高考数学统考一轮复习第7章立体几何第1节空间几何体的结构及其表面积体积教师用书教案理新人教版

高考数学统考一轮复习第7章立体几何第1节空间几何体的结构及其表面积体积教师用书教案理新人教版
高考数学统考一轮复习第7章立体几何第1节空间几何体的结构及其表面积体积教师用书教案理新人教版

第7章立体几何

全国卷五年考情图解高考命题规律把握

1.考查形式

高考在本章一般命制2道小题、1

道解答题,分值约占22分.

2.考查内容

(1)小题主要考查三视图、几何体

体积与表面积计算,此类问题属于

中档题目;对于球与棱柱、棱锥的

切接问题,知识点较整合,难度稍

大.

(2)解答题一般位于第18题或第19

题的位置,常设计两问:第(1)问

重点考查线面位置关系的证明;第

(2)问重点考查空间角,尤其是二

面角、线面角的计算.属于中档题

目.

空间几何体的结构及其表面积、体积

[考试要求] 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.

2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.

3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.

4.了解球、棱柱、棱锥、台体的表面积和体积的计算公式.

1.多面体的结构特征

名称棱柱棱锥棱台

图形

底面互相平行且全等多边形互相平行且相似侧棱互相平行且相等相交于一点,但不一定相等延长线交于一点

侧面形状平行四边形三角形梯形

(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.

(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.

3.旋转体的结构特征

名称圆柱圆锥圆台球

图形

母线互相平行且相

等,垂直

于底面

长度相等且相交

于一点

延长线交于一点

轴截面全等的矩形全等的等腰三角

全等的等腰梯形圆

侧面展开图矩形扇形扇环

旋转图形矩形直角三角形直角梯形半圆三视图画法规则:长对正、高平齐、宽相等

直观图斜二测画法:

(1)原图形中x轴、y轴、z轴两两垂直,直观图中x′轴、y′轴的夹角为45°(或

135°),z ′轴与x ′轴和y ′轴所在平面垂直.

(2)原图形中平行于坐标轴的线段在直观图中仍平行于坐标轴,平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段在直观图中长度

为原来的一半.

5.圆柱、圆锥、圆台的侧面展开图及侧面积公式

圆柱

圆锥

圆台

侧面展开图

侧面积公式

S 圆柱侧=2πrl

S 圆锥侧=πrl

S 圆台侧=π(r 1+r 2)l

名称

几何体

表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =S 底h 锥体(棱锥和圆锥) S 表面积=S 侧+S 底 V =1

3

S 底h

台体(棱台和圆台)

S 表面积=S 侧+S 上+S 下

V =1

3

(S 上+S 下+S 上S 下)h

S =4πR 2

V =43

πR 3

[常用结论]

1.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系: S 直观图=

24S 原图形

,S 原图形=22S 直观图. 2.多面体的内切球与外接球常用的结论

(1)设正方体的棱长为a ,则它的内切球半径r =a 2,外接球半径R =3

2a .

(2)设长方体的长、宽、高分别为a ,b ,c ,则它的外接球半径R =a 2+b 2+c 2

2

.

(3)设正四面体的棱长为a ,则它的高为H =63a ,内切球半径r =14H =6

12

a ,外接球半径R =34H =6

4

a .

一、易错易误辨析(正确的打“√”,错误的打“×”)

(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱. ( ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥. ( ) (3)菱形的直观图仍是菱形.

( ) (4)正方体、球、圆锥各自的三视图中,三视图均相同. ( )

[答案] (1)× (2)× (3)× (4)× 二、教材习题衍生

1.如图所示,长方体ABCD -A ′B ′C ′D ′中被截去一部分,其中EH ∥A ′D ′,则剩下的几何体是( )

A .棱台

B .四棱柱

C .五棱柱

D .简单组合体

C [由几何体的结构特征知,剩下的几何体为五棱柱.]

2.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) A .12π B .32

3

π C .8π D .4π

A [由题意可知正方体的棱长为2,其体对角线23即为球的直径,所以球的表面积为4πR 2=(2R )2π=12π,故选A .]

3.已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( ) A .1 cm B .2 cm C .3 cm

D .3

2

cm

B [S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,∴r 2=4, ∴r =2(cm).]

4.已知某几何体的三视图如图所示,则该几何体的体积为 .

16

3

π [由三视图可知,该几何体是一个圆柱挖去了一个同底等高的圆锥,其体积为π×22×2-13π×22×2=16

3

π.]

考点一 空间几何体的三视图、直观图和展开图

1.三视图画法的基本原则

长对正,高平齐,宽相等;画图时看不到的线画成虚线. 2.由三视图还原几何体的步骤

3.直观图画法的规则:斜二测画法.

4.通常利用空间几何体的表面展开图解决以下问题:(1)求几何体的表面积或侧面积;(2)求几何体表面上任意两个点的最短表面距离.

三视图

[典例1-1] (1)(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )

A B C D

(2)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 为棱BB 1的中点,过点A ,E ,C 1的平面

截去该正方体的上半部分,则剩余几何体的侧视图为()

A B C D

(3)(2020·全国卷Ⅱ)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()

A.E B.F C.G D.H

(1)A(2)C(3)A[(1)由题意知,在咬合时带卯眼的木构件中,从俯视方向看,榫头看不见,所以是虚线,结合榫头的位置知选A.

(2)过点A,E,C1的截面如图所示,由图可知该剩余几何体的侧视图为C.

(3)由三视图知,该几何体是由两个长方体组合而成的,其直观图如图所示,由图知该端点在侧视图中对应的点为E,故选A.]

点评:画三视图时,可先找出各个顶点在投影面上的投影,然后再确定连线在投影面上的虚实.

直观图

[典例1-2]已知正三角形ABC的边长为a,那么△ABC的平面直观图△A′B′C′的面积为()

A.

3

4a

2B.

3

8a

2C.

6

8a

2D.

6

16a

2

D[法一:如图①②所示的实际图形和直观图,

由图②可知,A′B′=AB=a,O′C′=1

2OC=

3

4a,

在图②中作C′D′⊥A′B′于D′,

则C′D′=

2

2O′C′=

6

8a,

所以S△A′B′C′=1

2A′B′·C′D′=

1

2×a×

6

8a=

6

16a

2.

法二:S△ABC=1

2×a×a sin 60°=

3

4a

2,

又S直观图=

2

4S原图=

2

3

4a

2=

6

16a

2.故选D.]

点评:直观图的面积问题常常有两种解法:一是利用斜二测画法求解,注意“斜”及“二

测”的含义;二是直接套用等量关系:S直观图=

2

4S原图形.

展开图

[典例1-3]如图,在直三棱柱ABC-A1B1C1中,AB=2,BC=3,AC=1,AA1=3,F 为棱AA1上的一动点,则当BF+FC1最小时,△BFC1的面积为.

15

2[将直三棱柱ABC-A1B1C1沿棱AA1展开成平面,连接BC1(图略),与AA1的交点即为满足BF+FC1最小时的点F,∵直三棱柱ABC-A1B1C1中,AB=2,BC=3,AC=1,AA1

=3,再结合棱柱的性质,可得A 1F =1

3

AA 1=1,故AF =2.

