高中数学学业水平考试知识点汇总

高中数学学业水平考试知识点汇总
高中数学学业水平考试知识点汇总

高中数学学业水平测试知识点(整理人:辉)

【必修一】

一、 集合与函数概念

并集:由集合A 和集合B 的元素合并在一起组成的集合,如果遇到重复的只取一次。记作:A ∪B 交集:由集合A 和集合B 的公共元素所组成的集合,如果遇到重复的只取一次记作:A ∩B 补集:就是作差。

1、集合{}n a a a ,...,,21的子集个数共有2n

个;真子集有2n

–1个;非空子集有2n

–1个;非空的真子有2n

–2个.

2、指数函数x y a =与对数函数log a y x =互为反函数(0,1a a >≠)它们的图象关于y=x 对称。

3、(1)函数定义域:①分母不为0;②开偶次方被开方数0≥;③指数的真数属于R 、对数的真数0>.

4、函数的单调性:如果对于定义域I 的某个区间D 的任意两个自变量x 1,x 2,当x 1)f(x 2),那么就说f(x)在区间D 上是增(减)函数,函数的单调性是在定义域的某个区间上的性质,是函数的局部性质。

5、奇函数:是()()f x f x ,函数图象关于原点对称(若0x =在其定义域,则(0)0f =); 偶函数:是()

()f x f x ,函数图象关于y 轴对称。

6、指数幂的含义及其运算性质:

(1)函数)10(≠>=a a a y x

且叫做指数函数。

(2)指数函数(0,1)x y a a a =>≠当 01a <<为减函数,当 1a >为增函数;

①r s r s

a a a +?=;②()r s rs a a =;③()(0,0,,)r

r r

ab a b a b r s Q =>>∈。 (3)指数函数的图象和性质

7、对数函数的含义及其运算性质:

(1)函数log (0,1)a y x a a =>≠叫对数函数。

(2)对数函数log (0,1)a y x a a =>≠当 01a <<为减函数,当 1a >为增函数;

①负数和零没有对数;②1的对数等于0 :01log =a ;③底真相同的对数等于1:1log =a a , (3)对数的运算性质:如果a > 0 , a ≠ 1 , M > 0 , N > 0,那么:

①N M MN a a a log log log +=; ②N M N

M

a a a

log log log -=; ③)(log log R n M n M a n a ∈=。 指数与对数互化式:log x

a a N x N =?=;对数恒等式:log a N a N =.

(5)对数函数的图象和性质

8、幂函数:函数α

x y =叫做幂函数(只考虑2

1

,

1,3,2,1-=α的图象)。 9、方程的根与函数的零点:如果函数)(x f y =在区间 [a , b ] 上的图象是连续不断的一条曲线,并且有0)()(

一、直线 平面 简单的几何体

1、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3=

2、球的体积公式: 33

4

 R v π=

; 球的表面积公式:24 R S π= 3、⑴圆柱侧面积; l r S ??=π2侧面⑵圆锥侧面积:l r S ??=π侧面⑶圆台侧面积:l R l r S ??+??=ππ侧面 柱体、锥体、台体的体积公式:柱体V =S h (S 为底面积,h 为柱体高); 锥体V =Sh 3

1 (S 为底面积,h 为柱体高)

台体V =3

1

(S ’+S S'+S )h (S ’, S 分别为上、下底面积,h 为台体高)

4、点、线、面的位置关系及相关公理及定理: (1)四公理三推论:

公理1:若一条直线上有两个点在一个平面,则该直线上所有的点都在这个平面。 公理2:经过不在同一直线上的三点,有且只有一个平面。 公理3:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。 推论一:经过一条直线和这条直线外的一点,有且只有一个平面。 推论二:经过两条相交直线,有且只有一个平面。 推论三:经过两条平行直线,有且只有一个平面。 公理4:平行于同一条直线的两条直线平行. (2)空间线线,线面,面面的位置关系:

空间两条直线的位置关系:

相交直线——有且仅有一个公共点; 平行直线——在同一平面,没有公共点;

异面直线——不同在任何一个平面,没有公共点。相交直线和平行直线也称为共面直线。 空间直线和平面的位置关系: (1)直线在平面(无数个公共点);

(2)直线和平面相交(有且只有一个公共点);

(3)直线和平面平行(没有公共点)它们的图形分别可表示为如下,符号分别可表示为a α?,a A α=,//a α。

空间平面和平面的位置关系:

(1)两个平面平行——没有公共点; (2)两个平面相交——有一条公共直线。

5、直线与平面平行的判定定理:如果平面外一条直线与平面一条直线平行,那么该直线与这个平面平行。

符号表示:////a b a a b ααα??

