灰色预测理论 定义

灰色预测理论 定义
灰色预测理论 定义

什么是灰色预测法?

灰色预测是就灰色系统所做的预测。所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰色系统。一般地说,社会系统、经济系统、生态系统都是灰色系统。例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。

灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。

灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。

简言之,灰色预测模型是通过少量的、不完全的信息,建立灰色微分预测模型,对事物发展规律作出模糊性的长期描述(模糊预测领域中理论、方法较为完善的预测学分支)。

灰色系统的概念是由邓聚龙教授于1982年提出的,它描述部分信急己知,部分未知介于黑白系统之间的系统。GM(1,1)模型是灰色理论中较常用的预测方法,它以定性分析为先导,定量与定性结合,对离散序列建立微分方程以及白化方程,一般要经历思想开发、因素分析、量化、动态化、优化五个步骤。

灰色系统通过对原始数据的整理来寻求其变化规律,这是一种就数据寻找数据的现实规律的途径,称为灰色序列的生成。

生成数

通过对原始数据的整理寻找数的规律,分为三类:

a、累加生成:通过数列间各时刻数据的依个累加得到新的数据与数列。累

加前数列为原始数列,累加后为生成数列。

b 、累减生成:前后两个数据之差,累加生成的逆运算。累减生成可将累加生成还原成非生成数列。

c 、映射生成:累加、累减以外的生成方式。

如原始数列(1 2 1.5 3)没有明显的规律,但是如果做一次累加生成,生成(13 4.5 7.5),则新数列具有明显的增长规律性。

一、三种不确定方法的区别

二、理论原理

1、设微分方程:

dx ax b dt +=,其中dx dt 为x 的导数,x 为dx

dt

的背景值,,a b 为参数。

因此,一个一阶微分方程由导数、背景值和参数三部分构成。

其微分方程解为:(1)(0)?(1)(((1))ak b b x

k x e a a

-+=-+。 还原后得:(0)(0)?(1)()((1))ak b

x

k a x e a

-+=-- 2、(1)级比与光滑比:设序列X=(x(1),x(2),...,x(n)),称

()

()(1)

x k k x k σ=

-;2,...,k n =

为序列X=(x(1),x(2),...,x(n))的级比。 称:1

1

()

()()

k i x k k x i ρ-==

∑;2,...,k n =

为序列X=(x(1),x(2),...,x(n))的光滑比。 (2)若序列X=(x(1),x(2),...,x(n))满足 ○1

(1)

1()

k k ρρ+<;2,...,1k n =-; ○2()[0,]k ρε∈;3,...,k n =; ○30.5ε<。

则称序列X=(x(1),x(2),...,x(n))为准光滑序列。

3、一般的非负准光滑序列经过累加生成后,都会减少随机性,呈现出近似的指数增长规律,原始序列越光滑,生成后指数规律也越明显。

设序列X=(x(1),x(2),...,x(n)),若

○1,()(0,1]k k σ?∈,则称序列具有负的灰指数规律。 ○2,()(1,]k k b σ?∈,则称序列具有正的灰指数规律。

3,()(,],k k a b b a σδ?∈-=,则称序列具有绝对灰度为δ灰指数规律。 ○

40.5δ<时,称具有准指数规律。 三、建模步骤

例:序列(0)(0)(0)(0)((1),(2),...,(5))X x x x ==(2.874 3.278 3.337 3.39 3.679)。 第1步:对序列作累加得:(1)(1)(1)(1)((1),(2),...,(5))X x x x ==(2.874 6.152 9.489 12.879 16.558)

第2步:对序列(0)(0)(0)(0)((1),(2),...,(5))X x x x =进行准光滑性检验。

(0)1

(0)1()

()()k i x k k x i ρ-==

∑得:k>3时,准光滑条件满足。

第3步:检验(1)(1)(1)(1)((1),(2),...,(5))X x x x =是否具有准指数规律,有:

(1)(1)

(1)

()

()(1)

x k k x k σ=-得(1)(3) 1.54σ=,(1)(4) 1.36σ=,(1)(5) 1.29σ=。 k>3时,(1)()[1,1.5]k σ∈,δ<,准指数规律满足,故可以对(1)X 建立

GM (1,1)模型。

第4步:对(1)X 作紧邻值生成。令(1)(1)(1)()0.5()0.5(1)z k x k x k =+-得:

(1)z =(4.513 7.82 11.184 14.718)

于是

(1)(1)

(1)

(1)

(2)1(3)1(4)1(5)

1z z B z z ??-??

-??=??-??-??=

4.51317.82111.184114.718

1-??

??-????

-?

?

-??,(0)(0)(0)(0) 3.278(2) 3.337(3) 3.390(4) 3.679(5)x x Y x x ????????????==?????????

??? 第5步:对参数列?[,]T a

a b =进行最小二乘估计。得: 1

0.03720?() 3.06536T

T

a a B B B Y

b --????

===????????

第6步:确定模型(1)

(1)0.0372 3.06536dx x dt -=。其时间响应式 (1)(0)?(1)(((1))ak b b

x

k x e a a

-+=-+=0.07285.27615182.402151k e -。 第7步:求(1)X 的模拟值:(1)X =(2.874 6.106 9.4605 12.9422 16.5558) 第8步:还原出(0)X 得:(0)X =(2.8740 3.2320 3.3545 3.4817 3.6136)。

另外还有由(1)(0)?(1)(((1))ak b b

x

k x e a a

-+=-+衍生出的一个指数模型和一个差分模型。

以残差为随机序列进行灰色建模。残差模型的公式:若

(0)(0)?(1)()((1))ak b

x

k a x e a

-+=--,则相应的残差修正时间响应式 0(0)

(0)()

(0)(0)00

()((1)),?(1)()((1))(()),ak a k k ak b a x e k k a x

k b b a x e a k e k k a a εεεεε----?--

+=??--±-≥??

