牛顿—欧拉方程

牛顿—欧拉方程
牛顿—欧拉方程

《图解刚体力学——欧拉运动学方程》

本科生毕业论文 论文题目:图解刚体力学——欧拉运动学方程 学生姓名:罗加宽 学号: 2008021152 专业名称:物理学 论文提交日期: 2012年05月17日 申请学位级别:理学学士 论文评审等级: 指导教师姓名:陈洛恩 职称:教授 工作单位:玉溪师范学院 学位授予单位:玉溪师范学院 玉溪师范学院理学院物理系 2012年05月

图解刚体力学—欧拉运动学方程 罗加宽 (玉溪师范学院理学院物理系 08级物理1班云南玉溪 653100) 指导教师:陈洛恩、杨春艳 摘要:本文阐述了描述刚体定点转动的欧拉角及欧拉运动学方程的图解,以期让复杂的问题转 化得简单清晰而易于学习者的理解,抽象的概念变得直观具体而易于学习者的掌握;并能在一 定程度上对提高学习者的空间思维能力、引导和培养学习者的创新思维能力有一定的帮助。 关键字:图解;刚体;欧拉角;欧拉运动学方程 1.引言 理论力学是研究物体机械运动一般规律的科学;依照牛顿的说法,理论力学“是关于力产生的运动和产生任何运动的力的理论,是精确的论述和证明” [1]。理论力学作为使用数学方法的自然知识的一部分,不仅研究实际物体,而且研究其模型—质点、质点系、刚体和连续介质。从研究次序来看,通常先研究描述机械运动现象的运动学,然后再进一步研究机械运动应当遵循哪些规律的动力学。至于研究平衡问题的静力学,对理科来讲可以作为动力学的一部分来处理,但在工程技术上,静力学却是十分的重要,因此,常把它和动力学分开,自成一个系统[2]。本文图解的内容为刚体力学运动学问题之一的刚体的绕定点的转动。 “图解”的方法,较早见于上海科学技术出版社1988年翻译出版的《图解量子力学》,原书名为The Picture Book of Quantum Mechanics,由Springer-Verlag 出版;类似的书还有Springer-Verlag出版的Visual Quantum Mechanics。其特点是通过将理论物理与数值计算相结合实现可视化来讲解物理知识。国外对物理的可视化教学十分重视,早在1995-1996年间Wiley出版社出版了9本有关物理多媒体教学的丛书,是由大学高等物理软件联盟(The Consortium for Upper-Level Physics Software,CUPS)编写该丛书及其所用的教学软件[3]。如今,图解法已经广泛应用于力学、电磁学、模拟电子技术等方面,理论力学方面同样也有不少人已经采用了图解法。如赵宗杰使用3dsmax建立质点外弹道运动规律的虚拟模型和场景[4];乐山师范学院王峰等利用Matlab分别对质点受力仅为位置、速度或时间的函数进行了图解,并说明了Matlab在理论力学中的应用[5];阜阳师范学院孙美娟、韩修林利用Mathematica进行编程作出了落体的位移—时间图像[6]。通过图解,使很多抽象繁难的物理问题在解析时达到空间立体直观,概念形成清晰,逻辑链路晓畅明朗,数式转换准确易见。 理论力学因理论性较强,与高等数学联系密切,一些概念的形成、公式的推导、逻辑推理等较抽象、繁难、复杂,往往使教授者感到教学很难达到预期的效果,学

欧拉方程的求解教材

欧拉方程的求解 1.引言 在数学研究领域,我们经常会看到以数学家名字命名的概念、公式、定理等等,让人敬佩跟羡慕.但是,迄今为止,哪位数学家的名字出现得最多呢?他就是数学史上与阿基米德、牛顿、高斯齐名的“四杰”之一,人称“分析学的化身”的盲人数学家欧拉(Leonhard Euler,1707--1783). 几乎在每一个数学领域都可以看到他的名字,譬如我们熟悉的“欧拉线”、“欧拉圆”、“欧拉公式”、“欧拉定理”、“欧拉函数”、“欧拉积分”、“欧拉变换”、“欧拉常数” 欧拉还是许多数学符号的发明者,例如用π表示 圆周率、e 表示自然对数的底、()f x 表示函数、∑表示求和、i 表示虚数单位 以欧拉命名的数学名词有很多,本文主要讲解以欧拉命名的方程即“欧拉方程”. 在文献[1]中,关于欧拉方程的求解通常采用的是变量变换的方法.变量变换法就是将所求的欧拉方程化为常系数齐次线性微分方程,然后再来求解这个常系数齐次线性微分方程的解,亦即求其形如K y x =的解,进而求得欧拉方程的解. 但有些欧拉方程在用变量变换法求解时比较困难.本文在所学的欧拉方程的求解的基础上,对欧拉方程进行了简单的分类,并针对不同阶的欧拉方程的求解给出了不同的定理.最后在每类欧拉方程后面给出了典型的例题加以说明. 2.几类欧拉方程的求解 定义1 形状为 ()1(1)110n n n n n n y a x y a xy a y x ---'++++= (1) 的方程称为欧拉方程. (其中1a ,2a , ,1n a -,n a 为常数)