?

?????

。图形表示:

6、两个平面平行的判定定理:如果一个平面的两条相交直线与另一个平面平行,那么这两个平面平行。 符号表示://////a b a b P a b βββαα

α??????

=????

??

。图形表示:

7、. 直线与平面平行的性质定理:如果一条直线与一个平面平行,经过这条直线的平面与已知平面相交,那么交线与

这条直线平行。

符号表示:////a a a b b αβαβ?

?

????=?。 图形表示:

8、两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们交线的平行。

符号表示: 9、直线与平面垂直的判定定理:如果一条直线和一个平面的两条相交直线都垂直,那么

这条直线垂直于这个平面。

符号表示: 10、.两个平面垂直的判定定理:一个平面经过另一个平面的垂线,则这两个平面垂直。 符号表示: 11、直线与平面垂直的性质:如果两条直线同垂直于一个平面,那么这两条直线平行。

符号表示://a a b b αα⊥?

??⊥?

12、平面与平面垂直的性质:如果两个平面互相垂直,那么在其中一个平面垂直于交线的直线垂直于另一个平面。符号表示: 13、异面直线所成角:平移到一起求平移后的夹角。

直线与平面所成角:直线和它在平面的射影所成的角。(如右图) 14、异面直线所成角的取值围是(]??90,0; 直线与平面所成角的取值围是[]??90,0; 二面角的取值围是[)??180,0;

两个向量所成角的取值围是[]??180,0 二、直线和圆的方程

1、斜率:αtan =k ,),(+∞-∞∈k ;直线上两点),(),,(222111y x P y x P ,则斜率为

2、直线的五种方程 :

(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).

(3)两点式

11

2121y y x x y y x x --=--( (111(,)P x y 、222(,)P x y ; (12x x ≠)、(12y y ≠)). (4)截距式 1x y

a b

+=(a b 、分别为直线的横、纵截距,0a b ≠、)

(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).

3、两条直线的平行、重合和垂直: (1)若111:l y k x b =+,222:l y k x b =+

①1l ‖1212b k k l 且=?≠;2b ②22121b b k k l l ==?且重合时与; ③12121l l k k ⊥?=-.

21

21

y y k x x -=

-//,,//a b a b

αβαγβγ==?,,,,a b a b P l a l b l ααα

??=⊥⊥?⊥,l l αβαβ

⊥??⊥,,.

l m l m l ααββ?=⊥?⊥θ

α

P H

l

ax 2+bx+c=0(a ≠0)

(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①111

12222

||A B C l l A B C ?

=≠

;②1212120l l A A B B ⊥?+= 4、两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式 │P 1P 2│=212212)()(y y x x -+- 5、两点P 1(x 1,y 1)、P 2(x 2,y 2)的中点坐标公式 M (

221x x +,2

2

1y y +) 6、点P (x 0,y 0)到直线(直线方程必须化为一般式)Ax+By+C=0的距离公式d=2

2

00B

A C

By Ax +++

7、平行直线Ax+By+C 1=0、Ax+By+C 2=0的距离公式d=

2

2

12B

A C C +-

8、圆的方程:标准方程()()22

2

r b y a x =-+-,圆心

()b a ,,半径为r ;

一般方程220x y Dx Ey F ++++=,(配方:4

4)2()2(2

222F E D E y D x -+=+++)

0422>-+F E D 时,表示一个以)2,2(E D --为圆心,半径为F E D 42

122-+的圆;

9、点与圆的位置关系:

点00(,)P x y 与圆2

22)()(r b y a x =-+-的位置关系有三种: 若2

2

00()()d a x b y =-+-

d r >?点P 在圆外;d r =?点P 在圆上;d r

10、直线与圆的位置关系:

直线0=++C By Ax 与圆2

2

2

)()(r b y a x =-+-的位置关系有三种:

0相离r d ;0=???=相切r d ; 0>???<相交r d .其中2

2

B

A C Bb Aa d +++=

.