四、改进模型

灰色理论适用于贫信息条件下的分析和预测。优点是:要求负荷数据少、不考虑分布规律、不考虑变化趋势、运算方便、短期预测精度高、易于检验。缺点是:当数据离散程度越大,即数据灰度越大,预测精度越差。为了解决这一问题,人们对灰色预测做了很多改进。如提出对历史数据的平滑处理、模型参数修正、等维新息数据处理和对预测值的修正等,也有将现在的人工智能算法如将遗传算法、人工神经网络模型引入灰色模型对其加以改进的。

下面介绍对历史数据的平滑处理方法和等维新息。

(1)为减少原始数据在统计过程中的随机误差和人为误差,可对原始序列进行变换,增加离散数据光滑度,一般作三点滑动平均:

(0)(0)(1)[3*(1)(2)]/4Z x x =+

(0)(0)(0)()[(1)2*()(1)]/4Z k x k x k x k =-+++;其中2,...,1k n =- (0)(0)()[(1)3*()]/4Z n x n x n =-+

(2)常用的GM (1,1)模型有新息模型和等维新息模型。信息模型是每增加一个最新的信息,便将新信息加入原始数列中,按补充了新息后的邻域建模(全数列建模)而得到的模型。等维新息模型是采取增加新信息与去掉旧信息同时进行的方式建模,亦称为新陈代谢模型,其机理与一般建模理论中的遗忘因子适应建模思路接近。注意建模维数的选取。

灰色预测理论-定义

什么是灰色预测法? 灰色预测是就灰色系统所做的预测。所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰色系统。一般地说,社会系统、经济系统、生态系统都是灰色系统。例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。 灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。 灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。 简言之,灰色预测模型是通过少量的、不完全的信息,建立灰色微分预测模型,对事物发展规律作出模糊性的长期描述(模糊预测领域中理论、方法较为完善的预测学分支)。 灰色系统的概念是由邓聚龙教授于1982年提出的,它描述部分信急己知,部分未知介于黑白系统之间的系统。GM(1,1)模型是灰色理论中较常用的预测方法,它以定性分析为先导,定量与定性结合,对离散序列建立微分方程以及白化方程,一般要经历思想开发、因素分析、量化、动态化、优化五个步骤。 灰色系统通过对原始数据的整理来寻求其变化规律,这是一种就数据寻找数据的现实规律的途径,称为灰色序列的生成。 生成数 通过对原始数据的整理寻找数的规律,分为三类: a、累加生成:通过数列间各时刻数据的依个累加得到新的数据与数列。累

线性回归和灰色预测模型案例

预测未来2015年到2020年的货运量 灰色预测模型 是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测. 预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断. 灰色系统的定义 灰色系统是黑箱概念的一种推广。我们把既含有已知信息又含有未知信息的系统称为灰色系统.作为两个极端,我们将称信息完全未确定的系统为黑色系统;称信息完全确定的系统为白色系统.区别白色系统与黑色系统的重要标志是系统各因素之间是否具有确定的关系。

建模原理 模型的求解

原始序列为: ) 16909 15781 13902 12987 12495 11067 10149 9926 9329 10923 7691())6(),...1(()0()0()0(==x x x 构造累加生成序列 ) 131159,114250,98469,84567,71580,59085, 48018,37869,27943,18614,7691())6(),...1(()1()1()1(==x x x 归纳上面的式子可写为 称此式所表示的数据列为原始数据列的一次累加生成,简称为一次累加生成. 对(1)X 作紧邻均值生成 ,.... 2)) 1()((21)()1() 1() 1(=-+=k k z k z k z MATLAB 代码如下: x=[7691 18614 27943 37869 48018 590857 71580 84567 98469 114250 131159]; z(1)=x(1); for i=2:6 z(i)=0.5*(x(i)+x(i-1)); end format long g z z = Columns 1 through 3 7691 13152.5 23278.5 Columns 4 through 6 32906 42943.5 319437.5

灰色预测模型介绍

数学模型与数学实验数 课程报告 题目:灰色预测模型介绍专业: 班级: 姓名: 学号: 二0一一年六月

1. 模型功能介绍 预测模型为一元线性回归模型,计算公式为Y=a+b。一元非线性回归模型:Y=a+blx+b2x2+…+bmxm。式中:y为预测值;x为自变量的取值;a,b1,b2……bm为回归系数。当自变量x与因变量y之间的关系是直线上升或下降时,可采用一元线性预测模型进行预测。当自变量x和因变量y之间呈曲线上升或下降时,可采用一元非线性预测模型中的y=a+b1x+b2x2+…+bmxm这个预测模型。当自变量x和因变量y之间关系呈上升一下降一再上升一再下降这种重复关系时,可采用一元线性预测模型中的Y=a+bx这个模型来预测。其中我要在这里介绍灰色预测模型。 灰色预测是就灰色系统所做的预测,灰色系统(Grey System)理论[]1是我国著名学者邓聚 龙教授20世纪80年代初创立的一种兼备软硬科学特性的新理论[95]96]。所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰色系统。一般地说,社会系统、经济系统、生态系统都是灰色系统。例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。 灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。 灰色系统的基本原理 公理1:差异信息原理。“差异”是信息,凡信息必有差异。 公理2:解的非唯一性原理。信息不完全,不明确地解是非唯一的。 公理3:最少信息原理。灰色系统理论的特点是充分开发利用已有的“最少信息”。 公理4:认知根据原理。信息是认知的根据。 公理5:新信息优先原理。新信息对认知的作用大于老信息。 公理6:灰性不灭原理。“信息不完全”是绝对的。 灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。 灰色预测模型实际上是一个微分方程, 称为GM模型。GM(1,N)[]1表示1阶的,N个 变量的微分方程型模型;则是1阶的,1个变量的微分方程型模型。在实际进行预测时, 一般选用GM(1,1) 模型, 因为这种模型求解较易, 计算量小, 计算时间短, 精度较高。 现在下面简单介绍有关于灰色预测的相关知识点: 为了弱化原始时间序列的随机性 在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据处理后的时间序列即称为生成列。灰色系统常用的数据处理方式有累加和累减两种。 关联度]1[