2.1二阶齐次欧拉方程的求解(求形如K y x =的解) 二阶齐次欧拉方程: 2120x y a xy a y '''++=. (2) (其中1a ,2a 为已知常数) 我们注意到,方程(2)的左边y ''、y '和y 的系数都是幂函数(分别是2x 、1a x 和02a x ) ,且其次依次降低一次.所以根据幂函数求导的性质,我们用幂函数K y x =来尝试,看能否选取适当的常数K ,使得K y x =满足方程(2). 对K y x =求一、二阶导数,并带入方程(2),得 212()0K K K K K x a Kx a x -++= 或 212[(1)]0K K a K a x +-+=, 消去K x ,有 212(1)0K a K a +-+=. (3) 定义2 以K 为未知数的一元二次方程(3)称为二阶齐次欧拉方程(2)的特征方程. 由此可见,只要常数K 满足特征方程(3),则幂函数K y x =就是方程(2)的解. 于是,对于方程(2)的通解,我们有如下结论: 定理1 方程(2)的通解为 (i) 1112ln K K y c x c x x =+, (12K K =是方程(3)的相等的实根) (ii)1212K K x c x y c +=, (12K K ≠是方程(3)的不等的实根) (iii)12cos(ln )sin(ln )x x c x x y c ααββ+=.(1,2K i αβ=±是方程(3)的一对共轭复根) (其中1c 、2c 为任意常数)

牛顿运动三定律的物理意义和相互关系

牛顿运动三定律的物理意义和相互关系 王礼祥 摘要牛顿力学在经典物理中是成熟的典范,牛顿在《自然哲学的数学原理》中用八个定义、四个注释、三个定律和六个推论建立了牛顿力学的公理化体系,但宏观物体运动遵循的牛顿力学也是一直争论不休并且不断发展和不断完善的科学。最近《物理通报》2010年第5期发表了《论接触体间牛顿第三定律的可演绎性》断言牛顿第三定律不独立可由第二定律推演得出,以及早先争论的第一定律只是第二定律的特殊情况,第一定律中存在逻辑循环,第一定律不构成基础和独立的规律等等。于此,本文讨论牛顿运动三定律的各自物理意义(具体物理意义)与内在逻辑自洽一致性(相互关系)。 关键词宏观经典物理学,宏观物体运动学,宏观物体动力学,牛顿运动三定律,公理化体系,物理意义,相互关系 中图分类号:O301 文献标志码:A 1 引言 牛顿力学由运动学和动力学组成,运动学的根本任务是从现象上解决物体(质点)的运动的描述问题(引入时间、空间、参考系、坐标系、质点、位置矢量、位移、速度和加速度物理量),揭示特殊形式(直线、抛物线、圆……)的运动遵循的基本规律;动力学从本质上揭示运动产生的原因,指出运动是由物体惯性维持的(不是外力),力是改变物体运动状态的原因(即产生加速度的原因);加速度是联系运动学与动力学的桥梁。动力学公理化体系不断发展,但其基础也争论不休,在争鸣中发展和完善;好多学者[1][2][3][4][5][6]对牛顿运动三定律的基础(原始概述、第一性原理、定律物理意义相容性一致性整体性)展开讨论,辩明了一些是非但也引出了一些不必要的混乱,诸如《物理通报》2010年第5期发表了《论接触体间牛顿第三定律的可演绎性》断言牛顿第三定律不独立可由第二定律推演得出……。据此,我们从牛顿运动三定律的各自物理意义与内在逻辑自洽一致性阐发一管之见,供参考。 2 牛顿运动三定律的各自物理意义 牛顿运动三定律的各自物理意义是指三定律都有自己各自独立解决问题的范围和适用的条件,完全具有独立存在的价值,三定律各自的作用是不能互相替代的,也不能用少于三条定律的其它任何规律取代牛顿运动三定律,三定律是牛顿动力学公理化体系中最经济的公理。三定律互相支持、包容并逻辑自洽一致地形成有机整体,构成经典力学的完整理论体系。下面由牛顿运动三定律的内容分析揭示物理意义。 2.1 牛顿第一定律的物理意义 牛顿第一定律的内容是:任何物体都保持静止或匀速直线运动状态,直到其他物体的作用迫使它改变这种情况下状态为止。 从定律内容表述可见: (1)定律与运动有关,而物体(可简化为质点)的运动(机械运动)总是在时间和空间中进行的,运动的描述又是相对的,因而必须在空间中指明考察运动的参考系——惯性参考系。第一定律确定了惯性系但引出了逻辑同一之循环论证,正如爱因斯坦指出的:“惯性原理的弱点在于它含有这样一种循环论证:如果一个物体离开别的物体都要足够远,那么它运动起来就没有加速度;而只是由于它运动起来没有加速度这一事实,我们才知道它离开别的物体是足够远的。……究竟有没有惯性系呢?……我们可以认为,惯性原理对于太阳空间,在很高近似程度上是成立的。”[7]简单说不受力作用的物体和物体保持静止或匀速