11、弦长公式:

若直线y=kx+b 与二次曲线(圆、椭圆、双曲线、抛物线)相交于A(x 1,y 1),B (x 2,y 2)两点,则由 二次曲线方程

y=kx+m 则知直线与二次曲线相交所截得弦长为:

AB =2

12212)()(y y x x -+-

=21k +21x x - =[

]

212

21241x x x x k -++)()( =[]

21221

2

212

4)()11(1

1y y y y

k

y y k -++=-+

=a

ac

b k

4122

-+ 13、 空间直角坐标系,两点之间的距离公式: ⑴ xoy 平面上的点的坐标的特征A (x ,y ,0):竖坐标z=0 xoz 平面上的点的坐标的特征B (x ,0,z ):纵坐标y=0 yoz 平面上的点的坐标的特征C (0,y ,z ):横坐标x=0 x 轴上的点的坐标的特征D (x ,0,0):纵、竖坐标y=z=0 y 轴上的点的坐标的特征E (0,y ,0):横、竖坐标x=z=0 z 轴上的点的坐标的特征E (0,0,z ):横、纵坐标x=y=0 ⑵│P 1P 2│=2

122

122

12-z z -y y -x x )()()(++

统计:

三.三种常用抽样方法:

1、简单随机抽样;2.系统抽样;3.分层抽样。4.统计图表:包括条形图,折线图,饼图,茎叶图。 四、频率分布直方图:具体做法如下:(1)求极差(即一组数据中最大值与最小值的差);(2)决定组距与组数; (3)将数据分组;(4)列频率分布表;(5)画频率分布直方图。注:小矩形的高度=频率/组距。

2、频率分布直方图: =频率小矩形面积(注意:不是小矩形的高度) 计算公式: =

频数频率样本容量

=?频数样本容量频率 ==?

频率频率小矩形面积组距组距

各组频数之和=样本容量, 各组频率之和=1 3、茎叶图:茎表示高位,叶表示低位。

折线图:连接频率分布直方图中小长方形上端中点,就得到频率分布折线图。 4、刻画一组数据集中趋势的统计量:平均数,中位数,众数。 在一组数据中出现次数最多的数据叫做这组数据的众数;

将一组数据按照从大到小(或从小到大)排列,处在中间位置上的一个数据(或中间两位数据的平均数)叫做这组数据的中位数;

5、刻画一组数据离散程度的统计量:极差 ,极准差,方差。

(1)极差一定程度上表明数据的分散程度,对极端数据非常敏感。

(2)方差,标准差越大,离散程度越大。方差,标准差越小,离散程度越小,聚集于平均数的程度越高。 (3)计算公式:

标准差:

方差:

直线回归方程的斜率为b ?,截距为a ?,即回归方程为y ?=b ?x+a ?(此直线必过点(x ,y ))。

6、频率分布直方图:在频率分布直方图中,各小长方形的面积等于相应各组的频率,方长方形的高与频数成正比,

各组频数之和等于样本容量,频率之和等于1。

五、随机事件:在一定的条件下所出现的某种结果叫做事件。一般用大写字母A,B,C …表示.

随机事件的概率:在大量重复进行同一试验时,事件A 发生的频率 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P (A )。由定义可知0≤P (A )≤1,显然必然事件的概率是1,不可能事件的概率是0。

1、事件间的关系:

(1)互斥事件:不能同时发生的两个事件叫做互斥事件;

(2)对立事件:不能同时发生,但必有一个发生的两个事件叫做互斥事件;

(3)包含:事件A 发生时事件B 一定发生,称事件A 包含于事件B (或事件B 包含事件A ); (4)对立一定互斥,互斥不一定对立。 2、概率的加法公式:

(1)当A 和B 互斥时,事件A +B 的概率满足加法公式:P (A +B )=P (A )+P (B )(A 、B 互斥)(2)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B). 3、古典概型:

(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)掌握古典概型的概率计算公式: ()A m

P A n

=

=

事件包含的基本事件个数实验中基本事件的总数

4、几何概型:

(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型。

(2)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.

