故障树分析在故障诊断中的应用概述

故障树分析在故障诊断中的应用概述
故障树分析在故障诊断中的应用概述

设备状态监测与故障诊断作业

标题:故障树分析在故障诊断中的应用概述

故障树分析在故障诊断中的应用概述

摘要:在介绍故障树分析基本理论的基础上,分析和总结了故障树分析方法在故障诊断的应用现状,提出了目前故障树分析的主要发展方向。

关键词:故障树分析,故障诊断,模糊故障树

ABSTRACT:Based on the introduction of the basic theory of fault tree analysis, the present situation of fault tree analysis in fault diagnosis is analyzed and summarized; the main developing direction of fault tree analysis is given.

KEYWORDS:fault tree analysis(FTA), fault diagnosis, fuzzy fault tree

前言

故障树分析(Fault Tree Analysis,简称FTA)方法,利用故障树将系统故障原因自顶向下逐级进行分析,估计顶事件的发生概率和底事件重要度,是系统可靠性分析、故障检测与诊断常用的一种分析方法。这种方法通过把系统可能发生或已经发生的事故(即顶事件)作为分析起点,将导致事故的原因事件按因果关系逐层列出,用树形图表示出来,构成一种逻辑模型。找出事件发生的各种可能途径及发生概率,找出避免事故发生的各种方案并优选出最佳安全对策[1]。

故障树分析既可用定性模型也可以用定量模型。故障树的果因关系清晰、形象,对导致事故的各种原因及逻辑关系能做出全面、简洁、形象地描述,因而在各行业故障诊断中得到广泛而重要的应用。

1故障树分析的基本理论

1.1故障树分析的原理及步骤

故障树(FT)模型是一个基于被诊断对象结构、功能特征的行为模型,是一种定性的因果模型,以系统最不希望事件为顶事件,以可能导致顶事件发生的其他事件为中间事

件和底事件,并用逻辑门表示事件之间联系的一种倒树状结构。它反映了特征向量与故障向量(故障原因)之间的全部逻辑关系。图1即为一个简单的故障树。图中顶事件:系统故障,由部件A或部件B引发,而部件A的故障又是由两个元件1,2中的一个失效引起,部件B的故障是在两个元件3,4同时失效时发生。

图1 简单故障树

故障树分析诊断法步骤如下:

(1)调查事故。收集事故案例,进行事故统计,设想给定系统可能发生的事故。

(2)选择合理的顶事件。一般以待诊断对象故障为顶事件。

(3)建造正确合理的故障树。这是诊断的核心与关键。

(4)故障搜寻与诊断。根据建立的故障树,对故障进行搜寻和诊断。搜寻方法有逻辑推理诊断法和最小割集诊断法等[1~4]。

1.2故障树生成方法

在故障树分析技术中,故障树生成是最基本、最关键的环节,也是使用故障树分析的前提条件。随着故障树分析技术的广泛应用,人工建树的费时费力问题变得日益突出,已成为工程界人士共同担心的困难。尤其对比较复杂的系统建树,往往以人年来计算。当系统的因素交错在一起时,很难避免发生逻辑上的错误和遗漏,人们不得不寻求和开拓由计算机辅助建树的途径。近年来相继出现了一些较好的算法和程序,但尚存在许多争议的困难问题,尤其是各类算法的特性和适用范围各异,其算法对部件失效模式的描述不能统一,至今未出现比较规范和系统化的算法。

文献[5]以寻求较规范化和系统化的算法为出发点,提出了一种在建立描述元件(部件)故障模型的基础上,基于系统分析利用邻接矩阵确定系统故障树顶部结构,然后通

过子要素级别分析,强连接关系识别和基本子要素的确定,最终自动生成故障树的方法。应用该方法大大增强了故障树的可读性,简化了系统故障树生成的复杂性,为故障树生成节省大量重复劳动,使生成的故障树具有更强的理论依据和可行性。

1.3故障源搜寻与诊断方法

在建立了正确的故障树之后,要准确地分析故障,就需要对故障源进行搜寻和诊断,根据搜寻方式的不同,主要有逻辑推理诊断法和最小割集诊断法。

逻辑推理诊断法,采用从上而下的测试方法,从故障树顶事件开始,先测试最初的中间事件,根据中间事件测试结果判断测试下一级中间事件,直到测试底事件,搜寻到故障原因及部位。

最小割集诊断法。所谓割集是指故障树的一些底事件集合,当这些底事件同时发生时,顶事件必发生;而最小割集是指割集中所含底事件除去任何一个时,就不再成为割集了。一个最小割集代表系统的一种故障模式。故障诊断时,可逐个测试最小割集,从而搜寻故障源,进行故障诊断。

故障树分析是一项很复杂的工作,尤其对于大型故障树的分析,手工分析难以体现系统中复杂的逻辑关系,不但耗费大量的工作时间,而且难以达到暴露可靠性薄弱环节的目的。文献[6]利用故障树分析原理,对基于故障树最小割集的诊断方法进行了研究。计算最小割集的重要度,并在量级上进行了比较,为故障源搜索提供了有效的测试步骤。但在复杂的故障树中。文献[6]建树和求最小割集较复杂,也不能很好地指出系统的薄弱环节以及底事件对顶事件不可用度贡献的大小,从而难以为设计系统可靠性和故障测试点提供有效的手段。文献[7]使用ITEM软件比较有效地解决以上问题,通过分析故障树得出结果,设计和提高系统可靠性,并且得出故障源搜寻的具体可行的测试步骤,得到了比较快捷的方法。

1.4故障树分析诊断的局限性

故障树法对故障源的搜寻,直观简单,它是建立在正确故障树结构的基础上的。因此建造正确合理的故障树是诊断的核心与关键。但在实际诊断中这一条件并非都能得到满足,一旦故障树建立不全面或不正确则此诊断方法将失去作用。

2故障树分析在故障诊断中的应用现状

故障树分析(FTA)技术是美国贝尔电报公司的电话实验室于1962年开发的,它是安全系统工程的主要分析方法之一。一般来讲,安全系统工程的发展也是以故障树分析为主要标志的。1974年美国原子能委员会发表了关于核电站危险性评价报告,即“拉姆森报告”,大量、有效地应用了FTA,从而迅速推动了它的发展。

故障树分析方法是一门逐渐成长和发展的学科,从传统故障树分析方法到融合其它算法的故障树分析,故障树分析不断地在工程实际中得到应用,在应用中不断地发现问题和局限性,从而不断地得到完善和发展。

2.1传统故障树分析方法的应用

近几十年来,故障树分析方法以其直观形象、灵活多用等优点广泛活跃在宇航、核能、军事、船舶、电子、化工和机械等工业部门[8]。文献[9] 将故障树应用在飞机故障诊断专家系统中,然后对应用故障树的专家系统的模型选择、知识表示、诊断知识库的建立等进行了详细的分析和实践,能够比较快速、准确地确定故障原因。文献[10]结合实例,应用故障树法对矿井主要设备钢绳胶带系统的可靠性进行了全面系统的分析。生产中应用该方法进行分析,降低了事故率,提高了设备的安全性和效率,取得了较好的效果。

目前,故障树分析法已成为各行业作业系统的可靠性、安全性和故障分析与诊断的一种简单有效、很有发展前途的方法。然而,传统故障树分析存在以下两点不足:首先,传统的故障树分析方法在对系统的可靠性进行分析时,认为部件只有工作或故障两种状态,而且各部件是相互独立的,而实际上部件存在着多种状态,仅用两种状态显然不能对系统的可靠性做出确切的评价。其次,传统故障树分析方法是以布尔代数为基础,把部件发生的概率当成精确值来处理,由于环境的模糊性和数据的不准确性会对部件发生的概率产生影响;另外由于部件发生的概率值的获取需要大量统计数据,对于故障发生概率很低的部件,难以获取大量的数据。