由图形及棱柱的性质,可得BF =4+4=22,

FC 1=

1+1=2,BC 1=

3+9=23,

cos ∠BFC 1=BF 2+FC 21-BC 212×BF ×FC 1=8+2-122×22×2

=-1

4.

故sin ∠BFC 1=

1-116=15

4

, ∴△BFC 1的面积为 S =1

2×BF ×FC 1×sin ∠BFC 1 =12×22×2×154=152

.] 点评:本题在探求BF +FC 1最小时,采用了化曲为直的策略,将空间问题平面化,在解决空间折线段最短问题时可适当考虑其展开图.

[跟进训练]

1.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )

A .217

B .2 5

C .3

D .2

B [先画出圆柱的直观图,根据题图的三视图可知点M ,N 的位置如图1所示.

图1 图2

圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图2所示,连接MN ,则图中MN 即为M 到N 的最短路径.ON =1

4

×16=4,OM =2,

∴MN =

OM 2+ON 2=

22+42=2 5.

故选B.]

2.某几何体的正视图和侧视图如图①所示,它的俯视图的直观图是矩形O1A1B1C1,如图②,其中O1A1=6,O1C1=2,则该几何体的侧面积为()

A.48 B.64 C.96 D.128

C[由题意可知俯视图的直观图面积为2×6=12,

故俯视图的面积为24 2.

又由三视图可知该几何体为直四棱柱,且高为4,底面为边长为6的菱形.

所以几何体的侧面积为6×4×4=96.故选C.]

考点二空间几何体的表面积与体积

1.空间几何体表面积的求法

(1)旋转体的表面积问题注意其侧面展开图的应用.

(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.

(3)以三视图为载体的需确定几何体中各元素之间的位置关系及数量.

2.空间几何体体积问题的常见类型及解题策略

(1)直接利用公式进行求解.

(2)用转换法、分割法、补形法等方法进行求解.

(3)以三视图的形式给出的应先得到几何体的直观图.

空间几何体的表面积

[典例2-1](1)若某空间几何体的三视图如图所示,则该几何体的表面积是()

A.48+π B.48-π

C.48+2π D.48-2π

(2)(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()

A.122π B.12π C.82π D.10π

(3)(2020·全国卷Ⅰ)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()

A.64π B.48π C.36π D.32π

(1)A(2)B(3)A[(1)该几何体是正四棱柱挖去了一个半球,正四棱柱的底面是正方形(边长为2),高为5,半球的半径是1,那么该几何体的表面积为S=2×2×2+4×2×5-π×12+2π×12=48+π,故选A.

(2)因为过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+2π×2×22=12π.

(3)如图所示,设球O的半径为R,⊙O1的半径为r,因为⊙O1的面积为4π,所以4π=πr2,

解得r=2,又AB=BC=AC=OO1,所以AB

sin 60°=2r,解得AB=23,故OO1=23,所以R

2=OO21+r2=(23)2+22=16,所以球O的表面积S=4πR2=64π.故选A.]

点评:解答本题T(1)时易误认为几何体的上底面不存在,导致计算错误.

空间几何体的体积

求空间几何体的体积的常用方法

[典例2-2] (1)如图所示,正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A -B 1DC 1的体积为( )

A .3

B .32

C .1

D .

32

(2)(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )

A .90π

B .63π

C .42π

D .36π

(3)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1

的体积为 .

(1)C (2)B (3)1

3 [(1)(直接法)如题图,在正三角形ABC 中,D 为BC 中点,

则有AD =

3

2

AB =3, 又∵平面BB 1C 1C ⊥平面ABC ,平面BB 1C 1C ∩平面ABC =BC ,AD ⊥BC ,AD ?平面ABC ,由面面垂直的性质定理可得AD ⊥平面BB 1C 1C ,即AD 为三棱锥A -B 1DC 1的底面B 1DC 1上的高,

(2)法一(分割法):由题意知,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积V 1=π×32×4=36π.

上半部分是一个底面半径为3,高为6的圆柱的一半, 其体积V 2=1

2

×π×32×6=27π.

所以该组合体的体积V =V 1+V 2=36π+27π=63π.

法二(补形法):由题意知,该几何体是一圆柱被一平面截去一部分后所得的几何体,在该几何体上方再补上一个与其相同的几何体,让截面重合,则所得几何体为一个圆柱,故圆柱的底面半径为3,高为10+4=14,该圆柱的体积V 1=π×32×14=126π.

故该几何体的体积为圆柱体积的一半, 即V =1

2

V 1=63π.

法三(估值法):由题意,知1

2V 圆柱<V 几何体<V 圆柱.又V 圆柱=π×32×10=90π,所以45π

<V 几何体<90π.观察选项可知只有63π符合.

(3)(等体积法)如图,

∵正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,

∴S △ANM =12×1×1=1

2

∴V A -NMD 1=V D 1-AMN =13×12×2=1

3.] 点评:处理体积问题的思路

(1)“转”:指的是转换底面与高,将原来不易求面积的底面转换为易求面积的底面,或将原来不易看出的高转换为易看出并易求解长度的高,即等体积法;

(2)“拆”:指的是将一个不规则的几何体拆成几个简单的几何体,便于计算,即分割法; (3)“拼”:指的是将小几何体嵌入一个大几何体中,如将一个三棱锥复原成一个三棱柱,将一个三棱柱复原成一个四棱柱,这些都是拼补的方法,即补形法.

[跟进训练]

1.(2019·浙江高考)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V

柱体

=Sh ,其中S 是柱体的底面

积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm 3)是( )

A .158

B .162

C .182

D .324

B [由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为

? ??

??2+62×3+4+62×3×6=162.故选B .] 2.若正四棱锥的底面边长和高都为2,则其表面积为 .

4+45 [如图.

由题意知底面正方形的边长为2,正四棱锥的高为2, 则正四棱锥的斜高PE =

22+12= 5.

所以该四棱锥的侧面积S =4×1

2×2×5=45,

∴S 表=2×2+45=4+4 5.]

考点三 与球有关的切、接问题

与球有关的切、接问题的解法

(1)旋转体的外接球:常用的解题方法是过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.

(2)多面体的外接球:常用的解题方法是将多面体还原到正方体和长方体中再去求解. ①若球面上四点P ,A ,B ,C 中P A ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体,利用2R =

a 2+

b 2+

c 2求R .

②一条侧棱垂直底面的三棱锥问题:可补形成直三棱柱.先借助几何体的几何特征确定球心位置,然后把半径放在直角三角形中求解.

[典例3] (1)(2020·全国卷Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为 .

(2)(2020·福建十校联考)已知三棱锥P -ABC 的三条侧棱两两互相垂直,且AB =5,BC =7,AC =2,则此三棱锥的外接球的体积为( )

A .83π

B .823π

C .163π

D .323

π

(3)已知直三棱柱ABC -A 1B 1C 1的各顶点都在以O 为球心的球面上,且∠BAC =3π4,AA 1=

BC =2,则球O 的体积为( )

A .43π

B .8π

C .12π

D .20π (1)

2

3

π (2)B (3)A [(1)易知半径最大的球即为该圆锥的内切球.圆锥PE 及其内切球O 如图所示,设内切球的半径为R ,则sin ∠BPE =R OP =BE PB =1

3,所以OP =3R ,所以PE =4R

=PB 2-BE 2=32-12=22,所以R =22,所以内切球的体积V =43πR 3=2

3

π,即该圆锥内半径最大的球的体积为

23

π.