(3)几何概型的概率公式: ()A P A =事件构成的区域的长度(面积或体积)实验的全部结果构成的区域的长度(面积或体积)

(n s x x =++-212()]n s x x n

++-

一、 三角函数

1、弧度制:(1)、π=

180弧度,1弧度'1857)180

(

≈=π

;弧长公式:r l ||α= (l 为α所对的弧长,r 为半径,

正负号的确定:逆时针为正,顺时针为负)。 2、三角函数:

(1)、定义:

y

x

x y r x r y ====ααααcot tan cos sin 22y x r +=

4、同角三角函数基本关系式:1cos sin 2

2

=+αα α

αcos tan =

1cot tan =αα 5、诱导公式:(奇变偶不变,符号看象限) 一全正二正弦三正切四余弦。 1、 诱导公式一: 2、 诱导公式二:

3、诱导公式三:

()()().tan 2tan ,cos 2cos ,sin 2sin απααπααπα=+=+=+k k k ()()().tan tan ,cos cos ,sin sin ααπααπααπ=+-=+-=+ ()()().

tan tan ,cos cos ,sin sin αααααα-=-=--=- 4、诱导公式四: 5、诱导公式五: 6、诱导公式六:

()()().

tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=- .sin 2cos ,

cos 2sin ααπααπ=??

?

??-=??

?

??-

.sin 2cos ,cos 2sin ααπααπ-=??

?

??+=???

??+

6、两角和与差的正弦、余弦、正切:

)(βα+S :βαβαβαsin cos cos sin )sin(+=+ )(βα-S :βαβαβαsin cos cos sin )sin(-=-

)(βα+C :βαβαβsin sin cos cos )cos(-=+a )(βα-C : βαβαβsin sin cos cos )cos(+=-a )(βα+T :β

αβαβαtan tan 1tan tan )tan(-+=+ )(βα-T : βαβαβαtan tan 1tan tan )tan(+-=-

tan α+tan β= tan(α+β)(-1βαtan tan ) tan α-tan β= tan(α-β)(+1βαtan tan )

7、辅助角公式:???

?

??

++++=+x b a b x b a a b a x b x a cos sin cos sin 2

22222 )sin()sin cos cos (sin 2222???+?+=?+?+=x b a x x b a

8、二倍角公式:(1)、α2S :αααcos sin 22sin = α2C :ααα22sin cos 2cos -=1cos 2sin 212

2-=-=αα

α2T :α

α

α2

tan 1tan 22tan -=

(2)、降次公式:(多用于研究性质)

ααα2sin 21cos sin =

212cos 2122cos 1sin 2+-=-=ααα 2

1

2cos 2122cos 1cos 2+=+=ααα 9、在ααααcot ,tan ,cos ,sin ====y y y y 四个三角函数中只有αcos =y 是偶函数,其它三个是寄函数。(指数

函数、对数函数是非寄非偶函数)

10、在三角函数中求最值(最大值、最小值);求最小正周期;求单调性(单调递增区间、单调递减区间);求对称轴;

求对称中心点都要将原函数化成标准型;

如:

b

x A y b x A y b

x A y b x A y ++=++=++=++=)cot()tan()cos()sin(?ω?ω?ω?ω再求解。

函数

y=sinx

y=cosx

y=tanx

图象

定义域 R

R

},2

|{Z k k x x ∈+

≠π

π

值域 ]1,1[-

]1,1[-

R

奇偶性 奇函数 偶函数

奇函数 周期性

π2

π2

π

单调性

在[2,2]22k k ππ

ππ-

+)(Z k ∈ 上是增函数 在3[2,2]22k k ππ

ππ++)(Z k ∈

上是减函数

在]2,2[πππk k -)(Z k ∈

上是增函数

在[2,2]k k πππ+)(Z k ∈

上是减函数

在)2,2(ππππ+-k k )(Z k ∈

上是增函数

最值

当Z k k x ∈+=,22

ππ时,1max =y

当Z k k x ∈+-=,22

ππ时,

1min -=y

当Z k k x ∈=,2π时,1max =y 当Z k k x ∈+=,)12(π时,

1min -=y

对称性

对称中心)0,(πk ,Z k ∈

对称轴:2

π

π+

=k x )(Z k ∈

对称中心)0,2

π+

k ,Z k ∈ 对称轴:πk x =)(Z k ∈

对称中心)0,(πk ,Z k ∈

对称轴:无

12.函数()的图象: (1)用“图象变换法”作图

由函数y x =sin 的图象通过变换得到y A x =+sin()ω?的图象,有两种主要途径“先平移后伸缩”与“先伸缩后平移”。 法一:先平移后伸缩

y x y x =?→???????=+>

y x y x =?→???????=+>

()()

||向左或向右平移个单位

????00,

1

sin y x ωω?????????→=+横坐标变为原来的倍

纵坐标不变

()