常微分方程作业欧拉法与改进欧拉法

P77 31.利用改进欧拉方法计算下列初值问题,并画出近似解的草图:dy + =t = t y y ≤ ≤ ,2 ;5.0 0,3 )0( )1(= ,1 ? dt 代码: %改进欧拉法 function Euler(t0,y0,inv,h) n=round(inv(2)-inv(1))/h; t(1)=t0; y(1)=y0; for i=1:n y1(i+1)=y(i)+h*fun(t(i),y(i)); t(i+1)=t(i)+h; y(i+1)=y(i)+1/2*h*(fun(t(i),y(i))+ fun(t(i+1),y1(i+1))) end plot(t,y,'*r') function y=fun(t,y); y=y+1; 调用:Euler(0,3,[0,2],0.5) 得到解析解:hold on; y=dsolve('Dy=y+1','(y(0)=3)','t'); ezplot(y,[0,2]) 图像:

dy y =t - t y ;2.0 t = ≤ )0( 0,5.0 ,4 )2(2= ≤ ? ,2 dt 代码: function Euler1(t0,y0,inv,h) n=round(inv(2)-inv(1))/h; t(1)=t0; y(1)=y0; for i=1:n y1(i+1)=y(i)+h*fun(t(i),y(i)); t(i+1)=t(i)+h; y(i+1)=y(i)+1/2*h*(fun(t(i),y(i))+ fun(t(i+1),y1(i+1))) end plot(t,y,'*r') function y=fun(t,y); y=y^2-4*t; 调用: Euler1(0,0.5,[0,2],0.2) 图像:

欧拉方程

泛函的欧拉方程(by zhengpin1390) (二)、泛函的欧拉方程 欧拉方程是泛函极值条件的微分表达式,求解泛函的欧拉方程,即可得到使泛函取极值的驻函数,将变分问题转化为微分问题。 (1)最简单的欧拉方程: 设函数F(x,y,y') 是三个变量的连续函数,且点(x,y)位于有界闭区域B 内,则对形如 的变分,若其满足以下条件: c) 在有界闭区域B内存在某条特定曲线y。(x) ,使泛函取极值,且此曲线具有二阶连续导数。 则函数y。(x) 满足微分方程: 上式即为泛函Q[y]的欧拉方程。 (2)含有自变函数高阶倒数的泛函的欧拉方程 一般来说,对于下述泛函: 在类似条件下,可以得到对应的欧拉方程为: (3)含有多个自变函数的泛函的欧拉方程

对于下述泛函: 其欧拉方程组为: (4)多元函数的泛函及其欧拉方程 此处仅考虑二元函数的情况,对如下所示多元函数的泛函: 其欧拉方程为: 泛函分析 泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和 代数条件的映射的分支学科。它是20世纪30年代形成的。从变分法、微分方程、积分方程、函数论以及量子物理等的研究中发展起来的,它运用几何学、代数学的观点和方法研究分析学的课题,可看作无限维的分析学。 泛函分析的产生 十九世纪以来,数学的发展进入了一个新的阶段。这就是,由于对欧几里得第五公设的研究,引出了非欧几何这门新的学科;对于代数方程求解的一般思考,最后建立并发展了群论;对数学分析的研究又建立了集合论。这些新的理论都为用统一的观点把古典分析的基本概念和方法一般化准备了条件。

本世纪初,瑞典数学家弗列特荷姆和法国数学家阿达玛发表的著作中,出现了把分析学一般化的萌芽。随后,希尔伯特和海令哲来创了“希尔伯特空间”的研究。到了二十年代,在数学界已经逐渐形成了一般分析学,也就是泛函分析的基本概念。 由于分析学中许多新部门的形成,揭示出分析、代数、集合的许多概念和方法常常存在相似的地方。比如,代数方程求根和微分方程求解都可以应用逐次逼近法,并且解的存在和唯一性条件也极其相似。这种相似在积分方程论中表现得就更为突出了。泛函分析的产生正是和这种情况有关,有些乍看起来很不相干的东西,都存在着类似的地方。因此它启发人们从这些类似的东西中探寻一般的真正属于本质的东西。 非欧几何的确立拓广了人们对空间的认知,n维空间几何的产生允许我们把多变函数用几何学的语言解释成多维空间的影响。这样,就显示出了分析和几何之间的相似的地方,同时存在着把分析几何化的一种可能性。这种可能性要求把几何概念进一步推广,以至最后把欧氏空间扩充成无穷维数的空间。 这时候,函数概念被赋予了更为一般的意义,古典分析中的函数概念是指两个数集之间所建立的一种对应关系。现代数学的发展却是要求建立两个任意集合之间的某种对应关系。 这里我们先介绍一下算子的概念。算子也叫算符,在数学上,把无限维空间到无限维空间的变换叫做算子。

