.44cm 绝对误差0.01cm绝对误差0.01cm 请同学计算甲、乙两种情况下的相对误差。 相对误差0.29%相对误差0.69%对比两种情况,得出结论:在绝对误差相同的情况下,被测量的数值越大,测量结果的相对误差就越小,测量结果的可靠性就越大。 (二)系统误差和偶然误差 1.系统误差 定义:由于测量原理不完善或仪器本身缺陷等造成的误差。 举例加深理解。 例:表盘刻度不准确所造成的误差

相关文档
最新文档