灰色预测模型理论及其应用

灰色预测模型理论及其应用 灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测. 灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.本文主要围绕灰色预测GM(1,1)模型及其应用进行展开。 一、灰色系统及灰色预测的概念 灰色系统 灰色系统产生于控制理论的研究中。 若一个系统的内部特征是完全已知的,即系统的信息是充足完全的,我们称之为白色系统。 若一个系统的内部信息是一无所知,一团漆黑,只能从它同外部的联系来观测研究,这种系统便是黑色系统。 灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。 区别白色和灰色系统的重要标志是系统各因素间是否有确定的关系。 特点:灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定型系统的研究对象。 灰色预测 灰色系统分析方法是通过鉴别系统因素之间发展趋势的相似或相异程度,即进行关联度分析,并通过对原始数据的生成处理来寻求系统变动的规律。生成数据序列有较强的规律性,可以用它来建立相应的微分方程模型,从而预测事物未来的发展趋势和未来状态。灰色预测是用灰色模型GM(1,1)来进行定量分析的,通常分为以下几类: (1) 灰色时间序列预测。用等时距观测到的反映预测对象特征的一系列数量(如产量、销量、人口数量、存款数量、利率等)构造灰色预测模型,预测未来某一时刻的特征量,或

灰色预测法原理及解题步骤

灰色预测法原理及解题步骤 一、类型 数列预测——某现象随时间的顺延而发生的变化所做的预测 灾变预测——对发生灾害或异常突变时间可能发生的时间预测 系统预测——对系统中众多变量间相互协调关系的发展变化所进行的预测 拓扑预测——将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测未来该定值所发生的时点。 注意:使用方法前一定要在段前作一个引子,连接问题分析和数据特点,以下便是:通过对已知数据的分析,随着时间的变化,排污量一直呈增长趋势,并且增长的很快。在这里利用灰色预测模型对()进行预测。通过对数据的分析,传统的数理统计预测方法往往需要足够多的数据,而本问题的数据给出的数据偏小,如果采用传统的方法误差太大。根据上述的特点可采用灰色预测模

型。 二、灰色预测具体步骤 1》检验处理数据,级比必须满足 A、如果不全属于,则要做必要的变换处理(如取适当的常数C,作平移变换),使其落入区域中。 B、若A不成立,则建立GM(1,1)模型 建立GM(1,1)模型 (1)一次累加生成数列AGO,(目的是弱化原始时间序列的随机性,增加其稳定程度) (2)求均值数列 (3)建立GM(1,1)模型相应的白化微分方程 其中:α称为发展灰数;μ称为内生控制灰数。 (4)求的参数估计a、b(最小二乘法)

(5)给出累加时间数列预测模型 (6)做差得到原始预测值 三、检验预测值 (1)残差检验 (2)级比偏差值检验 1》参考数据 计算出级比,再由发展系数a,求出相应级比偏差

若ρ(k)<0.2,则达到一般要求;若ρ(k)<0.1,则效果好程序实现: 采用EXCEl的方法实现灰色预测。 2013-2-2 于北华大学 电子 宋方雷

灰色预测模型案例

1.1.5 两岸间液体化工品贸易前景预测 从上述分析可见,两岸间液体化工品贸易总体上呈现上升的增长趋势。然而,两岸间的这类贸易受两岸关系、特别是台湾岛内随机性政治因素影响很大。因此,要对这一贸易市场今后发展的态势做出准确的定量判断是相当困难的;但从另一方面来说,按目前两岸和平交往的常态考察,贸易作为两岸经济与贸易交往的一个有机组成部分,其一般演化态势有某些规律可寻的。故而,我们可以利用其内在的关联性,通过选取一定的数学模型和计算方法,对之作一些必要的预测。 鉴此,本研究报告拟采用一定的预测技术,借助一定的计算软件,对今后10余年间大陆从台湾进口液化品贸易量作一个初步的预测。 (1) 模型的选择 经认真考虑,我们选取了灰色系统作为预测的技术手段,因为两岸化工品贸易具有的受到外界的因素影响大和受调查条件限制数据采集很难完全的两大特点,正好符合灰色系统研究对象的主要特征,即“部分信息已知,部分信息未知”的不确定性。灰色系统理论认为,对既含有已知信息又含有未知信息或不确定信息的系统进行预测,就是在一定方位内变化的、与时间有关的灰色过程进行的预测。尽管这一过程中所显示的现象是随机的,但毕竟是有序的,因此这一数据集合具有潜在的规律。灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。 本报告以灰色预测模型,对两岸间化工品贸易进行的预测如下: 灰色预测模型预测的一般过程为: ① 一阶累加生成(1-AGO ) 设有变量为) 0(X 的原始非负数据序列 )0(X =[)1()0(x ,)2()0(x ,…)() 0(n x ] (1.1) 则) 0(X 的一阶累加生成序列 )1(X =[)1()1(x ,)2()1(x …)() 1(n x ] (1.2) 式中 ) ()(1)0() 1(i x k x k i ∑== k=1,2…n ② 对) 0(X 进行准光滑检验和对进行准指数规律检验