对于欧拉方程的理解

关于欧拉方程的理解 1755年,瑞士数学家L.欧拉在《流体运动的一般原理》一书中首先提出这个方程。 形如:)(1)1(11)(x f y x p y x p y x n n n n n ='+++--- (1) 的方程称为欧拉方程, 其中n p p p ,,,21 为常数。 欧拉方程的特点是: 方程中各项未知函数导数的阶数与其乘积因子自变量的幂次相同。 现阶段欧拉方程的应用领域很广,现只结合流体力学来探讨我对于欧拉方程的理解。 欧拉方程提出采用了连续介质的概念,把静力学中压力的概念推广到了运动流体中。 流体静力学着重研究流体在外力作用下处于平衡状态的规律及其在工程实际中的应用。 这里所指的静止包括绝对静止和相对静止两种。以地球作为惯性参考坐标系,当流体相对于惯性坐标系静止时,称流体处于绝对静止状态;当流体相对于非惯性参考坐标系静止时,称流体处于相对静止状态。 流体处于静止或相对静止状态,两者都表现不出黏性作用,即切向应力都等于零。所以,流体静力学中所得的结论,无论对实际流体还是理想流体都是适用的。 流体静压强的特性 1静压强的方向—沿作用面的内法线方向 2任一点的流体静压强的大小与作用面的方向无关,只与该点的位置有关

由上图可以推到出流体平衡微分方程式,即欧拉平衡方程 x y z p f x p f y p f z ρρρ??=?????=?????=??? 当流体处于平衡状态时,单位体积质量力在某一轴向上的分力,与压强沿该轴的递增率相平衡。 这里的fx 、fy 、fz 是流体质量力在x 、y 、z 轴上的投影,且质量力中包含以下两项:重力和惯性力。在这里如果假定fx 、fy 、fz 仅仅是重力在三个坐标轴上的投影,那么惯性力在x 、y 、z 轴上的投影分别为:-du/dt ,-dv/dt 和-dw/dt 。于是,上式便可写成 d d d d d d x y z u p f t x v p f t y w p f t z ρρρ????-= ???? ??????-=? ??? ??????-=? ??? ?? 上式整理后可得:

牛顿运动定律-经典习题汇总

牛顿运动定律经典练习题 一、选择题 1.下列关于力和运动关系的说法中,正确的是 ( ) A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现 B .物体受力越大,运动得越快,这是符合牛顿第二定律的 C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0 D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大 2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动 C .竖直向上做减速运动 D .竖直向下做减速运动 3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( ) A .速度方向、加速度方向、合力方向三者总是相同的 B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同 C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同 D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( ) A .等于人的推力 B .等于摩擦力 C .等于零 D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3, 则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反 B .F 1、F 2、F 3大小相等,方向相同 C .F 1、F 2是正的,F 3是负的 D .F 1是正的,F 1、F 3是零 6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与 水平面间的动摩擦因数均为μ。现对M 施加一个水平力F ,则以下说法中不正确的是( ) A .若两物体一起向右匀速运动,则M 受到的摩擦力等于F B .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩擦力大小为μmg C .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M a D .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a 7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。当物体运动到斜面中点时,去掉推力,物体刚好能到达顶点,则推力的大小为 ( ) A .mg(1-sin θ) B .2mgsin θ C .2mgcos θ D .2mg(1+sin θ) 8.从不太高的地方落下的小石块,下落速度越来越大,这是因为 ( ) A .石块受到的重力越来越大 B .石块受到的空气阻力越来越小 C .石块的惯性越来越大 D .石块受到的合力的方向始终向下 9.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢 10.下列关于超重和失重的说法中,正确的是 ( ) 第 5 题 第 6 题

欧拉及改进的欧拉法求解常微分方程

生物信息技术0801 徐聪U200812594 #include #include void f1(double *y,double *x,double *yy) { y[0]=2.0; x[0]=0.0; yy[0]=2.0; for(int i=1;i<=9;i++) { x[i]=x[i-1]+0.2; y[i]=y[i-1]+0.2*(y[i-1]-x[i-1]); yy[i]=x[i]+1+exp(x[i]); printf("若x=%f,计算值是%f,真实值是%f,截断误差是%f\n ",x[i],y[i],yy[i],y[i]-yy[i]); } }; void f2(double *y,double *x,double *yy) { y[0]=1.0; x[0]=0.0; yy[0]=1.0; for(int i=1;i<=9;i++) { x[i]=x[i-1]+0.2; y[i]=y[i-1]+0.2*(2*y[i-1]+x[i-1]*x[i-1]); yy[i]=-0.5*(x[i]*x[i]+x[i]+0.5)+1.25*exp(2*x[i]); printf("若x=%f,计算值是%f,真实值是%f,截断误差是%f\n ",x[i],y[i],yy[i],y[i]-yy[i]); } }; void f3(double *y,double *x,double *yy,double *y0) { y[0]=2.0; x[0]=0.0; yy[0]=2.0; for(int i=1;i<=9;i++) { x[i]=x[i-1]+0.2; y0[i]=y[i-1]+0.2*(y[i-1]-x[i-1]); y[i]=y[i-1]+0.1*(y[i-1]-x[i-1]+y0[i-1]-x[i-1]);