(2)∵AB =5,BC =7,AC =2,∴P A =1,PC =3,PB =2.以P A ,PB ,PC 为过同一顶点的三条棱,作长方体如图所示,

则长方体的外接球同时也是三棱锥P -ABC 的外接球. ∵长方体的体对角线长为1+3+4=22, ∴球的直径为22,半径R =2,

因此,三棱锥P -ABC 外接球的体积是43πR 3=43π×(2)3=82

3

π.故选B .

(3)在底面△ABC 中,由正弦定理得底面△ABC 所在的截面圆的半径为r =BC

2sin ∠BAC =

22sin

3π4

=2,

则直三棱柱ABC -A 1B 1C 1的外接球的半径为R =

r 2+????AA 122

=(2)2+12

=3,

则直三棱柱ABC -A 1B 1C 1的外接球的体积为4

3πR 3=43π.故选A .]

[母题变迁]

1.若将本例(3)的条件“∠BAC =

4

,AA 1=BC =2”换为“AB =3,AC =4,AB ⊥AC ,

AA 1=12”,则球O 的半径为 .

13

2

[如图所示,过球心作平面ABC 的垂线,则垂足为BC 的中点M .

又AM =12BC =52,OM =1

2AA 1=6,

所以球O 的半径

R =OA =

????522

+62=132

.]

2.若将本例(3)的条件改为“正四面体的各顶点都在以O 为球心的球面上”,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为 .

63π [设正四面体棱长为a ,则正四面体表面积为S 1=4×34·a 2

=3a 2,其内切球半径r 为正四面体高的14

即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2

=πa 2

6,

则S 1S 2=3a 2πa 26

=63π

.] 3.若将本例(3)的条件改为“侧棱和底面边长都是32的正四棱锥的各顶点都在以O 为球心的球面上”,则其外接球的半径为 .

3 [依题意,得该正四棱锥底面对角线的长为32×2=6,高为

(32)2

-????

12×62

=3,

因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.]

点评:通过本例(3)及母题变迁训练,我们可以看出构造法、补形法等是处理“外接”问题的主要方法,其关键是找到球心,借助勾股定理求球的半径.

(1)锥体的外接球问题,解决这类问题的关键是抓住外接球的特点,即球心到各个顶点的距离等于球的半径.

(2)柱体的外接球问题,其解题关键在于确定球心在多面体中的位置,找到球的半径或直径与多面体相关元素之间的关系,结合原有多面体的特性求出球的半径,然后再利用球的表面积和体积公式进行正确计算.

[跟进训练]

1.(2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )

A .12 3

B .18 3

C .24 3

D .543 B [由等边△ABC 的面积为93, 可得

34

AB 2

=93,所以AB =6, 所以等边△ABC 的外接圆的半径为r =

3

3

AB =2 3. 设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=

16-12

=2.

所以三棱锥D -ABC 高的最大值为2+4=6,

所以三棱锥D -ABC 体积的最大值为13

×93×6=18 3.]

2.(2020·南宁模拟)已知三棱锥P -ABC 中,△ABC 为等边三角形,P A =PB =PC =3,P A ⊥PB ,则三棱锥P -ABC 的外接球的体积为( )

A .27π2

B .273π2

C .273π

D .27π

B [∵三棱锥P -AB

C 中,△ABC 为等边三角形,P A =PB =PC =3,

∴△P AB ≌△PBC ≌△P AC . ∵P A ⊥PB ,∴P A ⊥PC ,PC ⊥PB .

以P A ,PB ,PC 为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥P -ABC 的外接球.

∵正方体的体对角线长为32+32+32=33,∴其外接球半径R =

33

2

.因此三棱锥P -ABC 的外接球的体积V =

4π3×????3323

=273π2

.]

核心素养5 用数学眼光观察世界——巧解简单几何体的外接球与内切球问题

简单几何体外接球与内切球问题是立体几何中的难点,也是历年高考重要的考点,几乎每年都要考查,重在考查考生的直观想象能力和逻辑推理能力.此类问题实质是解决球的半径长或确定球心O 的位置问题,其中球心的确定是关键. 下面从六个方面分类阐述该类问题的求解策略.

利用长方体的体对角线探索外接球半径

[素养案例1] 已知边长为2的等边三角形ABC ,D 为BC 的中点,沿AD 进行折叠,使折叠后的∠BDC =π

2

,则过A ,B ,C ,D 四点的球的表面积为( )

A .3π

B .4π

C .5π

D .6π

C [连接BC (图略),由题知几何体ABC

D 为三棱锥,BD =CD =1,AD =3,BD ⊥AD ,CD ⊥AD ,BD ⊥CD ,将折叠后的图形补成一个长、宽、高分别是3,1,1的长方体,其体对角线长为

1+1+3=5,故该三棱锥外接球的半径是

5

2

,其表面积为5π.] [评析] 若几何体存在三条两两垂直的线段或者三条线有两条垂直,可构造墙角模型(如下图),直接用公式(2R )2=a 2+b 2+c 2求出R .

[素养培优]

(2020·河北重点中学6月联考)阿基米德是伟大的古希腊数学家,他和高斯、牛顿并称为世界三大数学家.他的一个重要数学成就是“圆柱容球”定理,即在带盖子的圆柱形容器(容器的厚度忽略不计)里放一个球,该球与圆柱形容器的两个底面和侧面都相切,则球的体积是圆柱形容器的容积的23,并且球的表面积也是圆柱形容器的表面积的2

3.则该圆柱形容器的容积

与它的外接球的体积之比为( )

A .328

B .24

C .23

D .2

3

A [设容器里所放球的半径为R ,则圆柱形容器的底面半径为R ,设圆柱形容器的高为h , 由题意知h =2R ,圆柱形容器的外接球的半径为???

?2R 22

+R 2=2R . 圆柱形容器的容积V =πR 2·2R =2πR 3, V 外接球=43π(2R )3=823πR 3

所以V V 外接球=2πR 3823

πR 3

=32

8,故选A .]

利用长方体的面对角线探索外接球半径

[素养案例2] 三棱锥S -ABC 中,SA =BC =13,SB =AC =5,SC =AB =10.则三棱锥的外接球的表面积为 .

14π [如图,在长方体中,设AE =a ,BE =b ,CE =c .

则SC=AB=a2+b2=10,

SA=BC=b2+c2=13,

SB=AC=a2+c2= 5.

从而a2+b2+c2=14=(2R)2,可得S=4πR2=14π.故所求三棱锥的外接球的表面积为14π.] [评析]三棱锥的相对棱相等,探寻球心无从着手,注意到长方体的相对面的面对角线相等,可在长方体中构造三棱锥,从而巧妙探索外接球半径.