灰色预测模型及应用论文

灰色系统理论的研究 摘要:科学地预测尚未发生的事物是预测的根本目的和任务。无论个体还是组织,在制定和规划面向未来的策略过程中,预测都是必不可少的重要环节,它是科学决策的重要前提。在众多的预测方法中,灰色预测模型自开创以来一直深受许多学者的重视,它建模不需要太多的样本,不要求样本有较好的分布规律,计算量少而且有较强的适应性,灰色模型广泛运用于各种领域并取得了辉煌的成就。本文详细推导GM(1,1)模型,另外对灰关联度进行了进一步的改进,让改进的计 算式具有唯一性和规范性[]4 。通过给出的实例高校传染病发病率情况,建立了GM(1,1)预测模型, 并预测了1993年的传染病发病率。另外对传染病发病率较高的痢疾、肝炎、疟疾三种疾病做了关联度分析,发现痢疾与整个传染病关系最密切,而肝炎、疟疾与整个传染病的密切程度依次差些。 关键词:灰色预测模型;灰关联度;灰色系统理论

灰色系统理论的研究 GM(1,1)预测与关联度的拓展 1、引言 模型按照对研究对象的了解程度可分为:黑箱模型、白箱模型、灰箱模型。黑箱模型:信息缺乏,暗,混沌。白箱模型:信息完全,明朗,纯净。灰箱模型:信息不完全,若明若暗,多种成分。 1.1、研究背景 1.1.1、国内研究现状 灰色系统理论在我国提出至今已有二十几年的历史,它的应用引起了人们的广泛兴趣,不论是我国粮食发展决策中总产量预测模型,还是对湖北2000年宏观经济的发展趋势的量化分析,抑或是河南人民胜利渠的最佳灌溉决策,还是武汉汉阳火车对火车装车吨位的预测等,无一不是灰色预测系统理论杰出的硕果。 1.1.2、国外研究现状 灰色系统理论在国际上也产生了很大的影响,IBM公司要求将灰色系统软件加入其为全球服务的管理软件库。目前英国、美国、德国、日本、澳大利亚、加拿大、奥地利、俄罗斯等国家、地区及国际组织有许多学者从事灰色系统的研究和应用。 国内外84所高校开设了灰色系统课程,数百名博士、硕士研究生运用灰色系统的思想方法开展学科研究,撰写学位论文。国际、国内200多种学术期刊发表灰色系统论文,许多会议把灰色系统列为讨论专题,SCI、EI、ISTP、SA、MR、MA等纷纷检索我国灰色论著。 1.2、研究意义 邓聚龙教授提出灰色系统有着重要的意义: (1) 是系统思维和系统思想在方法论上的具体体现; (2) 是科学方法论上的重大进展, 具有原创性的科学意义和深远的学术影响,是对系统科学的新贡献。 2、灰色系统及灰色预测的概念 2.1、灰色系统理论发展概况 2.1.1、灰色系统理论的提出 著名学者邓聚龙教授于20世纪70年代末、80年代初提出。

灰色理论系统预测

灰色系统预测 重点内容:灰色系统理论的产生和发展动态,灰色系统的基本概念,灰色系统与模糊数学、黑箱方法的区别,灰色系统预测GM(1,1)模型,GM(1,N)模型,灰色系统模型的检验,应用举例。 1灰色系统理论的产生和发展动态 1982邓聚龙发表第一篇中文论文《灰色控制系统》标志着灰色系统这一学科诞生。 1985灰色系统研究会成立,灰色系统相关研究发展迅速。 1989海洋出版社出版英文版《灰色系统论文集》,同年,英文版国际刊物《灰色系统》杂志正式创刊。目前,国际、国内200多种期刊发表灰色系统论文,许多国际会议把灰色系统列为讨论专题。国际著名检索已检索我国学者的灰色系统论著500多次。灰色系统理论已应用范围已拓展到工业、农业、社会、经济、能源、地质、石油等众多科学领域,成功地解决了生产、生活和科学研究中的大量实际问题,取得了显著成果。 2灰色系统的基本原理 2.1灰色系统的基本概念 我们将信息完全明确的系统称为白色系统,信息未知的系统称为黑色系统,部分信息明确、部分信息不明确的系统称为灰色系统。 系统信息不完全的情况有以下四种: 1.元素信息不完全 2.结构信息不完全 3.边界信息不完全 4.运行行为信息不完全 2.2灰色系统与模糊数学、黑箱方法的区别 主要在于对系统内涵与外延处理态度不同;

研究对象内涵与外延的性质不同。 灰色系统着重外延明确、内涵不明确的对象,模糊数学着重外延不明确、内涵明确的对象。 “黑箱”方法着重系统外部行为数据的处理方法,是因果关系的两户方法,使扬外延而弃内涵的处理方法,而灰色系统方法是外延内涵均注重的方法。 2.3灰色系统的基本原理 公理1:差异信息原理。“差异”是信息,凡信息必有差异。公理2:解的非唯一性原理。信息不完全,不明确地解是非唯一的。 公理3:最少信息原理。灰色系统理论的特点是充分开发利用已有的“最少信息”。 公理4:认知根据原理。信息是认知的根据。 公理5:新信息优先原理。新信息对认知的作用大于老信息。公理6:灰性不灭原理。“信息不完全”是绝对的。 2.4灰色系统理论的主要内容 灰色系统理论经过10多年的发展,已基本建立起了一门新兴学科的结构体系,其主要内容包括以“灰色朦胧集”为基础的理论体系、以晦涩关联空间为依托的分析体系、以晦涩序列生成为基础的方法体系,以灰色模型(G,M)为核心的模型体系。以系统分析、评估、建模、预测、决策、控制、优化为主体的技术体系。 灰色关联分析 灰色统计 灰色聚类 3灰色系统预测模型 灰色预测方法的特点表现在:首先是它把离散数据视为连续变量在其变化过程中所取的离散值,从而可利用微分方程式处理数据;而不直接使用原始数据而是由它产生