关于欧拉方程变量代换后系数递推关系的一点总结

关于欧拉方程变量代换后系数递推关系的一点总结 光信1104 李号 ) (0' 1) 1(1 1) (x f y a xy a y x a y x a n n n n n n =++++--- 程我们知道,对于欧拉方 不全为0 ,,,(32n a a a 可以通过变量代换x t e x t ln ==或化简。本文主要介绍如何用 低阶导数来表示高阶导数以及线性表示时的系数递推关系。 先用一个例子来说明我们要探讨的问题。 已知:' ''''2'3 3 22 ,,,,,,xy y x xy dt y d dt y d dt dy e x t 求=(此处均为对x 的导数)。 显然,由x dx dt x t e x t 1,ln = ==则可知 dt dy xy dt dy x dx dt dt dy dx dy y = ?? = ? = = ' ' 1 dt dy dt y d y x dt dy dt y d x dx dt dt y d x dt dy x dt dy x dx d dx dy dx d dx y d y -=?-=??+?-=?=== 2 2 ' '22222222 2 ' ')(111)1()()1 1(1 )( 2)]( 1 [ )(2 2 3322 2 3 2 2 2 22 ' ''x dt y d x dt y d x dt dy dt y d x dt dy dt y d x dx d dx y d dx d y ?-?+-- =- = = dt dy dt y d dt y d y x dt dy dt y d dt y d x 2 3)23( 122 3 3 ' ''322 3 33+-= ?+-= 同理可求出dt dy dt y d dt y d dt y d y x 6 11 6 2 2 3 3 4 4 ) 4(4 -+-= 我们把系数提出,如下排列: n=1 1 n=2 1 -1 n=3 1 -3 2 n=4 1 -6 11 -6 为了方便讨论,我们作出以下两点规定: i) 用“m n B ”表示第n 排第m 列的数(显然m n ≥); ii) !n -!n 1-)!1()!1() 1(n 1 )()即(=-=---n n n 由上文中的迭代求导不难得出下面三点规律: i) 11 =n B ; ii) 1 1)1(---=n n n n B n B ; iii) ()1)1(1 11+≥-+=---m n B n B B m n m n m n

牛顿运动三定律

内容 基本要求 略高要求 较高要求 牛顿第一定律 理解牛顿第一定律,理解惯性的概念 用牛顿第一定律分析问题 牛顿第二定律 理解牛顿第二定律 用牛顿第二定律分析力和运动的问题 在复杂问题中应用牛顿第二定律,如在以后的曲线运动、电磁学中应用牛顿第二定律 牛顿第三定律 理解牛顿第三定律 知识点1 牛顿第一定律 1.历史的回顾 (1)亚里士多德的观点:力是维持物体运动的原因. 亚里士多德是世界古代史上最伟大的哲学家、科学家和教育家,他的著作是希腊文明的百科全书,内容涉及天文学、地理学、物理学、生物学、历史学、心理学、政治学、经济学以及美学、修辞、诗歌等等.亚里士多德集古代知识于一身,对世界的贡献之大,令人震惊.事实上,亚里士多德的“力是维持物体运动的原因”这一观点尽管是错误的,但是我们不难看出其中明显含有静止惯性的思想. (2)伽利略的观点:力不是维持运动的原因,而是改变物体运动状态的原因. 伽利略用“实验”+“科学推理”的方法推翻了亚里士多德的观点.伽利略的理想斜面实验虽然是想象中的实验,但这个实验反映了一种物理思想.它是建立在可靠的事实基础之上的.以事实为依据、抽象为指导,抓住主要因素,忽略次要因素,从而深刻地揭示了自然规律. (3)笛卡儿的观点 运动的物体如果没有其他原因,将继续以同一速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向. 2.牛顿第一定律 (1)牛顿第一定律(Newton first law of motion ):一切物体总保持匀速直线运动状态或静 止状态,除非作用在它上面的力迫使它改变这种状态. (2)牛顿第一定律阐述了三点物理思想. ① 说明物体不受外力时的运动状态是匀速直线运动或静止,即力不是维持物体运动的原因. ② 一切物体都有保持匀速直线运动状态或静止状态的特性. ③ 一切物体受外力时,就会改变原来的运动状态,即外力是迫使物体改变运动状 知识点睛 考试要求 力和运动的关系: 牛顿三定律

专题三牛顿运动定律知识点总结

专题三牛顿三定律 1. 牛顿第一定律(即惯性定律) 一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 (1)理解要点: ①运动是物体的一种属性,物体的运动不需要力来维持。 ②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因。 ③第一定律是牛顿以伽俐略的理想斜面实验为基础,总结前人的研究成果加以丰富的想象而提出来的;定律成立的条件是物体不受外力,不能用实验直接验证。 ④牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例,第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系。 (2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。 ①惯性是物体的固有属性,与物体的受力情况及运动状态无关。 ②质量是物体惯性大小的量度。 ③由牛顿第二定律定义的惯性质量m=F/a和由万有引力定律定义的引力质量 2/严格相等。 m Fr GM ④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质。力是物体对物体的作用,惯性和力是两个不同的概念。 2. 牛顿第二定律 (1)定律内容 物体的加速度a跟物体所受的合外力F 成正比,跟物体的质量m成反比。 合

(2)公式:F ma = 合 理解要点: 是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消 ①因果性:F 合 失; 都是矢量,方向严格相同; ②方向性:a与F 合 ③瞬时性和对应性:a为某时刻某物体的加速度,F 是该时刻作用在该物体上的合外 合 力。 3. 牛顿第三定律 两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,公式可写为F F =-'。 (1)作用力和反作用力与二力平衡的区别 4. 牛顿定律在连接体中的应用 在连接体问题中,如果不要求知道各个运动物体间的相互作用力,并且各个物体具有相同加速度,可以把它们看成一个整体。分析受到的外力和运动情况,应用牛顿第二定律求出整体的加速度。(整体法) 如果需要知道物体之间的相互作用力,就需要把物体隔离出来,将内力转化为外力,分析物体受力情况,应用牛顿第二定律列方程。(隔离法) 一般两种方法配合交替应用,可有效解决连接体问题。 5. 超重与失重 视重:物体对竖直悬绳(测力计)的拉力或对水平支持物(台秤)的压力。(测力计或台秤示数)