[素养培优]

(2019·全国卷Ⅰ)已知三棱锥P-ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC 是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为() A.86π B.46π C.26π D.6π

D[因为点E,F分别为P A,AB的中点,所以EF∥PB,

因为∠CEF=90°,所以EF⊥CE,所以PB⊥CE.

取AC的中点D,连接BD,PD,易证AC⊥平面BDP,

所以PB⊥AC,又AC∩CE=C,AC,CE?平面P AC,所以PB⊥平面P AC,

所以PB⊥P A,PB⊥PC,因为P A=PB=PC,△ABC为正三角形,

所以P A⊥PC,即P A,PB,PC两两垂直,将三棱锥P-ABC放在正方体中.因为AB=2,所以该正方体的棱长为2,所以该正方体的体对角线长为6,所以三棱锥P-ABC的外接球的

半径R=

6

2,所以球O的体积V=

4

3

πR3=

4

3

π????62

3

=6π,故选D.]

利用底面三角形与侧面三角形的外心探索球心

[素养案例3]平面四边形ABCD中,AB=AD=CD=1,BD=2,BD⊥CD.将其沿对角线BD折成四面体A′BCD,使平面A′BD⊥平面BCD.若四面体A′BCD的顶点在同一球面上,则该球的体积为()

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和 体积公式汇总表 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积 =底S ,侧面积=侧S ,表面积S = 。 (3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积 =底S ,侧面积=侧S ,表面积S = 。 (4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。 4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的 (1)全面积:S 全2a ; (2)体积:3a ; (3)对棱中点连线段的长:a ; (4)对棱互相垂直。 (5)外接球半径:R= a ; (6)内切球半径; r= a 5、正方体与球的特殊位置结论; 空间几何体练习题 1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则 1V :2V 是( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 2.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A. ππ221+ B. ππ421+ C. ππ21+ D. π π241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知 底面圆的半径为1,求该圆锥的体积。 4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。

立体图形表面积和体积教案

教学内容: 教科书第98页例4及做一做。 教学目标: 1.学生在整理、复习的过程中,进一步熟悉立体图形的表面积和体积的内涵,能灵活地计算它们的表面积和体积,加强知识之间的内在联系,将所学知识进一步条理化和系统化。 2.在学生对立体图形的认识和理解的基础上,进一步培养空间观念。 3.让学生在解决实际问题的过程中,感受数学与生活的联系,体会数学的价值,进一步培养学生的合作意识和创新精神 重点、难点: 1.灵活运用立体图形的表面积和体积的计算方法解决实际问题。 2.沟通立体图形体积计算方法之间的联系。 教学准备: 课件 教学过程 一、回忆旧知,揭示课题一 1、谈话揭示课题。 师:昨天我们对立体图形的认识进行了整理和复习,今天我们来走入立体图形的表面积和体积的整理与复习。(板书:立体图形表面积和体积的整理与复习) 2、看到课题,你准备从哪些方面去进行整理和复习。(板书:意义、计算方法) 二、回顾整理、建构网络 1、立体图形的表面积和体积的意义。 (1)提问:什么是立体图形的表面积?你能举例说明吗? (2)提问:什么是立体图形的体积?你能举例说明吗? (3)教师小结:立体图形的表面积就是指一个立体图形所有的面的面积总和,立体图形的体积就是指一个立体图形所占空间的大小。 2、小组合作,系统整理――立体图形的表面积和体积的计算方法。 (1)独立整理。 刚才我们已经对立体图形的表面积和体积的意义进行了整理。下面,请同学们用

自己喜欢的方式,将对立体图形的计算方法进行整理。 (2)整理好的同学请在小组中说一说你是怎样进行整理的? 3、汇报展示,交流评价 哪一个同学自愿上讲台展示、汇报你的整理情况。其余的同学要注意认真地看,仔细地听,待会对他整理情况说说你的看法或者有什么好的建议。(注意计算公式与学生的评价) 4、归纳总结,升华提高 (1)公式推导。 刚才,我们已经对立体图形表面积和体积的计算公式进行了整理。那么,这些计算公式是怎样推导出来的?请同学们选择1-2种自己喜欢的图形,自己说一说。(2)反馈:谁自愿来说一说自己喜欢图形表面积或者体积公式的推导过程。 根据学生的回答,教师随机用课件演示每种立体图形的体积计算公式的推导过程。还有没有不同的? (3)教师小结:从立体图形的表面积和体积计算公式的推导过程中,我们不难发现有一个共同的特点:就是把新问题转化成已学过的知识,从而解决新问题,这种转化的方法、转化的思想,是我们数学学习中一种很常见、很重要的方法。(4)整理知识间的内在联系 ①同学们。我们已经对立体图形的表面积和体积计算公式进行了整理,并且也知道了这些公式的推导过程。那么,这些立体图形的表面积计算公式之间有什么内在联系?体积计算公式之间又有什么内在联系?对照自己整理的公式,想一想,然后把你想的法说给同桌听听。 ②反馈学生交流情况,明确其内在联系: a、立体图形的表面积计算公式的内在联系:长方体和圆柱体的表面积都可以用侧面积加两个底面积; b、立体图形的体积计算公式的内在联系:长方体体积计算公式推导出了正方体和圆柱的体积计算公式,也就是说正方体、圆柱的体积计算公式都是在长方体体积计算公式的基础上推导出来的;长方体、正方体、圆柱的体积都可以用底面积乘高来计算;等底等高的圆柱体的体积是圆锥的3倍,等体积等高的圆柱体的底面积是圆锥的,等体积等底的圆柱体的高是圆锥的。

立体几何表面积和体积习题(一)

立体几何周考(一) 一、选择题 1 .(2013年高考重庆卷(文))某几何体的三视图如题(8)所示,则该几何体的表面积为() A.180B.200C.220D.240 2 .(2013年高考课标Ⅱ卷(文))一个四面体的顶点在空间直角坐标系中的坐标分别是 ,画该四面体三视图中的正视图时,以平面为投影面,则得到正视图可以为()

A . B . C . D . 3 .(2013年高考课标Ⅰ卷(文))某几何函数的三视图如图所示,则该几何的体积为 ( ) A .168π+ B .88π+ C .1616π+ D .816π+ 4 .(2013年高考四川卷(文))一个几何体的三视图如图所示,则该几何体可以是( ) A .棱柱 B .棱台 C .圆柱 D .圆台 5 .(2013年高考浙江卷(文))已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是 ( ) A .108cm 3 B .100 cm 3 C .92cm 3 D .84cm 3 6 .(2013年高考北京卷(文))如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点, 则P 到各顶点的距离的不同取值有 ( )

A .3个 B .4个 C .5个 D .6个 7 .(2013年高考广东卷(文))某三棱锥的三视图如图2所示,则该三棱锥的体积是( ) A .16 B .13 C .23 D .1 8 .(2013年高考湖南(文))已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图的矩形,则该正方体的正视图的面积等于( ) A B .1 C D 9.(2013年高考山东卷(文))一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如右图所示该四棱锥侧面积和体积分别是( ) 图 2