2.2基于图形化工具的故障树分析方法的应用

通过把故障树转化为二元决策图(BDD),可以较容易得到大型故障树的不可靠度表达

式,能够较好的胜任大型系统故障树分析工作。文献[11]为大型关联系统提出一种有效二元决策图算法。但BDD仅适用于静态系统,将Markov 链引入故障树分析中,能够很好的描述系统发生失效的过程,为动态系统可靠性分析提供了有效途径。动态故障树(DFTA)法引入新型的表示动态特征的逻辑门,综合故障树分析和Markov 链的特点,为动态系统可靠性与安全性提供了有效途径[12],但其建立和求解十分繁琐。

Petri 网是一种特殊的有向网,可以用来描述故障的传播关系。文献[13]利用Petri 网表示故障树模型,并直接对模型进行吸收和简化方法中的吸收环节进行了改进。应用Petri 网简化故障树模型,可以减少最小割集的计算量,但是未能解决系统的多态性和不确定性问题。

贝叶斯网络能够描述系统多态性且故障逻辑关系非确定性,并能进行不确定性推理,更适合复杂系统可靠性分析。文献[14]在故障树基础上建立贝叶斯网络,可以直接计算一个或多个元件故障对系统故障的影响,以及系统故障条件下元件的故障概率,这些条件概率对于改善和提高系统可靠性是很有帮助的。

2.3模糊故障树分析方法的应用

故障概率和事件间的联系精确已知的要求,使故障树的建树变得极为困难。这些不足限制了故障树在实际工程中的应用。模糊技术具有处理模糊和不精确信息的优点。许多文献将模糊技术引入故障树分析,以弥补传统故障树的不足,并取得了丰硕的成果。将模糊集合论和可能性理论引入故障树分析法中,采用专家判断法得到加权平均模糊数,估计出顶事件的故障概率和各底事件的模糊重要度[15]。该方法解决了故障概率的模糊性和不确定性问题,降低了获取故障概率精确值的难度。

上述文献在描述事件联系时,仍采用与、或等传统逻辑门,但引入了模糊运算代替传统逻辑运算,用模糊数来描述事件的发生概率,减少了获取故障发生概率精确值的难度,具有一定的适应性。但由于传统逻辑门的存在,使得这种模糊FTA方法仍需要搞清故障机理并找到事件联系。在实际情况下,故障机理和事件联系往往具有不确定性。另外,故障程度的不同也会带来不同的后果,传统的模糊故障树方法不能描述故障程度对系统的影响。

T-S 模糊模型对不确定信息关系的处理有很好的效果,被广泛应用于非线性系统的辨识和控制等[16]。文献[17]将T-S 模糊故障树分析方法应用于液压系统中,为评价液压

系统可靠性提供了新的途径。

2.4故障树重要度分析方法的应用

重要度是故障树定量分析的一个重要指标,它描述了部件发生故障时对顶事件的贡献,不仅能够用于系统的可靠性分析,还可以用于系统的优化设计和指导系统进行维修与诊断。

利用传统FTA技术计算重要度时,主要是基于故障树的最小割集,根据系统故障树中逻辑门的组合关系计算出各基本事件(部件)对顶事件发生的影响程度,以确定改进重点。然而,基于割集下的传统FTA难以胜任大型复杂故障树的分析,其时间、空间复杂性使得大型复杂故障树难以在计算机上实现。

文献[18]提出在干系统失效概率相同的情况下,可以利用等效失效概率来比较不同系统的可靠度。在实际系统中考虑系统的动态过程,通过顶事件结构的效力指标的计算,对故障进行重要度排序,能够精确识别动态和静态模型的潜在故障原因。

3故障树分析方法的发展方向

随着故障树分析方法应用更越来越广泛的领域,必然暴露出越来越多的问题和局限性,为了不断地解决实际工程问题,故障树分析法必须不断地吸收新的思想,与其它先进算法融合,不断地完善理论。就目前而言,将T-S 模糊模型、粒子群(PSO)算法和贝叶斯网络引入FTA 领域并进行深入研究,使其得到进一步完善和发展,是FTA今后的发展趋势[19]。

(1)T-S 模糊故障树分析

将T-S模糊模型引入FTA中,用T-S 模糊门代替传统逻辑门,利用专家经验构建T-S 门规则,考虑了不同故障程度对系统的影响,解决了需要精确已知故障机理和事件之间联系的问题。

然而以往的作业系统T-S 模糊故障树分析方法仅当部件发生概率为精确值和已知部件的故障程度时,对作业系统进行了分析,尚未涉及对于部件发生概率不确定时问题的处理,没有研究一种切实可行的T-S 模糊故障树分析重要度计算方法,以及综合考虑实测数据、重要度、搜索代价及影响程度等因素对作业系统进行故障诊断,是今后有待

解决的问题。

(2)粒子群算法

基于T-S 模糊模型的液压系统的可靠性优化设计可以抽象为一个多维空间的寻优搜索问题。采用一些学习算法或优化方法可以用来调整模糊模型、模糊规则或隶属度函数。粒子群算法(Particle Swarm Optimization,PSO)为全局最优化方法,且操作较遗传算法简单,具有可并行搜索、可求解不可微分方程且无需方程梯度信息等优点,正成为继遗传算法、模拟退火算法之后优化领域研究的新方向。

运用PSO算法进行T-S模糊模型的寻优,有望避免传统优化算法收敛速度慢以及易陷入局部最优的缺点,该研究可使得FTA方法具有更强的科学性和实用性,是值得研究的方向。

(3)贝叶斯网络

近年来,贝叶斯网络以其强大的结构特点和双向推理功能,越来越受到的关注。在进行液压系统可靠性分析时,利用元件故障下系统发生故障的条件概率,即可看作概率重要度,找出系统可靠性的薄弱环节。

贝叶斯网络相对与T-S 模糊模型,其结构和逻辑表达更加清晰,但是实际大型复杂系统,状态不容易清晰划分,状态概率也不一定,因此需要对贝叶斯网络进行更深入的研究。

结论

随着各种作业系统的复杂性,集成性越来越高,系统的故障管理将越来越得到重视,故障管理成本所占比例将越来越大。故障树分析作为系统故障管理的一种高效而直观的方法,也必将得到越来越广泛的使用。

故障树分析是一门正在发展中的学科,为了更好地解决实际工程中的问题,需要不断吸收融合各学科中先进算法,不断地修正和完善故障树分析方法,由于系统的复杂性,人工生成故障树,搜寻故障源,将变得很困难甚至不现实,计算机辅助故障树分析将是未来的发展方向。在先进算法充实故障树分析理论和计算机代替人工管理故障树的过程中,故障树分析将发展得越来越好!

参考文献

[1]朱大奇,于盛林. 基于知识的故障诊断方法综述[J]. 安徽工业大学学报(自然科学版), 2002, 19 (3)

_8 .

[2]纪常伟.基于故障树和神经网络的故障诊断技术研究[D].哈尔滨:哈尔滨工业大学,1995.

[3]朱大奇,刘文波,于盛林.基于虚拟仪器的光电雷达电子部件性能检测和故障诊断系统[J].航空学

报,2001.22(5):468-470.

[4]张建刚.模糊树模型及其在复杂系统辨识中的应用[J].自动化学报,2000,26(3):378-381.

[5]葛跃飞,王茸,陈世文等. 故障树自动生成技术的研究与实现[J]. 计算机工程与设计, 2009, 30 (1)

_3 .

[6]朱大奇,于盛林.基于故障树最小割集的故障诊断方法研究[J].数据采集与处理,2002,17(3):

341.344.

[7]金亮亮,姜斌,刘剑慰等. ITEM软件在基于故障树诊断中的应用[A]. 第五届全国技术过程故障诊断

与安全性学术会议论文集[C]. 2007 .