第8章 常微分方程数值解法 本章主要内容: 1.欧拉法

第8章 常微分方程数值解法 本章主要内容: 1.欧拉法、改进欧拉法. 2.龙格-库塔法。 3.单步法的收敛性与稳定性。 重点、难点 一、微分方程的数值解法 在工程技术或自然科学中,我们会遇到的许多微分方程的问题,而我们只能对其中具有较简单形式的微分方程才能够求出它们的精确解。对于大量的微分方程问题我们需要考虑求它们的满足一定精度要求的近似解的方法,称为微分方程的数值解法。本章我们主要 讨论常微分方程初值问题?????==00 )() ,(y x y y x f dx dy 的数值解法。 数值解法的基本思想是:在常微分方程初值问题解的存在区间[a,b]内,取n+1个节点a=x 0<x 1<…<x N =b (其中差h n = x n –x n-1称为步长,一般取h 为常数,即等步长),在这些节点上把常微分方程的初值问题离散化为差分方程的相应问题,再求出这些点的上的差分方程值作为相应的微分方程的近似值(满足精度要求)。 二、欧拉法与改进欧拉法 欧拉法与改进欧拉法是用数值积分方法对微分方程进行离散化的一种方法。 将常微分方程),(y x f y ='变为() *+=?++1 1))(,()()(n x n x n n dt t y t f x y x y 1.欧拉法(欧拉折线法) 欧拉法是求解常微分方程初值问题的一种最简单的数值解法。 欧拉法的基本思想:用左矩阵公式计算(*)式右端积分,则得欧拉法的计算公式为:N a b h N n y x hf y y n n n n -= -=+=+)1,...,1,0(),(1 欧拉法局部截断误差 11121 )(2 ++++≤≤''=n n n n n x x y h R ξξ或简记为O (h 2)。

欧拉方程的求解

欧拉方程的求解 1、引言 在数学研究领域,我们经常会瞧到以数学家名字命名的概念、公式、定理等等,让人敬佩跟羡慕、但就是,迄今为止,哪位数学家的名字出现得最多呢?她就就是数学史上与阿基米德、牛顿、高斯齐名的“四杰”之一,人称“分析学的化身”的盲人数学家欧拉(Leonhard Euler,1707--1783)、 几乎在每一个数学领域都可以瞧到她的名字,譬如我们熟悉的“欧拉线”、“欧拉圆”、“欧拉公式”、“欧拉定理”、“欧拉函数”、“欧拉积分”、“欧拉变换”、“欧拉常数”L L 欧拉还就是许多数学符号的发明者,例如用π表示圆周率、e 表示自然对数的底、()f x 表示函数、∑表示求与、i 表示虚数单位L L 以欧拉命名的数学名词有很多,本文主要讲解以欧拉命名的方程即“欧拉方程”、 在文献[1]中,关于欧拉方程的求解通常采用的就是变量变换的方法、变量变换法就就是将所求的欧拉方程化为常系数齐次线性微分方程,然后再来求解这个常系数齐次线性微分方程的解,亦即求其形如K y x =的解,进而求得欧拉方程的解、 但有些欧拉方程在用变量变换法求解时比较困难、本文在所学的欧拉方程的求解的基础上,对欧拉方程进行了简单的分类,并针对不同阶的欧拉方程的求解给出了不同的定理、最后在每类欧拉方程后面给出了典型的例题加以说明、 2、几类欧拉方程的求解 定义1 形状为 ()1(1)110n n n n n n y a x y a xy a y x ---'++++=L (1) 的方程称为欧拉方程、 (其中1a ,2a ,L ,1n a -,n a 为常数)

2、1二阶齐次欧拉方程的求解(求形如K y x =的解) 二阶齐次欧拉方程: 2120x y a xy a y '''++=、 (2) (其中1a ,2a 为已知常数) 我们注意到,方程(2)的左边y ''、y '与y 的系数都就是幂函数(分别就是 2x 、1a x 与02a x ),且其次依次降低一次、 所以根据幂函数求导的性质,我们用幂函数K y x =来尝试,瞧能否选取适当的常数K ,使得K y x =满足方程(2)、 对K y x =求一、二阶导数,并带入方程(2),得 212()0K K K K K x a Kx a x -++= 或 212[(1)]0K K a K a x +-+=, 消去K x ,有 212(1)0K a K a +-+=、 (3) 定义 2 以K 为未知数的一元二次方程(3)称为二阶齐次欧拉方程(2)的特征方程、 由此可见,只要常数K 满足特征方程(3),则幂函数K y x =就就是方程(2)的解、 于就是,对于方程(2)的通解,我们有如下结论: 定理1 方程(2)的通解为 (i) 1112ln K K y c x c x x =+, (12K K =就是方程(3)的相等的实根) (ii)1212K K x c x y c +=, (12K K ≠就是方程(3)的不等的实根) (iii)12cos(ln )sin(ln )x x c x x y c ααββ+=、(1,2K i αβ=±就是方程(3)的一对