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积 =底S ,侧面积=侧S ,表面积S = 。 (3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积 =底S ,侧面积=侧S ,表面积S = 。 (4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。 4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的 (1)全面积:S 全2a ; (2)体积:V=312a ; (3)对棱中点连线段的长:d= 2 a ; (4)对棱互相垂直。 (5)外接球半径:R= a ; (6)内切球半径; r= a 5、正方体与球的特殊位置结论; 空间几何体练习题 1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则1V :2V 是( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 2.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A. ππ221+ B. ππ421+ C. ππ21+ D. π π241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知 底面圆的半径为1,求该圆锥的体积。 4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。 5.圆柱的侧面展开图是长、宽分别为6π和π4的矩形,求圆柱的体积。 6.若圆台的上下底面半径分别为1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是( ) A. 2 B. C. 5 D. 10 7.圆柱的侧面展开图是长为12cm ,宽8cm 的矩形,则这个圆柱的体积为( )

空间几何体的表面积和体积

空间几何体的表面积和体积 [基础要点] 1.圆柱的表面积公式: 2.圆锥的表面积公式: 3.圆台的表面积公式: 4.圆锥的体积公式: 5.棱锥的体积公式: 6.圆台的体积公式: 7.球的表面积公式: 8.球的体积公式: 题型一、柱体的体积、表面积公式 例1、直平行六面体的底面为菱形,过不相邻两条侧棱的截面面积为12,Q Q ,求它的侧面积 变式:如图是一个平面截长方体得剩余部分,已知4,3,AB BC ==5,8AE BF ==, 12C G =,求几何体的体积 题型二、锥体、球体的体积和表面积公式 例2、正四面体棱长为a ,求其外接球和内切球的表面积 变式:一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球,求: (1)圆锥的侧面积 (2)圆锥的内切球的体积 题型三、台体的表面积与体积公式 例3、如图,已知正三棱台111A B C ABC -的两底面边长分别为2和8,侧棱长等于6,求三棱台的体积V D1 O1C1 D C B1 B A1 A O H

变式:用一块矩形铁皮作圆台形铁桶的侧面,要求铁桶的上底半径是24㎝,下底半径为16㎝,母线长为48㎝,则矩形铁皮的长边长是多少? 题型四、实际问题与几何体面积、体积的结合 例4、如图示,一个容器的盖子用一个正四棱台和一个球焊接而成,球的半径为R ,正四棱台的上、下底面边长分别是2.5R 和3R ,斜高为0.6R , (1)求这个容器盖子的表面积(用R 表示,焊接处对面积的影响忽略不计) (2)若R=2㎝,为盖子涂色时所用的涂料每0.4kg 可以涂1㎡,计算为100个这样的盖子涂色约需要多少千克。(精确到0.1kg ) 变式:某人买了一罐容积为V 升、高为a 米的直三棱柱型罐装进口液体车油,由于不小心摔落地上,结果有两处破损并发生渗漏,它们的位置分别在两条棱上且距底高度分别为,b c 的地方(单位:米),为了减少罐内液油的损失,该人采用罐口朝上,倾斜灌口的方式拿回家,试问罐内液油最理想的估计能剩多少? [自测训练] 1、已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则T S 等于( ) A 、 19 B 、49 C 、 14 D 、 13 2、圆柱的轴截面是边长为5㎝的正方形ABCD ,从A 到C 圆柱侧面上的最短距离为( ) A 、10㎝ B 、 2 542 π+㎝ C 、52㎝ D 、2 51π+㎝ 3、棱锥的高为16㎝,底面积为2 512cm ,平行于底面的截面积为2 50cm ,则截面与底面的距离为( ) A 、5㎝ B 、10㎝ C 、11㎝ D 、25㎝

球的体积与表面积教案设计(参考)

球的体积和表面积 一、教材分析 本节内容是数学2第一章空间几何体第3节空间几何体的表面积与体积的第2课时球的体积和表面积,是在学习了柱体、锥体、台体等基本几何体的基础上,通过空间度量形式了解另一种基本几何体的结构特征.从知识上讲,球是一种高度对称的基本空间几何体,同时它也是进一步研究空间组合体结构特征的基础;从方法上讲,它为我们提供了另外一种求空间几何体体积和表面积的思想方法;从教材编排上,更重视学生的直观感知和操作确认,为螺旋式上升的学习奠定了基础. 课时分配 本节内容用1课时的时间完成,主要讲解球的体积公式和表面积公式及公式的应用. 二、教学目标 知识与技能 (1)通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分割——求和——化为准确和”,有利于同学们进一步学习微积分和近代数学知识. (2)能运用球的面积和体积公式灵活解决实际问题. (3)培养学生的空间思维能力和空间想象能力. 过程与方法 通过球的体积和面积公式的推导,从而得到一种推导球体积公式3 3 4 =R V π和面积公式24=R S π的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想. 情感与价值观 通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心. 三、教学重点、难点 重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法.

难点:推导体积和面积公式中空间想象能力的形成,以及与球有关的组合体的表面积和体积的计算. 四、学法和教学用具 学法:学生思考老师提出的问题,通过阅读教材,发挥空间想象能力,了解并初步掌握“分割、求近似值、再由近似值的和转化为球的体积和面积”的解题方法和步骤. 教学用具:投影仪,旨在通过动态图形使得学生对球这一立体图形有一个直观的认识. 五、教学设计 创设情景 ⑴教师提出问题:乌鸦喝水的问题我们都知道, 只有一颗一颗的小圆石头往水瓶里投乌鸦才能喝到 水,那么我们是不是可以用数学方法精确的计算出乌 鸦具体需要投入几颗小圆石头呢?这里就涉及到了 小石子的体积了,假设小石子都是均匀的球体,我们 知道球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?引导学生进行思考. ⑵教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?激发学生推导球的体积和面积公式. 探究新知 1.球的体积: 如果用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片”,“小圆片”的体积的体积之和正好是球的体积,由于“小圆片”近似于圆柱形状,所以它的体积也近似于圆柱形状,所以它的体积有也近似于相应的圆柱和体积,因此求球的体积可以按【设计意图】通过大家所熟知的寓言小故事引出教学内容,提高学生学习兴趣.

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧21= ② 圆锥:l c S 底圆锥侧2 1 = 3 、 台体 ① 棱台:h c c S )(2 1 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2 、 锥体 ① 棱锥 ② 圆锥

3、 ① 棱台 ② 圆台 4、 球体 ① 球: r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h ' 计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2 的圆柱形容器内装一个最大的 球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 4 23 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) + = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(3 1 S S S S h V 下下 上 上台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1 由相似三角形的性质得: PF PE AB CD =

空间几何体的表面积和体积(教案)

41中高三数学第一轮复习—空间几何体的表面积和体积 一.命题走向 由于本讲公式多反映在考题上,预测008年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 二.要点精讲 1.多面体的面积和体积公式 表中S 表示面积,c ′、c 分别表示上、下底面周长,h 表斜高,h ′表示斜高,l 表示侧棱长。 2.旋转体的面积和体积公式 表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台 上、下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:?? ?=++=++24 )(420 )(2z y x zx yz xy )2()1( 由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16 所以l =4(cm)。