法二:先伸缩后平移

y x =?→???????sin 横坐标变为原来的倍

纵坐标不变1

ω

纵坐标变为原来的倍

横坐标不变

A y A x ?→???????=+sin()

ω?

当函数y A x =+sin()ω?(A>0,ω>0,x ∈+∞[)0,)表示一个振动量时,A 就表示这个量振动时离开平衡位置的最大距离,通常把它叫做这个振动的振幅;往复振动一次所需要的时间ω

π

2=T ,它叫做振动的周期;单位时

间往复振动的次数ω

π

21=

=

T f ,它叫做振动的频率;ω?x +叫做相位,?叫做初相(即当x =0时的相位)。 y x y x =?→???????=+>

()()||ωω????

ω向左或向右平移个单位

00纵坐标变为原来的倍横坐标不变

A y A x ?→???????=+sin()ω?

二、平面向量

1、平面向量的概念:

()1在平面,具有大小和方向的量称为平面向量.

()2向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.

()3向量AB 的大小称为向量的模(或长度)

,记作AB . ()4模(或长度)为0的向量称为零向量;模为1的向量称为单位向量. ()5与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -. ()6方向相同且模相等的向量称为相等向量.

2、实数与向量的积的运算律:设λ、μ为实数,那么

(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa ;(3)第二分配律:λ(b a +)=λa

+λb .

3、向量的数量积的运算律:(1) a ·b =b ·a

(交换律);

(2)(λa )·b = λ(a ·b )=λa ·b =a

·(b λ);(3)(b a +)·c = a ·c +b ·c .

4、平面向量基本定理:

如果1e 、2e 是同一平面的两个不共线向量,那么对于这一平面的任一向量,有且只有一对实数λ1、λ2,使得a =λ11e +λ22e

不共线的向量1e 、2e

叫做表示这一平面所有向量的一组基底.

5、坐标运算:(1)设()()2211,,,y x b y x a ==→

,则()2121,y y x x b a ±±=±→

数与向量的积:λ()()1111,,y x y x a λλλ==→,数量积:2121y y x x b a +=?→

(2)、设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则()1212,y y x x AB --=→

.(终点减起点) 6、平面两点间的距离公式:(1) ,A B d =||AB AB AB =

?=(2)向量的模||:?=2

||2

2

y x +=;

(3)、平面向量的数量积: θcos →

→→→?=?b a b a , 注意:00=?→

→a ,→

=?00a ,0)(=-+a a (4)、向量()()2211,,,y x b y x a ==→

→的夹角θ,则,

7、重要结论:(1)、两个向量平行: →

=?b a b a λ// )(R ∈λ,?b a // 01221=-y x y x (2)、两个非零向量垂直 02121=+?⊥→

y y x x b a

(3)、P 分有向线段21P P 的:设P (x ,y ) ,P 1(x 1,y 1) ,P 2(x 2,y 2) ,且21PP P P λ= , 则定比分点坐标公式 中点坐标公式 .

【必修五】:

一、解三角形:(1)三角形的面积公式:A bc B ac C ab S sin 2

1

sin 21sin 21===?: (2)正弦定理:

C R c B R b A R a R C

c

B b A a sin 2sin 2,sin 2,2sin sin sin ======, 边用角表示: (3)、余弦定理: )

1(2)(cos 2cos 2cos 22222222222cocC ab b a C ab b a c B

ac c a b A

bc c b a +-+=-+=?-+=?-+=

(4)求角:

ab

c b a C ac b c a B bc a c b A 2cos 2cos 2cos 2

22222222-+=

-+=-+= 1212

11x x x y y y λλλλ+?=??+?