灰色预测法GM总结

灰色预测模型 一、灰色预测的概念 1. 灰色预测法是一种对含有不确定因素的系统进行预测的方法。灰色系统是介 于白色系统和黑色系统之间的一种系统。灰色系统内的一部分信息是已知的,另一部分信息时未知的,系统内各因素间具有不确定的关系。 2. 灰色预测,是指对系统行为特征值的发展变化进行的预测,对既含有已知信 息又含有不确定信息的系统进行的预测,也就是对在一定范围内变化的、与时间序列有关的灰过程进行预测。尽管灰过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此可以通过对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。灰色预测是利用这种规律建立灰色模型对灰色系统进行预测。 二、灰色预测的类型 1. 灰色时间序列预测;即用观察到的反映预测对象特征的时间序列来构造灰色 预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。 2. 畸变预测;即通过灰色模型预测异常值出现的时刻,预测异常值什么时候出 现在特定时区内。 3. 系统预测;通过对系统行为特征指标建立一组相互关联的灰色预测模型,预 测系统中众多变量间的相互协调关系的变化。 4. 拓扑预测;将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点, 并以该定值为框架构成时点数列,然后建立模型预测该定值所发生的时点 三、GM (1,1)模型的建立 1. 数据处理 为了弱化原始时间序列的随机性,在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据处理后的时间序列即称为生成列。 i. 设()()()()()()()()(){} ,,, (00000) 123X X X X X n = 是所要预测的某项指标的原始 数据,计算数列的级比()()() (),,,,() 00123X t t t n X t λ-= =L 。如果绝大部分的级比都落在可容覆盖区间(,)221 1 n n e e -++内,则可以建立GM(1,1)模型且可以进行灰色

灰色预测模型原理

灰色预测模型原理 综合预测模型( 灰色预测模型 (1,1)GM ) 为了是更准确的反映市场实际需求情况,我们建立综合预测模型,利用灰色模型 (1,1)GM 对平均销量做确定性增长趋势进行预测。 我们将时间序列2001—2005的实际销量值 (0)t X 累加处理生成新序列(1)t X ,则GM (1,1)模型相应的微分方程为: (1)(1)t t dX X dt αμ+= (20012005t =年 其中 α 为发展灰数 μ 为内生控制灰数 同时通过α?待估参数向量,?ααμ ??= ??? ,利用最小二乘法求解。解得: ()1?T T B B B Y α-= 矩阵B 为 (1)t X 取累加平均值所得 矩阵Y 为 (0)t X 转置矩阵 求解微分方程,即可得预测模型: ()()1011?t t X X e αμμαα-+??=-+???? ,(20012005)t =年 灰色模型算法描述: Step1. 累加处理生成新序列(1)t X Step2. 迭代计算出矩阵B 迭代计算 (1)(1)12t t t X X V ++= (20012004)t =年

得到 11,2111t t V B V --????=?????? Step3. 生成矩阵Y (0)1t t V X += ( 20012004t =年 T t t Y V = Step4. 计算系数矩阵α ? ()1 ?T T B B B Y α-= 解得,αμ Step5. 由得到的灰数,αμ 解微分方程 ()()1011?t t X X e αμμαα-+??=-+??? ? 即 预测出2006年的书号的平均销售量 Step6. 灰色模型残差检验

灰色理论预测模型及GM(1,1)matlab程序

灰色理论预测模型及GM(1,1)matlab程序灰色预测方法简介 灰色预测是一种对含有不确定因素的系统进行预测的方法。灰色预测通过鉴别系统因素之间发展趋势的相异程度,即进行关联分析,并对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。其用等时距观测到的反应预测对象特征的一系列数量值构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。通过对原始数据的整理寻找数的规律,分为三类: a、累加生成:通过数列间各时刻数据的依个累加得到新的数据与数列。累加前数列为原始数列,累加后为生成数列。 b、累减生成:前后两个数据之差,累加生成的逆运算。累减生成可将累加生成还原成非生成数列。 c、映射生成:累加、累减以外的生成方式。 建模步骤 a、建模机理 b、把原始数据加工成生成数; c、对残差(模型计算值与实际值之差)修订后,建立差分微分方程模型; d、基于关联度收敛的分析; e、gm模型所得数据须经过逆生成还原后才能用。 f、采用“五步建模(系统定性分析、因素分析、初步量化、动态量化、优化)”法,建立一种差分微分方程模型gm(1,1)预测模型。 GM(1,1)程序: % 本程序主要用来计算根据灰色理论建立的模型的预测值。 % 应用的数学模型是GM(1,1)。 % 原始数据的处理方法是一次累加法。 clear;clc; % load ('data.txt');

% y=data'; y=[3 4 5 4 7 7]; n=length(y); yy=ones(n,1); yy(1)=y(1); for i=2:n yy(i)=yy(i-1)+y(i); end B=ones(n-1,2); for i=1:(n-1) B(i,1)=-(yy(i)+yy(i+1))/2; B(i,2)=1; end BT=B'; for j=1:n-1 YN(j)=y(j+1); end YN=YN'; A=inv(BT*B)*BT*YN; a=A(1); u=A(2); t=u/a; t_test=input('请输入需要预测个数:'); i=1:t_test+n; yys(i+1)=(y(1)-t).*exp(-a.*i)+t; yys(1)=y(1); for j=n+t_test:-1:2 ys(j)=yys(j)-yys(j-1); end x=1:n; xs=2:n+t_test; yn=ys(2:n+t_test); plot(x,y,'^r',xs,yn,'*-b'); det=0; for i=2:n det=det+abs(yn(i)-y(i)); end det=det/(n-1); disp(['百分绝对误差为:',num2str(det),'%']); disp(['预测值为:',num2str(ys(n+1:n+t_test))]);