P A D O 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图,三棱柱ABC —A 1B 1C 1中,若E 、F 分别为AB 、AC 的中点,平面EB 1C 1将三棱柱分成体积为V 1、V 2的两部分,那么V 1∶V 2= ____ _。 解:设三棱柱的高为h ,上下底的面积为S ,体积为V ,则V=V 1+V 2=Sh 。 ∵E 、F 分别为AB 、AC 的中点, ∴S △AEF = 4 1S, V 1= 31h(S+4 1S+41?S )=127 Sh V 2=Sh-V 1= 12 5 Sh , ∴V 1∶V 2=7∶5。 点评:解题的关键是棱柱、棱台间的转化关系,建立起求解体积的几何元素之间的对应关系。最后用统一的量建立比值得到结论即可。 题型2:锥体的体积和表面积 例3.(2006上海,19)在四棱锥P -ABCD 中,底面是边长为2的菱形,∠DAB =60 ,对角线AC 与BD 相交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成的角为60 ,求四棱锥P -ABCD 的体积? 解:(1)在四棱锥P-ABCD 中,由PO ⊥平面ABCD,得∠PBO 是PB 与平面ABCD 所成的角,∠PBO=60°。 在Rt △AOB 中BO=ABsin30°=1, 由PO ⊥BO , 于是PO=BOtan60°=3,而底面菱形的面积为23。 ∴四棱锥P -ABCD 的体积V= 3 1 ×23×3=2。 点评:本小题重点考查线面垂直、面面垂直、二面角及其平面角、棱锥的体积。在能力方面主要考查空间想象能力。 例4.(2006江西理,12)如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC , DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( ) A .S 1S 2 C .S 1=S 2 D .S 1,S 2的大小关系不能确定 C

空间几何体表面积与体积公式大全

空间几何体的表面积与体积公式大全 一、全(表)面积(含侧面积) 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥: ②圆锥: 3、台体 ①棱台: ②圆台: 4、球体 ①球: ②球冠:略 ③球缺:略 二、体积 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥 ②圆锥

3、台体 ①棱台 ②圆台 4、球体 ①球: ②球冠:略 ③球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高计算;而圆锥、圆台的侧面积计算时使用母线计算。 三、拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的。

分析:圆柱体积: 圆柱侧面积: 因此:球体体积: 球体表面积: 通过上述分析,我们可以得到一个很重要的关系(如图) += 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式 公式: 证明:如图过台体的上下两底面中心连线的纵切面为梯形。 延长两侧棱相交于一点。 设台体上底面积为,下底面积为 高为。 易知:∽,设, 则 由相似三角形的性质得:

即:(相似比等于面积比的算术平方根) 整理得: 又因为台体的体积=大锥体体积—小锥体体积 ∴ 代入:得: 即: ∴ 4、球体体积公式推导 分析:将半球平行分成相同高度的若干层(),越大,每一层越近似于圆柱,时,每一层都可以看作是一个圆柱。这些圆柱的高为,则:每个圆柱的体积= 半球的体积等于这些圆柱的体积之和。 ……

空间几何体的表面积教案 王祥富

“空间几何体的表面积”教学设计 扬州中学 王祥富 一、教材分析: 1.地位与作用:空间几何体的表面积问题是生产、生活中的实际问题,研究这类问题有助于培养学生的数学应用意识;空间几何体的表面积问题是通向高等数学的一个生长点,一些曲边形的面积问题要运用积分的思想,这是渗透积分思想的一个很好载体;立体几何中的核心思想“立体问题平面化”的思想在本节也得到体现,把空间几何体展开成平面图形。棱柱、棱锥可以看成棱台的两种特殊情况,在积分的思想之下我们还可以体会圆柱、圆锥、圆台与棱柱、棱锥、棱台侧面积公式之间的一致性,体现了数学的统一美。 2.重点、难点:展开侧面,分析侧面展开图的性质;积分思想的渗透; 理解柱、锥、台之间的辨证统一; 二、教学目标: 1.知识与技能目标:了解柱、锥、台的表面积的计算公式,领会柱、锥、台的表面积计算公式推导的数学思想,并能运用公式解决一些数学问题。 2.过程目标:学生自己经历公式的推导过程,并借此领会相关的数学思想的作用。让学生猜测圆台侧面积公式,体会积分思想的意义。 3.情感目标:培养学生勇于探索、善于研究的精神,让学生有更多的数学把握感,增强学生能学好数学的自信心。 三、设计思想: 本节课如果仅仅从知识与技能目标来说,只需要把几组公式告诉学生,并让他们进行一些训练就能达到要求。这样做就失去渗透相关重要数学思想的机会,就失去让学生体会数学美的机会,这不符合新课程改革精神的要求,也不符合数学课程自身发展的规律。所以,在教学过程中,要提炼“立体问题平面化”的数学思想,要让学生体会棱柱、棱锥、棱台的统一美,渗透积分思想,进而让学生体会柱、锥、台之间的高度统一。 四、教学手段: 1.运用ppt 制作课件,做到图文并茂,激发学生思维的兴趣。 2.运用几何画板制作课件,创设探求空间,展现思维过程。 3.运用Flash 软件制作课件,展现分割过程,激发学生思维。 4.充分运用身边的几何体辅助教学。 五、教学过程: 1.创设问题情景引入课题 问题:底面半径为r ,母线长为l 的圆锥的表面积如何求? 学生分析表面积为侧面积和底面积之和,其中底面积为2 r ,侧面积为多少呢?学生感觉有难度。 r l

空间几何体的表面积和体积讲解及经典例题

空间几何体的表面积和体积 一.课标要求: 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 二.命题走向 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。 由于本讲公式多反映在考题上,预测2009年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 三.要点精讲 1.多面体的面积和体积公式 长。 2.旋转体的面积和体积公式 12

下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2 ,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:? ??=++=++24)(420 )(2z y x zx yz xy )2()1( 由(2)2 得:x 2 +y 2 +z 2 +2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2 =16 即l 2 =16 所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N , 从而OM=ON 。 ∴点O 在∠BAD 的平分线上。 (2)∵AM=AA 1cos 3 π =3×21=23 ∴AO=4 cos πAM =223 。 又在Rt △AOA 1中,A 1O 2 =AA 12 – AO 2 =9- 29=2 9,

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 1、圆柱体: 表面积:2πRr+2πRh 体积:πR2h (R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体: 表面积:πR2+πR[(h2+R2)的平方根]

体积:πR2h/3 (r为圆锥体低圆半径,h为其高, 3、正方体 a-边长,S=6a2 ,V=a3 4、长方体 a-长,b-宽,c-高S=2(ab+ac+bc) V=abc 5、棱柱 S-底面积h-高V=Sh 6、棱锥 S-底面积h-高V=Sh/3 7、棱台 S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3 8、拟柱体 S1-上底面积,S2-下底面积,S0-中截面积 h-高,V=h(S1+S2+4S0)/6 9、圆柱 r-底半径,h-高,C—底面周长 S底—底面积,S侧—侧面积,S表—表面积C=2πr S底=πr2,S侧=Ch ,S表=Ch+2S底,V=S底h=πr2h 10、空心圆柱 R-外圆半径,r-圆半径h-高V=πh(R^2-r^2) 11、直圆锥 r-底半径h-高V=πr^2h/3

12、圆台 r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3 13、球 r-半径d-直径V=4/3πr^3=πd^3/6 14、球缺 h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6 = πh2(3r-h)/3 15、球台 r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6 16、圆环体 R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4 17、桶状体 D-桶腹直径d-桶底直径h-桶高 V=πh(2D2+d2)/12 ,(母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15 (母线是抛物线形) 1.直线在平面的判定 (1)利用公理1:一直线上不重合的两点在平面,则这条直线在平面. (2)若两个平面互相垂直,则经过第一个平面的一点垂直于第二个平面的直线在第一个平面,即若α⊥β,A∈α,AB⊥β,则ABα. (3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面,即若A∈a,a⊥b,A∈α,b⊥α,则aα. (4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面,即若Pα,P∈β,β∥α,P∈a,a∥α,则aβ.