[8]朱继洲. 故障树原理和应用[M].西安:西安交通大学出版社,1991.

[9]耿宏,高秀苹,樊建梅等. 故障树在飞机故障诊断专家系统中的应用[J]. 中国民航学院学报, 2006,

24 (z1) _3 .

[10]和得江,李建德. 故障树法在斜井胶带运输系统可靠性分析方面的应用[J]. 中州煤炭, 2009, (11)

_3 .

[11]KAREN A R, JOHN D A. A fault tree analysis strategy using binary decision diagrams[J].Reliability

Engineering and System Safety, 2002, (78): 45-56.

[12]朱正福, 李长福, 何恩山. 基于马尔可夫链的动态故障树分析方法[J].兵工学报,2008, 29(9):

1104-1107.

[13]张永发,蔡琪,赵新文. 应用Petri 网模型改进最小割集的算法[J].核动力工程,2007,28(5):63-68.

[14]尹晓伟,钱文学,谢里阳. 系统可靠性的贝叶斯网络评估方法[J].航空学报,2008,29(6):

1482-1489.

[15]姚成玉,赵静一. 液压系统模糊故障树分析方法研究[J].中国机械工程,2007,18(14):1656-1659,

1675.

[16]肖健梅,王锡淮. 基于微粒群优化的船舶柴油机T-S 模糊模型[J].机械工程学报,2007,28(5):

532-535.

[17]姚成玉,赵静一. 基于T-S模型的液压系统模糊故障树分析方法研究[J].中国机械工程,2009,

20(16):1913-1917.

[18]裴扬,宋笔锋.故障树分析的等效失效概率计算方法[J].机械工程学报,2007,43(9):207-210.

[19]姚成玉,张荧驿,王旭峰等. 液压系统故障树分析的研究现状与展望[A]. 第六届全国流体传动与

控制学术会议论文集[C]. 2010 .

(完整版)故障树分析法

什么是故障树分析法 故障树分析(FTA)技术是美国贝尔电报公司的电话实验室于1962年开发的,它采用逻辑的方法,形象地进行危险的分析工作,特点是直观、明了,思路清晰,逻辑性强,可以做定性分析,也可以做定量分析。体现了以系统工程方法研究安全问题的系统性、准确性和预测性,它是安全系统工程的主要分析方法之一。一般来讲,安全系统工程的发展也是以故障树分析为主要标志的。 1974年美国原子能委员会发表了关于核电站危险性评价报告,即“拉姆森报告”,大量、有效地应用了FTA,从而迅速推动了它的发展。 什么是故障树图(FTD) 故障树图 ( 或者负分析树)是一种逻辑因果关系图,它根据元部件状态(基本事件)来显示系统的状态(顶事件)。就像可靠性框图(RBDs),故障树图也是一种图形化设计方法,并且作为可靠性框图的一种可替代的方法。 一个故障树图是从上到下逐级建树并且根据事件而联系,它用图形化"模型"路径的方法,使一个系统能导致一个可预知的,不可预知的故障事件(失效),路径的交叉处的事件和状态,用标准的逻辑符号(与,或等等)表示。在故障树图中最基础的构造单元为门和事件,这些事件与在可靠性框图中有相同的意义并且门是条件。 故障树和可靠性框图(RBD) FTD和RBD最基本的区别在于RBD工作在"成功的空间",从而系统看上去是成功的集合,然而,故障树图工作在"故障空间"并且系统看起来是故障的集合。传统上,故障树已经习惯使用固定概率(也就是,组成树的每一个事件都有一个发生的固定概率)然而可靠性框图对于成功(可靠度公式)来说可以包括以时间而变化的分布,并且其他特点。 故障树分析中常用符号 故障树分析中常用符号见下表:

机械故障诊断案例分析

六、诊断实例 例1:圆筒瓦油膜振荡故障的诊断 某气体压缩机运行期间,状态一直不稳定,大部分时间振值较小,但蒸汽透平时常有短时强振发生,有时透平前后两端测点在一周内发生了20余次振动报警现象,时间长者达半小时,短者仅1min左右。图1-7是透平1#轴承的频谱趋势,图1-8、图1-9分别是该测点振值较小时和强振时的时域波形和频谱图。经现场测试、数据分析,发现透平振动具有如下特点。 图1-7 1*轴承的测点频谱变化趋势 图1-8 测点振值较小时的波形与频谱

图1-9 测点强振时的波形和频谱 (1)正常时,机组各测点振动均以工频成分)幅值最大,同时存在着丰富的低次谐波成分,并有幅值较小但不稳定的(相当于×)成分存在,时域波形存在单边削顶现象,呈现动静件碰磨的特征。 (2)振动异常时,工频及其他低次谐波的幅值基本保持不变,但透平前后两端测点出现很大的×成分,其幅度大大超过了工频幅值,其能量占到通频能量的75%左右。 (3)分频成分随转速的改变而改变,与转速频率保持×左右的比例关系。 (4)将同一轴承两个方向的振动进行合成,得到提纯轴心轨迹。正常时,轴心轨迹稳定,强振时,轴心轨迹的重复性明显变差,说明机组在某些随机干扰因素的激励下,运行开始失稳。 (5)随着强振的发生,机组声响明显异常,有时油温也明显升高。 诊断意见:根据现场了解到,压缩机第一临界转速为3362r/min,透平的第一临界转速为8243r/min,根据上述振动特点,判断故障原因为油膜涡动。根据机组运行情况,建议降低负荷和转速,在加强监测的情况下,维持运行等待检修机会处理。 生产验证:机组一直平稳运行至当年大检修。检修中将轴瓦形式由原先的圆筒瓦更改为椭圆瓦后,以后运行一直正常。 例2:催化气压机油膜振荡 某压缩机组配置为汽轮机十齿轮箱+压缩机,压缩机技术参数如下: 工作转速:7500r/min出口压力:轴功率:1700kW 进口流量:220m3 /min 进口压力:转子第一临界转速:2960r/min 1986年7月,气压机在运行过程中轴振动突然报警,Bently 7200系列指示仪表打满量程,轴振动值和轴承座振动值明显增大,为确保安全,决定停机检查。

故障树分析法的内容及其分析学习资料

故障树分析法的内容及其分析 故障树分析法(Fault Tree Analysis)是1961~1962年间,由美国贝尔电话实验室的沃森(H.A.Watson)在研究民兵火箭的控制系统中提出来的。首篇论文在1965年由华盛顿大学与波音公司发起的讨论会上发表。1970年波音公司的哈斯尔(Hassl)、舒洛特(Schroder)与杰克逊(Jackson)等人研制出故障树分析法的计算机程序,使飞机设计有了重要改进。1974年美国原子能委员会发表了麻省理工学院(MIT)的拉斯穆森(Rasmusson)为首的安全小组所写的“商用轻水核电站事故危险性评价”报告,使故障树分析法从宇航、核能逐步推广到电子、化工和机械等部门。 故障树分析法实际上是研究系统的故障与组成该系统的零件(子系统)故障之间的逻辑关系,根据零件(子系统)故障发生的概率去估计系统故障发生概率的一种方法。对可能造成系统失效的硬件、软件、环境、人为等因素进行分析,画出故障树,确定系统失效的各种可能组合方式及其发生的概率,从而计算出系统的失效概率,以便采取相的补救措施以提高系统的可靠性。 故障树分析一般有以下一些作用: (1)指导人们去查找系统的故障。 (2)能够指出系统中一些关键零件的失效对于系统的重要性。 (3)在系统的管理中,提供了一种看得见的图解,以便帮助人们对系统进行故障分析,并且对系统的设计有一定的指导作用。 (4)节省了大量的分析系统故障的时间,简化了故障分析过程。 (5)为系统的可靠度的定性与定量分析奠定的基础。 故障树分析一般按以下顺序进行: (1)定义系统,确定分析目的和内容,明确对系统所作的基本假设,对系统有一个详细的、透彻的认识。 (2)选定系统的顶事件。 (3)根据故障之间的逻辑关系,建造故障树。 (4)故障树的定性分析。分析各故障事件结构的重要度,应用布尔代数对其进行简化,找出故障树的最小割集。 (5)收集并确定故障树中每个基本事件的发生概率或基本事件分布规律及其特性参数。 (6)根据故障树建立系统不可靠度(可靠度)的统计模型,确定对系统作定量分析的方法,然后对该系统进行定量分析,并对分析结果进行验证。 (7)根据分析提出改进意见,提高系统的可靠性。