灰色预测模型及应用论文

管理预测与决策的课程设计报告 灰色系统理论的研究 专业:计算机信息管理 姓名:XXX 班级:xxx 学号:XX 指导老师:XXX 日期2012年11月01 日

摘要:科学地预测尚未发生的事物是预测的根本目的和任务。无论个体还是组织,在制定和规划面向未来的策略过程中,预测都是必不可少的重要环节,它是科学决策的重要前提。在众多的预测方法中,灰色预测模型自开创以来一直深受许多学者的重视,它建模不需要太多的样本,不要求样本有较好的分布规律,计算量少而且有较强的适应性,灰色模型广泛运用于各种领域并取得了辉煌的成就。本文详细推导GM(1,1)模型, 另外对灰关联度进行了进一步的改进,让改进的计算式具有唯一性和规范性[]4。通过给 出的实例高校传染病发病率情况,建立了GM(1,1)预测模型,并预测了1993年的传染病发病率。另外对传染病发病率较高的痢疾、肝炎、疟疾三种疾病做了关联度分析,发现痢疾与整个传染病关系最密切,而肝炎、疟疾与整个传染病的密切程度依次差些。 关键词:灰色预测模型;灰关联度;灰色系统理论

目录 1、引言 (1) 1.1、研究背景 (1) 1.1.1、国内研究现状 (1) 1.1.2、国外研究现状 (1) 1.2、研究意义 (1) 2、灰色系统及灰色预测的概念 (2) 2.1、灰色系统理论发展概况 (2) 2.1.1、灰色系统理论的提出 (2) 2.1.2、灰色系统理论的研究对象 (2) 2.1.3、灰色系统理论的应用范围 (2) 2.1.4、三种不确定性系统研究方法的比较分析 (3) 2.2、灰色系统的特点 (3) 2.3、常见灰色系统模型 (4) 2.4、灰色预测 (4) 3、简单的灰色预测——GM(1,1)预测 (5) 3.1、GM(1,1)预测模型的基本原理 (5) 4、小结 (8) 参考文献: (8)

灰色理论灰色预测模型和灰色关联度分析matlab通用代码

%该程序用于灰色关联分析,其中原始数据的第一行为参考序列,1至15行为正相关序列,16至17为负相关序列 clc,clear load x.txt %把原始数据存放在纯文本文件x.txt 中 %如果全为正相关序列,则将两个循环替换为下列代码 %for i=1:size(x,1) %x(i,=x(i,/x(i,1); %end for i=1:15 x(i,=x(i,:)/x(i,1); %标准化数据 end for i=16:17 x(i,:)=x(i,1)./x(i,:); %标准化数据 end data=x; n=size(data,1); ck=data(1,:);%分离参考序列 bj=data(2:n,:);m1=size(bj,1); for j=1:m1 t(j,:)=bj(j,:)-ck; end jc1=min(min(abs(t')));jc2=max(max(abs(t'))); rho=0.5;%灰色关联度为0.5 ksi=(jc1+rho*jc2)./(abs(t)+rho*jc2); r=sum(ksi')/size(ksi,2); r %灰色关联度向量 [rs,rind]=sort(r,'descend') %对关联度进行降序排序 %该函数用于灰色预测模型,其中x0为列向量,alpha一般取0.5,将第一个数据视为序号为0,k从0开始的序号矩阵 function y=huiseyuce(x0,alpha,k) n=length(x0); x1=cumsum(x0); for i=2:n z1(i)=alpha*x1(i)+(1-alpha)*x1(i-1); end z1=z1'; B=[-z1(2:n),ones(n-1,1)]; Y=x0(2:n); ab=B\Y; y1=(x0(1)-ab(2)/ab(1))*exp(-ab(1)*k)+ab(2)/ab(1);%产生预测累加生成序列 y=[x0(1) diff(y1)]%产生灰色预测数据

灰色预测与决策

灰色预测与决策 灰色系统中的预测与决策部分主要包括序列算子生成; GM 预测模型即GM(1,1),GM(1,N),GM(0,N),GM(2,1),Verhulst 及GM(r,h)模型和离散灰色模型等;灰色系统预测;灰色关联 分析;灰色聚类评估;灰色决策模型等内容。 我们知道灰色系统理论是研究少数据,贫信息不确定性 问题的新方法,是通过对原始数据的挖掘、整理中寻求其变 化规律。而且传统的GM(1,1)模型利用的数据是近指数,低 增长的数据,所以就需要我们对数据进行处理。这里可以用 缓冲算子、初值化生成算子、均值化生成算子、区间值化生 成算子减少干扰或函数变换即对数变换、平移变换、开方变 换、余弦函数变换、正切函数变换、负指数函数变换、幂函 数变换、中心位似函数变换等缩小级比偏差,使数据适于建 模。 1、灰色预测部分: 1)、数据经过以上的处理后,基本适于建模,传统的预 测模型有GM(1,1)模型,其原始形式如下: ()()b k ax k x =+)()(10, 其基本形式如下: ()()b k az k x =+)()(10, 此方程是用均值()()k z 1代替()()k x 1,使得数据更平滑,其中 ()()()()()()k x k x k z 111121)(+-=,叫做方程的背景值,-a 是发展系数, b 是灰作用量。这里的 a,b 是利用最小二乘法求出来的。