+?=?+?121222x x x y y y +?=???+?=??cos θ=

2

()2

a b ab +≤ 二. 数列

1、数列的前n 项和:n n a a a a S ++++= 321; 数列前n 项和与通项的关系:

2、等差数列 :(1)、定义:等差数列从第2项起,每一项与它的前一项的差等于同一个常数)(1d a a n n =--; (2)、通项公式:d n a a n )1(1-+= (其中首项是1a ,公差是d ;)

(3)、前n 项和:=n S

d

n n na a a n d na n 2

)1(2

)

()

0(111++=+=(d ≠0)

(4)、等差中项: A 是a 与b 的等差中项: 或b a A +=2,三个数成等差常设:a-d ,a ,a+d 3、等比数列:(1)、定义:等比数列从第2项起,每一项与它的前一项的比等于同一个常数)(1

q a a n n

=-(0≠q )。

(2)、通项公式:1

1-=n n q a a (其中:首项是1a ,公比是q )

(3)、前n 项和:

(4)、等比中项: G 是a 与b 的等比中项:, 即ab G =2(或ab G ±=,等比中项有两个) 三:不等式

1.一元二次不等式的解法

求一元二次不等式2

0(0)ax bx c ++><或

2(0,40)a b ac ≠?=->解集的步骤:

一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象. 五解集:根据图象写出不等式的解集.

规律:当二次项系数为正时,小于取中间,大于取两边. 2、重要不等式:(1),a b R ∈?2

2

2a b ab +≥ 或 (当且仅当a =b 时取“=”号).

3、均值不等式:(2),a b R +

∈?

2a b +≥ 或 (当且仅当a =b 时取“=”号).

一正、二定、三相等

注意:解指数、对数不等式的方法:同底法,同时对数的真数大于0; 4、线性规划问题

⑴二元一次不等式所表示的平面区域的判断: 法一:取点定域法:

由于直线0Ax By C ++=的同一侧的所有点的坐标代入Ax By C ++后所得的实数的符号相同.所以,在实际判断时,往往只需在直线某一侧任取一特殊点00(,)x y (如原点),由00Ax By C ++的正负即可判断出0Ax By C ++>(或

0)<表示直线哪一侧的平面区域.

即:直线定边界,分清虚实;选点定区域,常选原点.

法二:根据0Ax By C ++>(或0)<,观察B 的符号与不等式开口的符号,若同号,0Ax By C ++>(或0)<表示直线上方的区域;若异号,则表示直线上方的区域⑵二元一次不等式组所表示的平面区域:

不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分. ⑶利用线性规划求目标函数z Ax By =+(,A B 为常数)的最值: 法一:角点法:

111(1)

(2)

n n n a S n a S S n -==?=?

-≥?2a b

A +=111,(1)(1),(1)11n n

n na q S a a q a q q q q

=?

?=--?=≠?--?G b a G =222a b ab +≤

如果目标函数z Ax By =+ (x y 、即为公共区域中点的横坐标和纵坐标)的最值存在,则这些最值都在该公共区域的边界角点处取得,将这些角点的坐标代入目标函数,得到一组对应z 值,最大的那个数为目标函数z 的最大值,最小的那个数为目标函数z 的最小值 法二:画——移——定——求:

第一步,在平面直角坐标系中画出可行域;第二步,作直线0:0l Ax By += ,平移直线0l (据可行域,将直线0l 平行移动)确定最优解;第三步,求出最优解(,)x y ;第四步,将最优解(,)x y 代入目标函数z Ax By =+即可求出最大值或最小值 .

第二步中最优解的确定方法:

利用z 的几何意义:A z y x B B =-

+,z

B

为直线的纵截距. ①若0,B >则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最大值,使直线的纵截距最小的角点处,z 取得最小值;

②若0,B <则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最小值,使直线的纵截距最小的角点处,z 取得最大值. ⑷常见的目标函数的类型: ①“截距”型:;z Ax By =+ ②“斜率”型:y z x =

或;y b

z x a

-=-

③“距离”型:2

2

z x y =+或z =

22()()z x a y b =-+-或z =

在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.