(完整版)《设备故障诊断-沈庆根》知识点汇总

1.1.设备故障诊断的含义 设备故障诊断是指应用现代测试分析手段和诊断理论方法,对运行中的机械设备出现故障的机理、原因、部位和故障程度进行识别和诊断,并且根据诊断结论,确定设备的维修方案和防范措施。 1.2.设备故障诊断的过程 信号采集→信号处理→故障诊断→诊断决策→故障防治与控制 1.3.设备故障诊断的特性 多样性、层次性、多因素相关性、延时性、不确定性 1.4.三种维修制度 事后维修(故障维修)、定期维修(计划维修)、状态监测维修(预知性维修) 1.5设备故障的类型有哪些 ①结构损伤性故障(裂纹、磨损、腐蚀、变形、断裂、剥落和烧伤) ②运动状态劣化性故障(机械位置不良、刚性不足、摩擦、流体激振、非线性的谐波共振) 1.6设备故障诊断的功能 ①不停机不拆卸的状态下检测 ②可预测设备的可靠性程度 ③确定故障来源,提出整改措施 1.7.设备状态监测与故障诊断的技术和方法 振动信号监测诊断技术(普遍性、信息量丰富、易处理与分析) 声信号监测诊断技术(声音监听法、频谱分析法、声强法) 温度信号监测诊断技术 润滑油的分析诊断技术 其他无损检测诊断技术 1.8.设备故障状态的识别方法 信息比较诊断法、参数变化诊断法、模拟试验诊断法、函数诊断法、故障树分析诊断法、模糊诊断法、神经网络诊断法、专家系统 2.1信号的含义和分类 信号是表征客观事物状态或行为信息的载体 分类:确定性信号与非确定性信号;连续信号和离散信号;能量信号和功率信号;时限与频限信号 2.2.信号时域分解 直流分量和交流分量 脉冲分量 实部分量和虚部分量 正交函数分量 2.3.信号的时域统计 均值 均方值 方差

2.4.时域相关分析 相关系数: 2.5.频谱分析法 利用傅里叶变换的方法对振动的信号进行分解,并按频率顺序展开,使其成为频率的函数,进而在频率域中对信号进行研究和处理的一种过程,称为频谱分析 2.6.振动监测的基本参数振幅、频率、相位 2.7.旋转机械常用的振动信号处理图形 轴心轨迹:轴颈中心相对于轴承座在轴线垂直平面内的运动轨迹 转子振型:转子轴线上各点的振动位移所连成的一条空间曲线 轴颈涡动中心位置:在滑动轴承中,轴颈中心在激扰力作用下是绕着某一中心点运动的 波特图:描述转子振幅和相位随转速变化的关系曲线,纵坐标为振幅和相位,横坐标为转子的转速或转速频率 极坐标图:把转子的振幅与相位随转速的变化关系用极坐标的形式表示出来(直观,方便,清晰,抗干扰) 三维坐标图(级联图、瀑布图):随转速上升,机械振动的基础幅指上升 阶比谱分析:将频谱图上横坐标的每个频率值除以某个参考频率值(读数清晰、周期采样、精度高) 3.1旋转机械的故障类型有哪些 ①转自不平衡②转子不对中③滑动轴承故障④转子摩擦⑤浮动环密封故障 3.2转子不平衡的概念 转子受材料质量、加工、装配以及运行中多种因素的影响,其质量中心和旋转中心线中间存在一定量的偏心距,使得转子在工作时形成周期性的离心力干扰,在轴承上产生动载荷,从而引起机器振动的现象 不平衡产生的离心力大小 3.3转子不平衡振动的故障特征 ①不平衡故障主要引起转子或轴承径向振动,在转子径向测点上得到的频谱图,转速频率成分具有突出的峰值 ②单纯的不平衡振动,转速频率的高次谐波幅值很低,因此在时域上的波形是一个正弦波 ③转子的轴心轨迹形状基本上为一个圆或者椭圆,这意味着置于转轴同一截面上相互垂直的两个探头,其信号相位差接近90° ④转子的进动方向为同步正进动 ⑤除了悬臂转子外,对于普通两端支撑的转子,不平衡在轴向上的振幅一般不明显 ⑥转子振幅对转速变化很敏感,转速下降,振幅将明显下降 3.4转子不平衡振动的原因 ①固有质量不平衡(设计错误、材料缺陷、加工与装配误差、动平衡方法不正确) ②转子运行中的不平衡(转子弯曲、转子平衡状态破坏) 3.5怎样区别转子弯曲不平衡和质量不平衡 ①振幅随转速的变化:质量不平衡与转速之间按照固定的关系式变化,弯曲的没有

滚动轴承故障诊断与分析..

滚动轴承故障诊断与分析Examination and analysis of serious break fault down in rolling bearing 学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿

摘要:滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一, 旋转机械的许多故障都与滚动轴承有关,轴承的工作好坏对机器的工作状态有很大的影响,其缺陷会产生设备的振动或噪声,甚至造成设备损坏。因此, 对滚动轴承故障的诊断分析, 在生产实际中尤为重要。 关键词:滚动轴承故障诊断振动 Abstract: Rolling bearing is the most widely used in rotating machinery of the machine parts, is also one of the most easily damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, its defect can produce equipment of vibration or noise, and even cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约有30% 是因滚动轴承引起的,由此可见滚动轴承故障诊断工作的重要性。如何准确判断出它的末期故障是非常重要的,可减少不必要的停机修理,延长设备的使用寿命,避免事故停机。滚动轴承在运转过程中可能会由于各种原因引起损坏,如装配不当、润滑不良、水分和异物侵入、腐蚀和过载等。即使在安装、润滑和使用维护都正常的情况下,经过一段时间运转,轴承也会出现疲劳剥落和磨损。总之,滚动轴承的故障原因是十分复杂的,因而对作为运转机械最重要件之一的轴承,进行状态检测和故障诊断具有重要的实际意义,这也是机械故障诊断领域的重点。 一滚动轴承故障诊断分析方法 1滚动轴承故障诊断传统的分析方法 1.1振动信号分析诊断 振动信号分析方法包括简易诊断法、冲击脉冲法(SPM法)、共振解调法(IFD 法)。振动诊断是检测诊断的重要工具之一。 (1)常用的简易诊断法有:振幅值诊断法,反应的是某时刻振幅的最大值,适用于表面点蚀损伤之类的具有瞬时冲击的故障诊断;波峰因素诊断法,表示的