MATLAB求解常微分方程数值解

利用MATLAB求解常微分方程数值解

目录 1. 内容简介 (1) 2. Euler Method(欧拉法)求解 (1) 2.1. 显式Euler法和隐式Euler法 (2) 2.2. 梯形公式和改进Euler法 (3) 2.3. Euler法实用性 (4) 3. Runge-Kutta Method(龙格库塔法)求解 (5) 3.1. Runge-Kutta基本原理 (5) 3.2. MATLAB中使用Runge-Kutta法的函数 (7) 4. 使用MATLAB求解常微分方程 (7) 4.1. 使用ode45函数求解非刚性常微分方程 (8) 4.2. 刚性常微分方程 (9) 5. 总结 (9) 参考文献 (11) 附录 (12) 1. 显式Euler法数值求解 (12) 2. 改进Euler法数值求解 (12) 3. 四阶四级Runge-Kutta法数值求解 (13) 4.使用ode45求解 (14)

1.内容简介 把《高等工程数学》看了一遍,增加对数学内容的了解,对其中数值解法比较感兴趣,这大概是因为在其它各方面的学习和研究中经常会遇到数值解法的问题。理解模型然后列出微分方程,却对着方程无从下手,无法得出精确结果实在是让人难受的一件事情。 实际问题中更多遇到的是利用数值法求解偏微分方程问题,但考虑到先从常微分方程下手更为简单有效率,所以本文只研究常微分方程的数值解法。把一个工程实际问题弄出精确结果远比弄清楚各种细枝末节更有意思,因此文章中不追求非常严格地证明,而是偏向如何利用工具实际求解出常微分方程的数值解,力求将课程上所学的知识真正地运用到实际方程的求解中去,在以后遇到微分方程的时候能够熟练运用MATLAB得到能够在工程上运用的结果。 文中求解过程中用到MATLAB进行数值求解,主要目的是弄清楚各个函数本质上是如何对常微分方程进行求解的,对各种方法进行MATLAB编程求解,并将求得的数值解与精确解对比,其中源程序在附录中。最后考察MATLAB中各个函数的适用范围,当遇到实际工程问题时能够正确地得到问题的数值解。 2.Euler Method(欧拉法)求解 Euler法求解常微分方程主要包括3种形式,即显式Euler法、隐式Euler法、梯形公式法,本节内容分别介绍这3种方法的具体内容,并在最后对3种方法精度进行对比,讨论Euler法的实用性。 本节考虑实际初值问题 使用解析法,对方程两边同乘以得到下式

欧拉方程的求解

欧拉方程的求解 1. 引言 在数学研究领域,我们经常会看到以数学家名字命名的概念、公式、定理等等,让人敬佩跟羡慕. 但是,迄今为止,哪位数学家的名字出现得最多呢?他就是数学史上与阿基米德、牛顿、高斯齐名的“四杰”之一,人称“分析学的化身”的盲人数学家欧拉( Leonhard Euler,1707--1783 ) . 几乎在每一个数学领域都可以看到他的名字,譬如我们熟悉的“欧拉线”、“欧拉圆”、“欧拉公式”、“欧拉定理”、“欧拉函数”、“欧拉积分”、“欧拉变换”、“欧拉常数” L L 欧拉还是许多数学符号的发明者,例如用表示圆周率、e表示自然对数的底、f(x)表示函数、表示求和、i表示虚数单位L L 以欧拉命名的数学名词有很多,本文主要讲解以欧拉命名的方程即“欧拉方程”. 在文献[1] 中,关于欧拉方程的求解通常采用的是变量变换的方法. 变量变换法就是将所求的欧拉方程化为常系数齐次线性微分方程,然后再来求解这个常系数齐次线性微分方程的解,亦即求其形如y x K的解,进而求得欧拉方程的解. 但有些欧拉方程在用变量变换法求解时比较困难. 本文在所学的欧拉方程的求解的基础上,对欧拉方程进行了简单的分类,并针对不同阶的欧拉方程的求解给出了不同的定理. 最后在每类欧拉方程后面给出了典型的例题加以说明. 2. 几类欧拉方程的求解 定义 1 形状为 n (n) n 1 ( n 1) n y(n)a1x n 1y(n 1)L a n 1xy a n y 0 (1) x 的方程称为欧拉方程. (其中a i, a2, L , a ni, a.为常数)