立体图形的表面积和体积整理复习教案

立体图形的表面积和体积整理复习 将乐城关中心小学揭金清 教学内容:北师大版六年级下图形与测量中的立体图形的表面积和体积 教学目标: 1、通过整理复习活动回忆梳理长方体、正方体、圆柱、圆锥等立体图形的表面积、体积知识,使学生加深理解表面积及体积的计算方法及内在联系。 2、培养自主合作学习的意识和能力,进一步发展空间观念。 3、能够灵活运用所学过的立体图形的特征和表面积、体积的计算方法解决简单的实际问题,体验数学与生活的联系。 教学重点: 通过整理复习梳理,明白长方体、正方体、圆柱、圆锥这些立体图形的表面积及体积的计算方法的及内在联系,建立立体图形的表面积及体积的完整知识网络。 教学难点: 能够灵活运用所学过立体图形的表面积、体积的计算方法解决简单的实际问题。 课前准备:布置学生整理有关立体图形表面积、体积的知识。 教学流程: 一、理 1、创设情境,导入课题。说“学而时习之、温故而知新”意思,导出复习,想“求什么”揭示课题。 2、整理复习表面积、体积知识。 (1)表面积、体积的意义。 师:刚才立体图形的特征大家都说得很全面,我们认识它们,还学习了它们的表面积和体积计算,谁能说一说,什么是立体图形的表面积?什么是立体图形的体积?它们有什么不同? (2)同桌交流,完善认识。 请大家拿出自己整理立体图形表面积、体积的知识,与同桌交流分享。 (3)汇报整理成果,形成知识网络。 (4)回顾推导过程,加深理解。

选择自己喜欢的立体图形汇报,并说一说公式是怎样推导出来的。(课件演示、实物演示) (5)观察比较,寻找内在联系,建构知识体系。 师:各种立体图形都有自己的表面积、体积的计算公式,公式间有什么联系吗? (表面积=侧面积+底面积×2 体积=底面积×高) 二、练 1、看图说列式。 2、判断题 1)、一个圆柱形的水桶能装水15升,我们就说水桶的体积是15立方分米。() 2)、如图把一个圆柱体削成一个最大的圆锥,削去体积是圆柱的2/3。() 3)下图中的正方体、圆柱和圆锥底面积相等,高也相等。圆锥的体积是正方体的1/3 。 ( ) 3、选一选。 汽油桶的底面半径3分米,高12分米 1)、这个汽油桶占地多少平方分米?() 2)、这样一个汽油桶能装汽油多少升?() 3)、做一个这样的油桶至少要铁皮多少平方分米?() A、 3.14 ×3 × 2 ×12 B、 3.14 ×32×12 C、3.14 ×3 × 2 ×12 + 3.14 ×32×2 D、 3.14 ×32 4、列式计算。 三、问 师:今天,我们一起复习了立体图形的表面积、体积有关计算,谁还有什么不明白的?可以提出来,相信一定有许多的小老师乐意为你排忧解难的。 四、拓

8.空间几何体的表面积和体积练习题

一、选择题(每小题5分,共计60分。请把选择答案填在答题卡上。) 1.以三棱锥各面重心为顶点,得到一个新三棱锥,它的表面积是原三棱锥表面积的 A.31 B.41 C.91 D.161 2.正六棱锥底面边长为a ,体积为323a ,则侧棱与底面所成的角等于 A. 6π B.4π C.3 π D.125π 3.有棱长为6的正四面体S-ABC ,C B A ''',,分别在棱SA ,SB ,SC 上,且S A '=2,S B '=3,S C '=4,则截面C B A '''将此正四面体分成的两部分体积之比为 A.91 B.81 C.41 D.31 4.长方体的全面积是11,十二条棱长的和是24,则它的一条对角线长是 A .32. B. 14 C. 5 D.6 5.圆锥的全面积是侧面积的2倍,侧面展开图的圆心角为α,则角α的取值范围是 A .(]??90,0 B (]??270,180 C (]??180,90 D Φ 6. 正四棱台的上、下底面边长分别是方程01892=+-x x 的两根,其侧面积等于两底面积的和,则其斜高与高分别为 A .25与2 B.2与2 3 C.5与 4 D.2与3 7.已知正四面体A-BCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体E-FGH 的表面积为T ,则S T 等于 A .91 B.94 C. 41 D.31 8. 三个两两垂直的平面,它们的三条交线交于一点O ,点P 到三个平面的距离比为1∶2∶3,PO=214,则P 到这三个平面的距离分别是 A .1,2,3 B .2,4,6 C .1,4,6 D .3,6,9 9.把直径分别为cm cm cm 10,8,6的三个铁球熔成一个大铁球,这个大铁球的半径是 A .cm 3 B.cm 6 C. cm 8 D.cm 12 9. 如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方 形,且BCF ADE ??、均为正三角形,EF ∥AB ,EF=2,则该 多面体的体积为 A.3/2 B.33 C.34 D.23 10.如图,在四面体ABCD 中,截面AEF 经过四面体的 内切球(与四个面都相切的球)球心O ,且与BC ,DC 分别交于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的 表面积分别是21S S 、,则必有 A.S 1S 2 C. S 1=S 2 D.21S 与S 的大小关系不能确定 D B A O E F

人教版9年级下册数学 由三视图确定几何体的表面积或体积教案与教学反思

第3课时由三视图确定几何体的表面积或 李度一中陈海思体积 【知识与技能】 熟练掌握已知空间几何体的三视图求其表面积和体积的方法. 【过程与方法】 1.通过空间几何体三视图的应用,培养学生的创新精神和探究能力. 2.通过研究性学习,培养学生的整体性思维. 【情感态度】 通过研究三视图,研究我国著名建筑物的三视图研究,培养学生的爱国情结. 【教学重点】 观察,实践,猜想和归纳的探究过程. 【教学难点】 如何引导学生进行合理的探究. 一、复习提问 1.如何求空间几何体的表面积和体积(例如:球,棱柱,棱台等); 2.三视图与其几何体如何转化. 二、思考探究,获取新知 如图是一个几何体的三视图,已知左视图是一个等边三角形,根据图中尺寸(单位:m),求该几何体的面积和体积. 解该几何体是正三棱柱,由正视图知正三棱柱的高为3cm,底面三角形的