故障树分析法--最新,最全

故障树分析法(Fault Tree Analysis简称FTA) 概念 什么是故障树分析法 故障树分析(FTA)技术是美国贝尔电报公司的电话实验室于1962年开发的,它采用逻辑的方法,形象地进行危险的分析工作,特点是直观、明了,思路清晰,逻辑性强,可以做定性分析,也可以做定量分析。体现了以系统工程方法研究安全问题的系统性、准确性和预测性,它是安全系统工程的主要分析方法之一。一般来讲,安全系统工程的发展也是以故障树分析为主要标志的。 1974年美国原子能委员会发表了关于核电站危险性评价报告,即“拉姆森报告”,大量、有效地应用了FTA,从而迅速推动了它的发展。目前,故障树分析法虽还处在不断完善的发展阶段,但其应用范围正在不断扩大,是一种很有前途的故障分析法。 故障树分析(Fault Tree Analysis)是以故障树作为模型对系统进行可靠性分析的一种方法,是系统安全分析方法中应用最广泛的一种自上而下逐层展开的图形演绎的分析方法。在系统设计过程中通过对可能造成系统失效的各种因素(包括硬件、软件、环境、人为因素)进行分析,画出逻辑框图(失效树),从而确定系统失效原因的各种可能组合方式或其发生概率,以计算的系统失效概率,采取相应的纠正措施,以提高系统可靠性的一种设计分析方法。 故障树分析方法在系统可靠性分析、安全性分析和风险评价中具有重要作用和地位。是系统可靠性研究中常用的一种重要方法。它是在弄清基本失效模式的基础上,通过建立故障树的方法,找出故障原因,分析系统薄弱环节,以改进原有设备,指导运行和维修,防止事故的产生。故障树分析法是对复杂动态系统失效形式进行可靠性分析的有效工具。近年来,随着计算机辅助故障树分析的出现,故障树分析法在航天、核能、电力、电子、化工等领域得到了广泛的应用。既可用于定性分析又可定量分析。 故障树分析(Fault Tree Analysis)是一种适用于复杂系统可靠性和安全性分析的有效工具,是一种在提高系统可靠性的同时又最有效的提高系统安全性的方法。当前,超大型工程的建设,对可靠性,安全性提出了更高的要求,因此,故障树分析法已经广泛的应用到宇航,核能,化工,电子,机械和采矿等各个领域。 故障树分析法(Fault Tree Analysis) 简称故障树法,记作FTA [21],[21] R G B . On the Analysis of Fault Trees ,[J] . IEEE Trans .1975 : 175 一185是一种采用逻辑推理,将系统故障形成原因由总体至部分按树枝状逐级细化,并绘出逻辑结构图(即故障树)的分析方法。其目的在于判明基本故障,确定故障的原因、影响和发生的概率。这种方法形象直观,并且能为使用单位提供明确的改进信息,所以为广大的工程技术人员所欢迎。 故障树分析法(Fault Tree Analysis,简称FTA)是在一定条件下用逻辑推理的方法,通过对可能造成系统故障的各种因素(包括硬件、软件、环境、人为因素等)进行分析,画出逻辑框图(即故障树),从而确定系统故障原因的各种可能组合方式及其发生概率,计算系统故障概率,以采取相应的纠正措施,是提高系统可靠性的一种设计分析方法。同时,故障树分析法是可靠性工程的重要分支,是目前国内外公认的对复杂系统安全性、可靠性分析的一种实用方法。该方法可以让分析者对系统有更深入的认识,对有关系统结构、功能故障及维护保障知识更加系统化,从而使在设计、制造、使用和维护过程中的可靠性的改

机械故障诊断的发展现状与前景

《机械故障诊断技术》读书报告 MAO pei-gang 南阳理工机械与汽车工程学院 473004 动平衡诊断案例分析综述 Diagnosis of dynamic balance Case Analysis were Review 摘要 简要阐述组动平衡故障诊断中所使用的现代测试与分析技术。通过五个动不平衡故障的诊断与处理实例,指出了波德图、频谱图等现代分析技术对于组动平衡故障诊断的价值和意义;总结了基于现代测试与分析技术的动平衡故障的主要特征。;验证了影响系数法对于动平衡故障处理的准确性及实用性。对于提高动平衡故障诊断的准确性及其精度具有推广和借鉴意义。 关键词:动平衡故障诊断振动分析 Abstract The modern measuring and analyzing technologies applied in the dynamic balance fault diagnoses are described briefly。In view of five dynamic unbalance fault diagnoses and treatments。the significance and purpose of the modern analyzing technologies such as Bode Plot,Spectrum Plot for the dynamic balance fault diagnoses are put forward,and its characteristics based on testing and analyzing technologies are summarized.The accuracy and practicability of the influence coefficient method for its treatment are proved.The instructions and experiences of improving the

高中体育与健康教学中应重视学生的心理辅导

高中体育与健康教学中应重视学生的心理辅导 摘要:传统体育教学只注重身体健康而忽视了心理健康,随着人类社会的飞速发展,人们对三维健康(即身体、心理和社会适应)越来越重视。青少年时期,心理障碍影响着个体学习行为和体育活动效能,影响了学生健全人格的形成。因此,重视学生的心理健康是每个教育工作者义不容辞的责任,作为体育教师在保障学生心理健康上有着独特的优势。 关键词:中学生心理辅导体育与健康教学心理障碍 中学生体育与健康学习的心理辅导,其目的是引导学生心理健康发展,帮助学生正确地认识自己、建立完美的人格。在体育教学中,教师可以在体育训练中大有作为,帮助其解除体育与健康学习中的心理障碍,充分发挥学生的潜能,达到人格的完美发展,从而达到提高体育与健康课教学质量的目的。 一、体育与健康学习心理障碍的特征 体育与健康学习心理障碍特征,是指学生在学习过程中,影响自身正常学习行为和体育活动的消极心理状态。这种现象在教学中很常见,通常表现为以下几个方面。 1.抑郁心理。主要表现在:学生对教学内容不感兴趣,学习时注意力不集中,自信心不足、精神萎靡,情绪低落,不主动,常躲避练习或早退。 2.过度紧张心理。主要表现在:学生在学习过程中,压力大,学习动作难度大,失误次数多等,这些大多能引起学生的过度紧张心理。

如果学生过度紧张,大脑皮层兴奋水平下降,学习难度会加大,这种状况会给学生的体育与健康学习及身心带来一定的危害,严重地影响学生体育能力的发挥。 3.恐惧心理。主要表现在:一学习某类动作,学生就害怕,害怕出现失误,害怕同学嘲笑,害怕教师批评、害怕受伤,这样就会产生恐惧心理,并伴随相应的生理变化,表现为:心跳加快、四肢无力,打寒战,出冷汗,这样就影响了自身的运动能力,从而导致学习无法正常进行。 4.自卑心态。学生在体育与健康学习中常自我感觉不如别人,信心不足,认为自己“笨手笨脚”,生怕别人看见耻笑,特别是遇到有点难度的技术动作,就更不愿练习,这样长期下来将导致恶性循环,产生厌倦学习心理。 二、心理辅导的方法 体育与健康学习心理辅导主要是促进运动参与,并有效的运用激励,调节情绪。刚柔相济,营造和谐的课堂气氛,以事实或事例正面引导学生,将心中的积郁进行有益的宣泄,从而使学生以积极向上的心理投入到体育与健康学习中去。教师开展心理辅导时可采用下列方法。 1.培养学生体育与健康的学习兴趣。兴趣是最好的老师,学生对学习内容不感兴趣,是体育与健康学习最大的障碍,将直接影响其学习中的心理变化。在体育与健康学习中,学生的个体需要和课堂组织教学往往会产生矛盾,这就要求教师帮助其提高对体育价值的认

故障树分析详细

“与门 C )条件与门 亡)排斥或门 第三节故障树概述 故障树分析是一种根据系统可能发生的爭故或已经发生的爭故结果.去寻找与该爭故发生有关的原 因.条件和规律,同时可以辨识出系统中可能导致事故发生的危险源。 故障树分析是一种严密的逻辑过程分析.分析中所涉及到的各种爭件、原因及其相互关系,需要运用一 定的符号予以表达。故障树分析所用符号有三类,即爭件符号,逻辑门符号,转移符号。 图1故障树的爭件符号 事件符号如图1所示包括: (1) 矩形符号 矩形符号如图la )所示。它表示顶上爭件或中间事件.也就是需要往下分析的事件。将爭件扼要记入 矩形方框内。 (2) 圆形符号 恻形符号如图1b )所示。它表示基木原因爭件,或称基木爭件。它可以是人的差错,也可以是机械. 元件的故障.或环境不良因素等。它表示最基木的.不能继续再往下分析的爭件。 (3) 屋形符号 屋形符号如图1c )所示。主要用于表示正常爭件.是系统正常状态下发生的正常爭件。 (4) 菱形符号 菱形符号如图Id )所示。它表示省賂爭件,主要用于表示不必进一步剖析的事件和由于信息不足,不 能进一步分析的爭件° d) Bi B. B ? Bi Bi E l V 2 …E N h)丧决门