白化方程为:() ()b k ax dt dx =+)(11 时间响应函数为: ()()()()a b e a b x t x t a +??? ??-=--1111)( 时间响应序列为:() ()()a b e a b x k x ak +??? ??-=+-∧1)1(01 还原值是:()()()()() ()()()()ak a e a b x e k x k x k x -∧∧∧??? ??--=-+=1110110 模型的求解是先用最小二乘法将a,b 求出,再利用白化微分方程求出解。而将白化方程还原为基本模型的形式时,会出现误差,即用() ()k z 1代替()?-k k dt x 11出现的误差,很多学者在此基础上提出了许多优化模型。 在实际应用与理论研究过程中,人们对GM(1,1)模型进行了诸多改进。按照改进对象来划分,主要有两大类:一是对灰色微分方程的背景值优化;二是对GM(1,1)模型白化微分方程的响应式的优化。 谭冠军从背景值()()k z 1的几何意义出发,首次提出GM(1,1)模型的背景值优化,给出一个新的背景值计算公式,提高了模型精度,并且能较好地适应非等间距序列建模。现在对背景值的优化,主要是把背景值中的一次累加生成序列进行均 值生成改为线性插值生成,即用 ()()()()()()()k x k x k z 11111?-+-?=代替原来的均值计算公式。而罗党等给出一种背景值优化的新方式,即用齐次指数函数来拟合一次累加生成序列,提出了一

灰色预测模型及应用论文

灰色预测模型及应用论文Newly compiled on November 23, 2020

灰色系统理论的研究 GM(1,1)预测与关联度的拓展 摘要:科学地预测尚未发生的事物是预测的根本目的和任务。无论个体还是组织,在制定和规划面向未来的策略过程中,预测都是必不可少的重要环节,它是科学决策的重要前提。在众多的预测方法中,灰色预测模型自开创以来一直深受许多学者的重视,它建模不需要太多的样本,不要求样本有较好的分布规律,计算量少而且有较强的适应性,灰色模型广泛运用于各种领域并取得了辉煌的成就。本文详细推导GM(1,1)模型,另外对灰关联度进行了进一步的改进,让改进的计算式具有唯一性和规范性[]4。通过给出的实例高校传染病发病率情况,建立了GM(1,1)预测模型,并预测了1993年的传染病发病率。另外对传染病发病率较高的痢疾、肝炎、疟疾三种疾病做了关联度分析,发现痢疾与整个传染病关系最密切,而肝炎、疟疾与整个传染病的密切程度依次差些。 关键词:灰色预测模型;灰关联度;灰色系统理论 The Research of Grey System Theory GM(1,1) prediction and the expansion of correlation xueshenping Instructor: tangshaofang Abstract:Science has not yet occurred to predict the fundamental thing is to predict the purpose and mission. Whether individuals or organizations, in developing future-oriented strategy and planning process, the forecasts are essential and important aspect, which is an important prerequisite for scientific decision-making. Among the many prediction methods, the gray prediction model has been well received since its inception attention of many scholars, it does not require much sample modeling, does not require a better distribution of the sample was calculated, and has strong adaptability less , gray model widely used in various fields and has made brilliant achievements. This paper is derived GM (1,1) model, the other on the gray correlation was further improved, so that the improved formula is unique and normative. University by giving examples of the incidence of infectious diseases, establishing the GM (1,1) prediction model and predict the incidence of infectious diseases in 1993. In addition to the high incidence of infectious diseases, dysentery, hepatitis, malaria, made the three diseases, correlation analysis, found that dysentery is most closely with the infectious disease, and hepatitis, malaria and infectious diseases, the closeness of the order of hearing. Key words:Grey prediction model ; Grey relational grade;Grey system theory

灰色预测模型理论及其应用

灰色预测模型理论及其 应用 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

灰色预测模型理论及其应用灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测. 尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测. 灰色预测模型只需要较少的观测数据即可,这和时间序列分析,多元回归分析等需要较多数据的统计模型不一样. 因此,对于只有少量观测数据的项目来说,灰色预测是一种有用的工具.本文主要围绕灰色预测GM(1,1)模型及其应用进行展开。 一、灰色系统及灰色预测的概念 灰色系统 灰色系统产生于控制理论的研究中。 若一个系统的内部特征是完全已知的,即系统的信息是充足完全的,我们称之为白色系统。 若一个系统的内部信息是一无所知,一团漆黑,只能从它同外部的联系来观测研究,这种系统便是黑色系统。 灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。 区别白色和灰色系统的重要标志是系统各因素间是否有确定的关系。 特点:灰色系统理论以“部分信息已知、部分信息未知”的“小样本”、“贫信息”不确定型系统的研究对象。 灰色预测 灰色系统分析方法是通过鉴别系统因素之间发展趋势的相似或相异程度,即进行关联度分析,并通过对原始数据的生成处理来寻求系统变动的规律。生成数据序列有较强的规律性,可以用它来建立相应的微分方程模型,从而预测事物未来的发展趋势和未来状态。灰色预测是用灰色模型GM(1,1)来进行定量分析的,通常分为以下几类: (1) 灰色时间序列预测。用等时距观测到的反映预测对象特征的一系列数量(如产量、销量、人口数量、存款数量、利率等)构造灰色预测模型,预测未来某一时刻的特征量,或者达到某特征量的时间。 (2) 畸变预测(灾变预测)。通过模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。 (3) 波形预测,或称为拓扑预测,它是通过灰色模型预测事物未来变动的轨迹。 (4) 系统预测,是对系统行为特征指标建立一族相互关联的灰色预测理论模型,在预测系统整体变化的同时,预测系统各个环节的变化。 上述灰预测方法的共同特点是: (1)允许少数据预测; (2)允许对灰因果律事件进行预测,比如