2.1 二阶齐次欧拉方程的求解(求形如 y x K 的解) 二阶齐次欧拉方程: x 2y a i xy a 2y 0. ( 其中 a 1, a 2 为已知常数) 我们注意到,方程(2)的左边y 、y 和y 的系数都是幕函数(分别是x 2 a i x 和a 2X °),且其次依次降低一次.所以根据幕函数求导的性质,我们用幕 函数y x K 来尝试,看能否选取适当的常数 K ,使得y x K 满足方程(2). x K 求一、二阶导数,并带入方程(2),得 由此可见,只要常数K 满足特征方程(3),则幕函数y x K 就是方程(2) 共轭复根) (其中C i 、c 为任意常数) 证明(i )若特征方程(3)有两个相等的实根:? K 2,贝U 2) 消去 x K ,有 (K 2 [K 2 K 2 定义 2 以 K 为未知数的 的特征方程. K)X K (a 1 (a 1 KK a i Kx a 2 x 0 K i)K a 2]x K 0, 1)K a 2 0. 3) 元二次方程( 3)称为二阶齐次欧拉方程( 2) 的解. 于是,对于方程( 2)的通解, 定理 i 方程( 2)的通解为 y c i x Ki 我们有如下结论: (i) c 2X K1 ln X , (K i K 2是方程(3)的相等的实根) (ii) K 1 y c 1X 1 c2X K2 K i K 2是方程(3)的不等的实根) (iii) y c 1 X cos( ln X) c 2X sin( ln X). (K 1,2 i 是方程( 3)的一对

高三牛顿运动定律试题精选及答案

“牛顿运动定律”练习题 1.如图所示,在质量为m 0的无下底的木箱顶部用一轻弹簧悬挂质量为m (m 0>m )的A 、B 两物体,箱子放在水平地面上,平衡后剪断A 、B 间的连线,A 将做简谐运动,当A 运动到最高点时,木箱对地面的压力为(A ) A .m 0g B .(m 0 - m )g C .(m 0 + m )g D .(m 0 + 2m )g 2.如图所示,静止在光滑水平面上的物体A ,一端靠着处于自然状态的弹簧.现对物体作用一水平恒力,在弹簧被压缩到最短这一过程中,物体的速度和加速度变化的情况是(D ) A .速度增大,加速度增大 B .速度增大,加速度减小 C .速度先增大后减小,加速度先增大后减小 D .速度先增大后减小,加速度先减小后增大 3.为了测得物块与斜面间的动摩擦因数,可以让一个质量为m 的物块由静止开始沿斜面下滑,拍摄此下滑过程得到的同步闪光(即第一次闪光时物 块恰好开始下滑)照片如图所示.已知闪光频率为每秒10次, 根据照片测得物块相邻两位置间的距离分别为AB =2.40cm , BC =7.30cm ,CD =12.20cm ,DE =17.10cm .若此斜面的倾角θ =370,则物块与斜面间的动摩擦因数为 .(重力 加速度g 取9.8m /s 2,sin 370=0.6,cos 370=0.8) 答案:0.125 (提示:由逐差法求得物块下滑的加速度为a =4.9m /s 2,由牛顿第二定律 知a =g sin 370–μg cos 370,解得μ=0.125) 4.如图所示,一物体恰能在一个斜面体上沿斜面匀速下滑,设此过程中斜面受到水平地面的摩擦力为f 1.若沿斜面方向用力向下推此物体,使物体加速下滑,设此过程中斜面受到地面的摩擦力为f 2。则(D ) A .f 1不为零且方向向右,f 2不为零且方向向右 B .f 1为零,f 2不为零且方向向左 C .f 1为零,f 2不为零且方向向右 D .f 1为零,f 2为零 5.如图a 所示,水平面上质量相等的两木块A 、B 用一轻弹簧相连 接,整个系统处于平衡状态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图b 所示.研究从力F 刚作用在木块A 的瞬间到木块B 刚离开地面的瞬间这个过程,并且选定这个过程中木块A 的起始位置为坐标原点,则下列图象中可以表示力F 和木块A 的位移x 之间关系的是(A ) 6.如图所示,质量为m 的物体放在倾角为α的光滑斜面上,随斜面体一起沿水平方向运动,要使物体相对于斜面保持静止,斜面体的运动情况以及物体对斜面压力F 的大小是 m B A m 左 右 A B a A B b x O F x O F x O F x O F A B C D

fortran下欧拉法求解常微分方程(实例)

1. Euler 公式 100(,)() i i i i y y hf x y y y x +=+??=? 实例: ,00(,),0,1,01f x y x y x y x =-==≤≤ 精确解为:1x y x e -=+- 程序代码: DIMENSION x(0:20),y(0:20),z(0:20),k(0:21) DOUBLE PRECISION x,y,z,k,h,x0,y0,z0,k0,n f(x,y)=x-y n=20 h=1/n x(0)=0 y(0)=0 DO i=0,n-1 y(i+1)=y(i)+f(x(i),y(i))*h x(i+1)=x(i)+h ENDDO k(0)=0 DO i=0,n z(i)=k(i)+exp(-k(i))-1 k(i+1)=k(i)+h END DO open(10,file='1.txt') WRITE(10,10) (x(i),y(i),z(i),i=0,20) WRITE(*,10) (x(i),y(i),z(i),i=0,20) 10 FORMAT(1x,f10.8,2x,f10.8,2x,f10.8/) END 输出结果: 0.00000000 0.00000000 0.00000000 0.05000000 0.00000000 0.00122942 0.10000000 0.00250000 0.00483742 0.15000000 0.00737500 0.01070798 0.20000000 0.01450625 0.01873075 0.25000000 0.02378094 0.02880078 ???=='00)(),(y x y y x f y ???=='0 0)(),(y x y y x f y

相关文档
最新文档