图2故障树逻输门符号 逻辑门符号如图2所示包括: 一一逻辑与门。表示仅、所有输入爭件都发生时,输出事件才发生的逻辑关系?如图2d )所示。 一一逻辑或门。表示至少有一个输入爭件发生.输出爭件就发生的逻辑关系.如图2b )所示。 一一条件与门。图2c )所示,表示Bl 、B2不仅同时发生?而且还必须再满足条件a ,输出爭件A 才会 发生的逻辑关系。 一一条件或门。图2d ),表示任一输入爭件发生时.还必须满足条件a,输出爭件A 才发生的逻辑关系。 一一排斥或门。表示几个爭件、”1中,仅出一个输入事件发生时,输出事件才发生的逻紺关系,其符号如 图2e )所示。 一一限制门。图2f )所示.表示'“I 输入爭件B 发生,且满足条件X 时.输出爭件才会发生,否则,输 出爭件不发生。限制门仅有一个输入爭件。 一一顺序与门。表示输入爭件既要都发生,又要按一定的顺序发生,输岀爭件才会发生的逻辑关系.其 符号如图2g )表示。 一一表决门。表示仅Fn 个爭件中有m (m^n )个或m 个以上事件同时发生时.输出事件才会发生, 其符号如图2h )所示。 图3故障树转移符号 转移符号包括: 一一转入符号。表示转入上面以对应的字母或数字标注的子故障树部分符号,其符号如图3a )。 一一转出符号。表示该部分故障树由此转出,其符号如图3b )。 编制故障树应从以下几方面入手: 一一熟悉系统。「解系统的构造、性能、操作、工艺、元件之间的关系及人.软件.锁件.环境的相互 作用和系统工作原理等: 一一收集、调查系统爭故资料。收集、调査系统的已有事故资料和类似系统的爭故资料。 一一确定顶上爭件。根据对系统已堂握的资料,在分析系统一类危险源的基础上.确定系统專故类型作 为顶上爭件。 一一调査分析顶上爭件发生的原因.从人、机、物、环境和信息各方面入于?调查分析彩响顶上事件发生 的所有原因。 下而以一液化石油气第一类危险源.选择顶上爭件为火灾爆炸爭故c 故障树分析如图4。 帀)转入符号 b )转出符号

00基于故障树分析法构建专家系统知识库模型

基于故障树分析法构建专家系统知识库模型 摘要:本文在广泛搜集往复式压缩机故障类型的基础上,探析故障机理。运用故障分析法,建立故障树模型,并用二维表格将其表示出来。然后并运用access数据库和vb语言构建知识库链表。最后,给出故障诊断专家系统知识库维护方法。 关键词:往复式压缩机知识库故障树 引言:往复式压缩机由于其自身的特点广泛应用于石油石化企业。但由于机构复杂、零件繁多,现场维修人员在诊断故障问题时困难重重。在维护和维修往复式压缩机时,故障诊断专家系统可以给现场维修人员提出宝贵建议的。在往复式压缩机故障诊断专家系统中,知识库的优劣直接影响到诊断的准确性和真实性。在构建知识库过程中,故障树分析法直接简明、逻辑性强等特点,所以本文采用故障树模型建立往复式压缩机故障诊断系统的知识库,保证诊断的准确性和真实性。 Building a knowledge base of expert system model based on the fault tree analysis 1,故障树分析法基本知识 1.1定义: 故障树分析法就是把所研究系统的最不希望发生的故障状态作为故障分析的目标,然后寻找直接导致这一故障发生的全部因素,再找出造成下一级事件发生的全部直接因素,一直追查到那些原始的、其故障机理或概率分布都是已知的,毋需再深究的因素为止。 通常,把最不希望发生的事件称为顶事件,毋需在深究的事件称为底事件,介于顶事件和底事件之间的一切事件为中间事件,用相应的符号代表这些事件,再用适当的逻辑门把顶事件、中间事件和底事件联结成树形图。这样的树形图称为故障树,用以表示系统或各个部件故障事件之间的逻辑结构关系。以故障树为工具,分析系统发生故障的各种途径,计算各个可靠性特征量,对系统的安全性或可靠性进行评价的方法称为故障树分析法。 1.The failure analysis 1.1 Basic knowledge of fault tree analysis Fault tree analysis is that the most reluctant fault condition occurred in the studied system will be as a failure analysis of target; then look for all the factors leading to the most reluctant fault condition; next seek for all the direct factors causing the next level faults till original fault factors、well known failure mechanisms or open Probability distribution of fault factors would be fond out; finally, you can obtain all the original fault factors that can’t be divided. Usually, the most reluctant fault case would be considered as the top incindents; the fault factors that couldn’t be searched would be acted as the bottom incindents; the fault case in the middle of the top incindents and the bottom incindents would be though as intermediate incindents. By appropriate symbols of fault tree analysis expressing the three typle of mentioned incindents and combining the top incindents、intermediate incindents and the bottom incindents in logic relationship, we can make out the model of the fault tree analysis-the graph of fault tree analysis that it would indicate the logic structure for each fault incidents or fault tree analysis. Fault tree analysis is the method that it can evaluate security and reliability of the studied systems accuratelly that by the way of the model of fault tree, analyzing all kinds of faults incindent, caculating vavious characteristic quantities of reliability. 1.2故障树分析法步骤 故障树分析步骤具体如下: 1.对所选定的系统作必要分析,了解系统的组成及各项操作的内容。 2.对系统的故障进

汽车底盘的故障诊断及分析

陕西交通职业技术学院 毕业设计(论文) 题目:汽车底盘的故障及诊断 院、系(站): 学科专业:汽修 学生:李阳 学号: 指导教师:吕波 二〇一三年三月

汽车底盘的故障及诊断 摘要 随着汽车工业的发展,汽车已成为人们出行的必要交通工具。汽车制动系统以成为汽车维修人员必会的技术。制动系统的作用是使行驶中的汽车能够按照驾驶员的要求进行强制减速甚至停车,使已经停止的汽车能够在各种道路条件下稳定驻车,使下坡行驶的汽车速度保持稳定。以保证汽车行驶的安全性。汽车制动系直接关系到人们的安全,所以我们在维修这方面时应该更加谨慎。 关键词:制动系作用安全稳定

Fault diagnosis of automobile chassis Abstract With the development of automobile industry, the automobile has become the necessary means of transport people travel. Automobile brake system to become car repair personnel will technology. The braking system is the role of the running automobile are forced to slow down or even stop according to the driver's demand, which has stopped car is able to stabilize the parking in various road conditions, makes the downhill speed stability. In order to ensure the running safety of the automobile. Automobile brake system is directly related to people's safety, so we in the repair should be more cautious. Key word:The security and stability of the braking system