灰色预测理论以及模型

第7章 灰色预测方法 预测就是借助于对过去的探讨去推测、了解未来。灰色预测通过原始数据的处理和灰色模型的建立,发现、掌握系统发展规律,对系统的未来状态做出科学的定量预测。对于一个具体的问题,究竟选择什么样的预测模型应以充分的定性分析结论为依据。模型的选择不是一成不变的。一个模型要经过多种检验才能判定其是否合适。只有通过检验的模型才能用来进行预测。本章将简要介绍灰数、灰色预测的概念,灰色预测模型的构造、检验、应用,最后对灾变预测的原理作了介绍。 7.1 灰数简介 7.1.1 灰数 灰色系统理论中的一个重要概念是灰数。灰数是指未明确指定的数,即处在某一范围内的数,灰数是区间数的一种推广。 灰色系统用灰数、灰色方程、灰色矩阵等来描述,其中灰数是灰色系统的基本“单元”或“细胞”。 我们把只知道大概范围而不知其确切值的数称为灰数。在应用中,灰数实际上指在某一个区间或某个一般的数集内取值的不确定数,通常用记号“?”表示灰数。 灰数有以下几类: 1. 仅有下界的灰数 有下界而无上界的灰数记为[)∞∈?,a 或()a ?,其中a 为灰数?的下确界,它是一个确定的数,我们称[]∞,a 为?的取数域,简称?的灰域。 一棵生长着的大树,其重量便是有下界的灰数,因为大树的重量必大于零,但不可能用一般手段知道其准确的重量,若用?表示大树的重量,便有[)∞∈?,0。 2. 仅有上界的灰数 有上界而无下界的灰数记为(,]a ?∈-∞或()a ?,其中a 为灰数?的上确界,是一个确定的数。 一项投资工程,要有个最高投资限额,一件电器设备要有个承受电压或通过电

流的最高临界值。工程投资、电器设备的电压、电流容许值都是有上界的灰数。 3. 区间灰数 既有下界a 又有上界a 的灰数称为区间灰数,记为[] a a ,∈?。 海豹的重量在20~25公斤之间,某人的身高在1.8~1.9米之间,可分别记为 []25,201∈?,[]9.1,8.12∈? 4. 连续灰数与离散灰数 在某一区间内取有限个值或可数个值的灰数称为离散灰数,取值连续地充满某一区间的灰数称为连续灰数。 某人的年龄在30到35之间,此人的年龄可能是30,31,32,33,34,35这几个数,因此年龄是离散灰数。人的身高、体重等是连续灰数。 5. 黑数与白数 当()∞∞-∈?,或()21,??∈?,即当?的上、下界皆为无穷或上、下界都是灰数时,称?为黑数。 当[,]a a ?∈且a a =时,称?为白数。 为讨论方便,我们将黑数与白数看成特殊的灰数。 6. 本征灰数与非本征灰数 本征灰数是指不能或暂时还不能找到一个白数作为其“代表”的灰数,比如一般的事前预测值、宇宙的总能量、准确到秒或微妙的“年龄”等都是本征灰数。 非本征灰数是指凭先验信息或某种手段,可以找到一个白数作为其“代表”的灰数。我们称此白数为相应灰数的白化值,记为?~ ,并用()a ?表示以a 为白化值的灰数。如托人代买一件价格100元左右的衣服,可将100作为预购衣服价格()100?的白化数,记为()100100~=?。 从本质上来看,灰数又可分为信息型、概念型、层次型三类。 1.信息型灰数,指因暂时缺乏信息而不能肯定其取值的数,如:预计某地区今年夏粮产量在100万吨以上,[)∞∈?,100;估计某储蓄所年底居民存款总额将 达7000万到9000万,[]9000 ,7000∈?;预计西安地区5月份最高气温不超过36℃,[]36,0∈?。这些都是信息型灰数。由于暂时缺乏信息,不能肯定某数的确切取值,而到一定的时间,通过信息补充,灰数可以完全变白。

灰色预测实例

第一题 k N m k b p k N m L g f mgp S )() (1 ∑--=--+--= 当m<=N 时 f mgp S -= 当m>N 时 k N m k b p k N m L g f mgp S )() (1 ∑--=--+--= 现在设旅客达到机场概率为p=90%,N=300,f=0.6Ng ,g L b 5.0= 现在 k m k p k m g g mg S )300(*5.1180*9.0301 ∑-=----= 取m=301 经过计算得到 S=(90.9-2.53*10^(-14))*g 取m=302经过计算得到 S=(91.8-8.095*10^(-13))*g 取m=307经过计算得到

S=(96.3-4.065*10^(-8))*g 取m=311经过计算得到 S=(99.9-9.865*10^(-6))*g 取m=318经过计算得到 S=(106.2-5.68*10^(-3))*g 取m=325经过计算得到 S=(112.5-2.59*10^(-1))*g 取m=332经过计算得到 S=(118.8-2.42)*g=116.38*g 取m=336经过计算得到 S=(122.4-5.42)*g=116.98g 取m=337经过计算得到 S=(123.3-6.38)*g=116.92g 所以航空公司在出售336张票的时候收益最大值为116.98g, 由于这只是单方面考虑到肮空公司的利润,在实际中,国内超售可以达到5%,国外一般是2%。对于拒载的赔偿问题,早已有法律规定是按照里程数进行赔偿,

程序 m=337; x=0.9*m-180 y=0; for k=0:1:(m-301) y=y+(m-300-k)*nchoosek(m,k)*0.1^(k)*0.9^(m-k); end 1.5*y 第二题 首先假设购买打折票的旅客与全票的旅客不到概率是一样的都为p a 为购买打折票未到的人数, b 为购买全票未到的人数,k 为未到达的人数,k=a+b 。 r 为打折票的价格,j 为购买打折票的人数。 ?? ?>--------+<-----+=N k m L a N b m f g a j N rj N k m f g b a j m rj s b )())(())(( ∑==m k k k p s s 0 b j m b b j m a j a a j k p q C p q C p ----= ∑∑-=--=-----+-++-+--+m N m k b N m k x p L a N b m f g a j N rj k p f g a b j m rj ) ())()(()())((10 =

相关文档
最新文档