选修数学知识点

专题一:常用逻辑用语

1、命题:可以判断真假的语句叫命题;

逻辑联结词:“或”“且”“非”这些词就叫做逻辑联结词; 简单命题:不含逻辑联结词的命题;

复合命题:由简单命题与逻辑联结词构成的命题. 常用小写的拉丁字母p ,q ,r ,s ,……表示命题. 2、四种命题及其相互关系

四种命题的真假性之间的关系:

⑴、两个命题互为逆否命题,它们有相同的真假性;

⑵、两个命题为互逆命题或互否命题,它们的真假性没有关系. 3、充分条件、必要条件与充要条件

⑴、一般地,如果已知p q ?,那么就说:p 是q 的充分条件,q 是p 的必要条件; 若p q ?,则p 是q 的充分必要条件,简称充要条件.

⑵、充分条件,必要条件与充要条件主要用来区分命题的条件p 与结论q 之间的关系: Ⅰ、从逻辑推理关系上看:

①若p q ?,则p 是q 充分条件,q 是p 的必要条件; ②若p q ?,但q p ,则p 是q 充分而不必要条件; ③若p q ,但q p ?,则p 是q 必要而不充分条件; ④若p q ?且q p ?,则p 是q 的充要条件;

⑤若p q 且q p ,则p 是q 的既不充分也不必要条件.

4、复合命题

⑴复合命题有三种形式:p 或q (p q ∨);p 且q (p q ∧);非p (p ?). ⑵复合命题的真假判断

“p 或q ”形式复合命题的真假判断方法:一真必真; “p 且q ”形式复合命题的真假判断方法:一假必假; “非p ”形式复合命题的真假判断方法:真假相对.

5、全称量词与存在量词 ⑴全称量词与全称命题 短语“所有的”“任意一个”在逻辑常叫做全称量词,并用符号“?”表示.含有全称量词的命题,叫做全称命题. ⑵存在量词与特称命题

短语“存在一个”“至少有一个”在逻辑常叫做存在量词,并用符号“?”表示.含有存在量词的命题,叫做特称命题. ⑶全称命题与特称命题的符号表示及否定①全称命题p :,()x p x ?∈M ,它的否定p ?:00,().x p x ?∈M ?全称命题的否定是特称命题.

②特称命题p :00,(),x p x ?∈M ,它的否定p ?:,().x p x ?∈M ?特称命题的否定是全称命题.

专题二:圆锥曲线与方程

关于抛物线焦点弦的几个结论:

设AB 为过抛物线22(0)y px p =>焦点的弦,1122(,)(,)A x y B x y 、

,直线AB 的倾斜角为θ,则 ⑴ 221212,;4p x x y y p ==- ⑵ 22;sin p

AB θ

=⑶ 以AB 为直径的圆与准线相切;

⑷ 焦点F 对A B 、在准线上射影的角为

2

π

⑸ 112

.||||FA FB P

+= 专题五:数系的扩充与复数

1、复数的概念⑴虚数单位i ;⑵复数的代数形式(,)z a bi a b R =+∈;

⑶复数的实部、虚部,虚数与纯虚数. 2、复数的分类 复数(),a b R ∈

(0)(0,0)(0)(0,0)b a b b a b =??

=≠??

≠??

≠≠??

实数纯虚数虚数非纯虚数 3、相关公式

⑴d c b a di c bi a ==?+=+且,⑵00==?=+b a bi a ⑶22b a bi a z +=+=⑷z a bi =-

z z ,指两复数实部相同,虚部互为相反数(互为共轭复数).

4、复数运算

⑴复数加减法:()()()()i d b c a di c bi a ±+±=+±+; ⑵复数的乘法:()()()()a bi c di ac bd bc ad i ++=-++;

⑶复数的除法:

()()()()a bi c di a bi c di c di c di +-+=++-()()222222

ac bd bc ad i ac bd bc ad

i c d c d c d ++-+-==++++ (类似于无理数除法的分母有理化→虚数除法的分母实数化)

5、常见的运算规律

(1);

(2)2,2;z z z z a z z bi =+=-=22

22(3);(4);(5)z z z z a b z z z z z R ?===+==?∈

41

42

43

44

(6),1,,1;

n n n n i

i i i

i i

++++==-=-=()

2

2

11(7)1;(8),,11i i i i i i i i i +-±=±==-=±-+ 6、复数的几何意义

x 轴叫做复平面的实轴,y 轴叫做复平面的虚轴.

相关主题
相关文档
最新文档