汽车故障诊断与典型案例分析

汽车故障诊断与典型案例分析 汽车发动机故障树 汽车自动变速器故障树 第一章发动机燃油喷射系统故障分析 第一节喷油脉宽方面的故障分析 一、基本喷油脉宽控制的故障分析 二、基本喷油脉宽控制方面的案例分析 案例1传感器型号不对,更换空气流量传感器之后出现油耗升高、怠速不稳的现象 案例2节气门位置传感器滑线电阻磨损,发动机怠速不稳、转速忽高忽低 案例3热线式空气流量传感器被污染,导致加速无力 案例4节气门位置传感器滑线电阻磨损,发动机怠速忽高忽低,低速行驶时偶尔有窜动现象 案例5进气歧管压力传感器真空管堵塞,冷车起动正常,热车时起动困难 三、进气温度传感器和冷却液温度传感器对喷油脉宽的影响 四、调节喷油脉宽方面的案例分析 案例1进气温度传感器断路或接地线接触不良造成起动困难 案例2冷却液温度传感器短路造成发动机无法起动 案例3发动机初次起动后立即熄火,重新起动时可正常起动,不再熄

火,连续起动后立即熄火 案例4更换空气滤清器滤芯后汽车没有高速,自动变速器没有超速挡案例5进气歧管压力传感器真空管堵塞导致热机起动困难 五、上游氧传感器修正喷油脉宽的控制故障分析 六、上游氧传感器控制方面的案例分析 案例1加热器损坏造成怠速发抖,加速不良 案例2传感器断路,出现怠速游车 案例3信号电压明显偏低,排气管却冒黑烟 案例4信号电压高,排气管冒黑烟,温控风扇不转 七、混合气过稀的原因分析 八、混合气过浓的原因分析 第二节电子节气门的组成、作用、故障分析 一、电子节气门的组成、作用及失效保护 二、电子节气门污染的危害及清洗方法 三、电子节气门系统使用时的注意事项 四、电子节气门系统常见故障的案例分析 案例1EPC故障灯频繁亮启,车子严重抖动或行驶申突然熄火 案例2电子节气门故障灯突然被点亮,同时加速踏板有踏空的感觉案例3发动机怠速不稳、加速不良、加速踏板发沉,严重时会出现怠速熄火 案例4发动机起动正常,怠速抖动,中高速时运转平稳” 五、电子节气门的重新设定

基于故障树的故障诊断.

基于故障树的智能故障诊断方法 一.故障树理论基础 故障树分析法(fault tree analysis,FTA)是分析系统可靠性和安全性的一种重要方法,现己广泛应用于故障诊断。基于故障的层次特性,其故障成因和后果的关系往往具有很多层次并形成一连串的因果链,加之一因多果或一果多因的情况就构成故障树。故障树(FT)模型是一个基于被诊断对象结构、功能特征的行为模型,是一种定性的因果模型,以系统最不希望事件为顶事件,以可能导致顶事件发生的其他事件为中间事件和底事件,并用逻辑门表示事件之间联系的一种倒树状结构。它反映了特征向量与故障向量(故障原因)之间的全部逻辑关系。 故障树法对故障源的搜寻直观简单,它是建立在正确故障树结构的基础上的。因此建造正确合理的故障树是诊断的核心与关键。但在实际诊断中这一条件并非都能得到满足,一旦故障树建立不全面或不正确,则此诊断方法将失去作用。二.基于故障树的故障诊断方法 故障树分析法(Fault Tree Analysis,FTA)又叫因果树分析法.它是目前国际上公认的一种简单、有效的可靠性分析和故障诊断方法,是指导系统最优化设计、薄弱环节分析和运行维修的有力工具。 故障树分析法首先要在一定环境与工作条件下,找到一个系统最不希望发生的事件,通常以人们所关心的影响人员、装备使用安全和任务完成的系统故障为分析目标,再按照系统的组成、结构及功能关系,由上而下,逐层分析导致该系统故障发生的所有直接原因,并用一个逻辑门的形式将这些故障和相应的原因事件连接起来,建立分析系统的故障树模型,从而,形象地表达出系统各功能单元故障和系统故障之间的内在逻辑因果关系。这种方法既能分析硬件本身的故障影响,又能分析人为因素、环境以及软件的影响.不仅能对故障产生的原因进行定性分析,找出导致系统故障的原因和原因组合,确定最小割集和最小路集,识别出系统的薄弱环节及所有可能失效模式,还能进行相关评价指标的定量计算。根据各已知单元的故障分布及发生概率,求得单元概率重要度,结构重要度、关键重要度和系统失效概率等定量指标。 将FTA用于系统的故障诊断中,把系统故障作为故障树分析的顶事件,既能通过演绎分析,直接探索出系统的故障所在,指出故障原因和原因组合,帮助

汽车故障案例分析

汽修(合作)二班

沃尔沃780轿车故障诊断的分析 当今天成为昨天的那一刻,它也成为了历史。而历史越悠久,要讲述的内容就越多。1927年标志着沃尔沃汽车的起点。自那以后,各种沃尔沃车型源源不断地驶出各个沃尔沃工厂,构成了汽车历史的一部分。它们都有自己的故事。“品牌历史和文化传承”是专门献给这些汽车,献给我们公司的历史,及献给帮助我们使得沃尔沃传统弥久愈新的狂热的人们。 故障现象:一辆沃尔沃780轿车仪表板上的SRS故障指示灯一直发亮。 故障检修:沃尔沃780轿车SRS气囊系统由碰撞传感器、SRS电脑、SRS气囊、点火装置和SRS故障指示灯等组成。碰撞传感器采用压电晶体式传感器,安装在驾驶座椅下面,用来检测减速度产生的惯性的大小,惯性力与减速度成正比。当汽车遭受碰撞,减速度产生的惯性力大于传感器设定的惯性力阀值时,压电晶体就会向SRS电脑输入电压信号。SRS电脑由微处理器、水银开关式防护碰撞传感器和一套紧急备用电源装置等组成,与碰撞传感器并排安装在驾驶座椅下面。水银开关是同步触发SRS气囊组件点火器的控制部件,仅当水银开关式传感器触发接通SRS点火器电路时,压电晶体式传感器才能触发接通SRS点火器电路,从而引爆SRS气囊。

SRS电脑具有故障自诊断功能和故障记忆功能,可根据仪表板上的SRS故障指示灯的闪烁次数读取故障代码。SRS气囊引爆后,SRS 电脑能保持记忆引爆时的有关参数。 该车SRS气囊系统的控制线路如图一所示,其主要结构参数如下:SRS气囊系统驾驶席SRS气囊点火器电阻为200Ω;碰撞传感器电阻为1.8~2.5Ω;驾驶席与乘员席座椅安全带收紧器点火器电阻均为2.15±0.35Ω;SRS电脑至熔断器盒之间采用3端子或4端子黄色连接器连接,测量连接器插头端子3(黑色导线)与端子2 (黄色导线)之间的电阻为5.6kΩ,端子3(黑色导线)与端子4(红色导线)之间的电阻应为31kΩ,否则应更换碰撞传感器。拔下4端子插头,测量SRS电脑插座上搭铁端子4(接黑色导线)与电源端子6(接红色导线)之间的电阻应为 12.9kΩ,搭铁端子4与电源端子5(接黄色导线)之间的电阻应为5.6kΩ,搭铁端子4与端子3(接绿色导线)之间的电阻应为6.4kΩ,否则应更换SRS电脑。 首先利用随车故障自诊断系统取SRS气囊系统的故障代码。其故障代码的读取方法如下: ①将点火开关转到“ON”位置并等待15s,使SRS电脑进入自诊断状态。 ②拔出点烟器,以便利用其搭铁插座来跨接搭铁线。对于沃尔沃780型轿车,可使用一根20cm长的跨接线,跨接诊断插头第3端子(连接绿色导线)与点烟器搭铁插座。