高为3cm.则底面边长为2cm ,故S 底面面积=)(2cm 3232=÷ S 侧面面积=2×3×3=18 (cm2) 故这个几何体的表面积S = 2S 底面面积十S 侧面面积 =)(2cm 1832+ 三棱柱的体积是V=)(3cm 3333=? 【教学说明】空间几何体的表面积是几何体表面的面积,它表示几何体表面的大小,体积是几何体所占空间的大小;先将直观图的各个要素弄清 楚,然后再代公式进行计算. 求空间几何体的表面积是将几何体的各个面的面积相加求得;求体积是将几何体各个部分的体积相加求得,那么请同学们动脑筋想一想,假设没 有给出几何体的直观图,只是给出一个几何体的三视图,我们怎样解决求该几何体的表面积和体积呢?此时应首先将该三视图转化为几何体的直观图,然后弄清给出直观图的各个要素,再代公式进行计算 思考 如何求出四棱台的表面积和体积? 请大家回想一下,在解答的过程中,容易出错的地方是什么(让学生思考). 【总结归纳】求组合几何体的表面积的时候容易出错. 三、典例精析、掌握新知 例1 长方体的主视图与俯视图如图所示,则这个长方体的体积是( ) A.52 B.32 C24 D.9 【分析】由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和2,因此这个长方体的长、宽、高分别为4、3、2,因此这个长方体的体积为4×2×3 = 24(平 方单位) 【答案】C

空间几何体表面积和体积练习题

空间几何体的表面积和体积练习题 题1 一个圆锥与一个球的体积相等,圆锥的底面半径是球的半径的3倍,则圆锥的高与底面半径之比为( ) A.49 B.94 C.427 D.274 题2 正四棱锥P —ABCD 的五个顶点在同一个球面上,若该正四棱锥的底面边长为2,侧棱长为6,则此球的体积为________. 题3 一空间几何体的三视图如图所示,则该几何体的体积为( ) A .2π+2 3 B .4π+2 3 C .2π+233 D .4π+233 题4 如图,正方体ABCD -A 1B 1C 1D 1的棱长为2.动点E ,F 在棱A 1B 1上,点Q 是棱CD 的中点,动点P 在棱AD 上.若EF =1,DP =x ,A 1E =y (x ,y 大于零),则三棱锥P -EFQ 的体积.( ) A .与x ,y 都有关 B .与x ,y 都无关 C .与x 有关,与y 无关 D .与y 有关,与x 无关 题5 直角梯形的一个底角为45°,下底长为上底长的32 ,这个梯形绕下底所在直线旋转一周所成的旋转体的表面积是(5+2)π,求这个旋转体的体积. 题6 设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( ) A .πa 2 B.73πa 2 C.113πa 2 D .5πa 2 题7 在球心同侧有相距9 cm 的两个平行截面,它们的面积分别为49π cm 2和400π cm 2,求球的表面积. 题8 正四棱台的高为12cm ,两底面的边长分别为2cm 和12cm .(Ⅰ)求正四棱台的全面积;(Ⅱ)求正四棱台的体积. 题9 如图,已知几何体的三视图(单位:cm).(1)画出这个几何体的直观图(不要求写画法);(2)求这个几何体的表面积及体积. 题10 如图,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD ''-,求棱锥C A DD ''-的体积与剩余部分的体积之比. 题11 已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所

数学;15.4《几何体的表面积》教案(1)(沪教版高三上)

15.4 几何体的表面积 上海市第二中学胡毅 一、教学内容分析 几何体的表面积是在学习多面体和旋转体的概念后,进一步学习直棱柱、圆柱、正棱锥和圆锥的表面积公式.课本通过将几何体的侧面展开成平面图形,将几何体侧面积的计算转化为平面图形面积的计算,并能通过公式求得直棱柱、圆柱、正棱锥和圆锥的表面积.它是对几何体进行研究的重要方面. 通过将几何体的侧面展开成平面图形计算几何体的侧面积,说明将空间图形转化为平面图形是立体几何中的有效方法.能通过观察和分析几何体,研究其展开图的性质,理解直棱柱、圆柱、正棱锥和圆锥的表面积公式的推导过程,并会计算它们的表面积.会用球的表面积公式计算球的表面积. 二、教学目标设计 会通过将几何体的侧面展开成平面图形计算几何体的侧面积,进而计算几何体的表面积.理解直棱柱、圆柱、正棱锥和圆锥的侧面展开图,并会计算直棱柱、圆柱、正棱锥和圆锥的表面积.会计算球的表面积. 三、教学重点及难点 将空间图形转化为平面图形的方法;直棱柱、圆柱、正棱锥和圆锥的表面积公式. 四、教学流程设计 五、教学过程设计 一、情景引入 1.复习和回顾多面体和旋转体的定义

2.提出课题: (1)如何计算柱体(棱柱和圆柱)、锥体(棱锥和圆锥)的表面积? 将表面积分为底面和侧面两个部分分别加以计算,其中关于侧面积的计算,常用的方法是将该几何体的侧面展开成平面图形,转化为计算平面图形的面积. (2)如何展开? 将它们的侧面沿着一条侧棱或母线展开. 二、学习新课 1、直柱体的侧面积 (1)实物演示直棱柱的侧面展开图,提出问题: ①直棱柱的侧面展开图是什么图形?为什么? ②它的长和宽分别和直棱柱有什么关系? ③由此直棱柱的侧面积和表面积该如何计算? ④一般棱柱侧面积可否用这个侧面积计算公式?为什么? (2)实物演示圆柱的侧面展开图,提出问题: ①圆柱的侧面展开图是什么图形?为什么? ②圆柱的的侧面积和表面积计算公式与直棱柱能统一起来吗? 2、锥体的侧面积 实物演示正棱锥和圆锥的侧面展开图,提出问题: (1)正棱锥的侧面展开图有什么特点? (2)正棱锥的侧面积和表面积应如何计算? (3)圆锥的侧面展开图是什么图形?为什么?

立体几何 空间几何体的表面积与体积

第2讲空间几何体的表面积与体积 考点 考查柱、锥、台、球的体积和表面积,由原来的简单公式套用渐渐变为与三视图及柱、锥与球的接切问题相结合,难度有所增大. 【复习指导】 本讲复习时,熟记棱柱、棱锥、圆柱、圆锥的表面积和体积公式,运用这些公式解决一些简单的问题. 基础梳理 1.柱、锥、台和球的侧面积和体积 2. (1)棱柱、棱锥、棱台的表面积就是各面面积之和. (2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和.

两种方法 (1)解与球有关的组合体问题的方法,一种是切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心或“切点”、“接点”作出截面图. (2)等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高.这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值. 双基自测 1.(人教A版教材习题改编)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是( ). A.4πS B.2πS C.πS D.23 3 πS 解析设圆柱底面圆的半径为r,高为h,则r=S π , 又h=2πr=2πS,∴S圆柱侧=(2πS)2=4πS. 答案 A 2.(2012·东北三校联考)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为( ). A.3πa2 B.6πa2 C.12πa2 D.24πa2 解析由于长方体的长、宽、高分别为2a、a、a,则长方体的体对角线长为2a2+a2+a2=6a.又长方体外接球的直径2R等于长方体的体对角线,∴2R=6a.∴S球=4πR2=6πa2. 答案 B

相关文档
最新文档