#第一章 现代汽车故障诊断技术概述作业题库

第一章现代汽车故障诊断技术概述 第一章现代汽车故障诊断技术概述 1、发动机工作需要具备三个环节:________,_______,________。 2、检查燃烧室密闭性和发动机基本工作的最佳方法是进行_______试验。 3、检查点火系统的最佳方法是进行_______分析。 4、OBD-Ⅱ诊断系统有_________类型失火。 5、汽车制造厂商主要根据_________来监控引擎失火。 6、OBD-Ⅱ诊断系统EV AP系统监控用来检测活性碳罐的________和_______。 7、蓄电池的开路电压不应小于12.5V。 8、开启点火钥匙而不发动发动机,故障指示灯不会亮。 9、搭铁线路测得的电压降大于0.2v,表明接头良好。 10、电控系统线路图是故障诊断检修不可缺少的工具。 11、一般可以用指针式万用表测试电脑和传感器。 12、模拟式和数字式示波器主要区别为描述电流轨迹的方式。 13、解码器最有用的功能就是能记录路试时的故障码。 14、名词解释:解码器 15、简述进行故障诊断和排查的步骤? 16、OBD-Ⅱ系统作用与特点? 17、OBD-Ⅱ诊断系统的目的有哪两个? 18、OBD-Ⅱ诊断系统的连续监控和非连续监控包括哪些? 19、氧传感器的监测项目有哪些? 第二章现代汽车故障诊断设备 1、L型电控汽油喷射系统的电动燃油泵的工作除受_______外,还受_______或电脑控制。 2、电喷发动机系统驾驶员指令的唯一装置是________。 3、就诊断而言,数据流中最重要的参数是_________。 4、DTC故障码通常可分为_______和______。 5、硬故障和软故障码都可分为_______、______和______。 6、汽车控制系统的典型阶梯信号包括________、________和________。 7、点火系统的电压信号可以分为三个周期:_______、_______和________。 8、次级点火元件由于磨损形成的故障通常造成_______。 9、速度传感器三种基本形式有_______、_______和_______。 10、霍尔开关的工作的需要三条线端_______、_______和_______。 11、电位计需要三条接线包括_______、_______和_______。 12、压电式传感器需要三条线包括_______、_______和_______。 13、怠速时将回油管夹住时的油压,应为供油压力的2-3倍。 14、当引擎运转时,不同的传感器对其它传感器没有优先权。 15、OBD-Ⅱ诊断系统的诊断目的能减少汽车废气对大气的污染。 16、EGR系统监控能够连续监控发动机的工况。 17、OBD-Ⅱ诊断系统只能够连续测试和监控引擎的控制系统。 18、系统依靠触媒后的加热式氧传感器的信号来检测触媒转换器的工作效率。 19、对于示波器不需要初始设定,直接使用即可。 20、当示波器的两个探头线靠的越近,干扰就越大。 21、示波器的主要优点是查找间隙性故障。

基于案例推理的车辆故障诊断系统

基于案例推理的车辆故障诊断系统 发表时间:2019-07-09T09:29:38.343Z 来源:《成功》2018年第7期作者:刘辉 [导读] 随着我国社会经济不断发展,当今社会中的车辆基数也越来越大,提高了车辆故障频率,而如何提高车辆故障诊断效率已经成为了行业重点关注的问题。基于案例推理(CBR)的车辆故障诊断系统能够与车辆故障案例组织、相似度进行对比,从而判定故障类型。基于此,本文重点探究基于案例推理的车辆故障诊断方法。 甘肃金证司法医学鉴定所甘肃兰州 730000 【摘要】随着我国社会经济不断发展,当今社会中的车辆基数也越来越大,提高了车辆故障频率,而如何提高车辆故障诊断效率已经成为了行业重点关注的问题。基于案例推理(CBR)的车辆故障诊断系统能够与车辆故障案例组织、相似度进行对比,从而判定故障类型。基于此,本文重点探究基于案例推理的车辆故障诊断方法。 【关键词】基于案例推理;车辆故障诊断;方法;模型 随着车辆的使用时间延长,各个零部件老化或损坏会造成车辆故障,针对此类问题很多人都是结合日常工作经验来判断故障发生位置、故障类型,并对可能出现的故障一一排除,最终找到故障所在,并将故障排除。基于案例推理(下文简称“CBR”)的故障诊断系统与专家系统类似(也可以说就是一种专家系统),可以结合车辆故障案例对车辆故障进行对比分析,从而提出可能出现的故障。在CBR系统使用当中,需要构建一个诊断模型,建立系统中各个要素间的关系,从而生成一个因果关系网络,对故障因果关系进行推导,并输入已经解决的相关案例,从而生成故障案例库,在汽车故障诊断中在案例库中找到类似的案例,从而提出相应的解决方法。 一、CBR相关阐述 很多现实中的问题由于十分复杂,所以不能仅采用数学模型方法解决。部分简单限制性条件在建模过程中也变得难以实现。基于此,可以采用CBR方案。CBR方案能够搜寻与该故障类似的问题从提出问题发生点以及线索,从而帮助人们解决故障问题。从本质来说,CBR是人工智能技术的一个分支,更像是模糊神经系统与专家系统的结合,在特定领域中提取推理特征,结合过去已经解决的案例,将故障问题和案例内容相似度进行对比分析的一种推理技术。 想要实现CBR功能,需要建立一个因果关系模型,并将车辆专业知识存储到模型当中,这样即可对车辆知识进行分类、互联,构成一个完整的分析链,对车辆故障进行匹配和推理。需要用户提取重要的知识特征,也就是可能产生的故障因素,为车辆出现故障时给用户提供相应的参数,根据专业知识定义因果关系,确定每个因果关系的强度(0-1之间),最终形成一个可以推理车辆故障的关系模型。其中,案例库主要是存储已经解决的案例,一个案例当中必须要涵盖问题描述、解决方法,问题描述是各项属性与特征、解决方法是某个确定状态。 二、构建试验系统 在构建试验系统过程中,需要采用CBR系统知识编辑库,如TrollCreek就是较为理想的智能推理编辑器。在实际使用过程中,需要创建故障诊断系统,其步骤为:(1)完善因果关系模型;(2)加入已经解决的案例;(3)输入新案例进行推理;(4)得到结果;(5)确定结果。 整个CBR车辆故障诊断模型的核心是编辑因果关系模型,主要包括增加节点、构建层次结构、构架因果关系模型。首先要在准备创建领域中抽取相关的特征项,并作为节点加入到系统当中,之后将特征项加入到系统中,之后即可完善节点层次结构,构成一个分类层次结构,将系统故障状态当做节点加入到因果关系当中,这样即可将两个节点相关联,组成完整的关系模型,通过该模型即可对车辆故障进行诊断。 将已经解决的案例状态、结论添加到系统当中,组建案例库。案例库中的案例数量越多,整个CBR系统后期推理就更加精准。在输入新案例过程中,实则就是新案例与旧案例特性进行相似度对比,并按照相似程度由大到小进行排列,并得出最为接近新案例的10个旧案例(如果案例数量较多提出10个接近案例,如果案例不足10个,则推出所有相似案例)。确认结果是将系统推理的结果进行验证,如果测试符合标准则标记为已解决形态,并将其应用到案例库当中。从CBR故障诊断系统特性层面分析,其故障分析能力主要是依赖案例库,多个案例对比分析可以大大提高诊断精度。 三、测试与分析 在构建汽车CBR故障诊断模型时,需要实现掌握汽车故障领域的因果关系案例,组建因果模型,模型中主要包括两大部分,一是构建层次结构;二是建构因果关系。其主要表现在: 1.层次结构 构建层次结构需要把汽车各类故障过程的关系特性项作为节点加入到层次结构图当中。与汽车故障相关的几个条件是“因”,以汽车启动为例,其主要包括发动机、电池、供电系统、燃油系统、燃油等状态形式。并对应每个状态可能出现结果的可能性,也就是“果”,例如发动机中有正常运行、不运行、无法打火、转动速率低等,从而按照因果发生频次和重要程度进行排序,组建成为结构层次图。

相关文档
最新文档