水产养殖自动投喂系统

水产养殖自动投喂系统
水产养殖自动投喂系统

水产养殖自动投喂系统推荐渔管家。目前国内水产养殖业的养殖成本中占比例最大的是饲料成本,如草鱼养殖过程中饲料成本一般占总成本的75%,若能在一定程度上节约饲料成本,就可以提高养殖竞争力、增加赢利能力,对水产养殖的发展具有极大的促进作用。

而影响饲料成本最大的因素又在于投喂,定时、定点、定量的投喂饲料可以有效地提高饲料利用率,合理的储存饲料也能有效地减少饲料浪费。下面简单介绍水产养殖自动投喂系统。

自动投喂系统的优势

自动投喂系统以智能投料机为突破口,集合了料塔、称重模块、抛料模块、溶氧模块、在线监测水质模块及控制模块。实现了物料定量控制过程中的全部动作,具有高精度、高速度、环境适应性强、系统可靠性好等特点。

传统的料台式投料机在大规模养殖场的使用会存在这些缺陷:

(1)使用寿命短,通常一年内要多次维修;

(2)必需使用包装饲料,增加饲料成本;

(3)人工需求大,并需要工人高强度的体力劳动;

(4)安装在鱼塘边,打料面积小,投料处鱼塘的鱼群多、溶氧低,容易导致养殖鱼的免疫力低下,饲料系数增高,也增加了养殖成本。

然而,自动投料机及其投喂管理系统与传统的料台式投料机完全不同,它极大幅度地改善了水产养殖的投料管理,大幅度降低了养殖成本,从根本上解决了大面积、大规模养殖场的高成本、难管理的课题。

自动投喂系统具备以下优势:

(1)能够精确定量的控制喂料量,同时实时监控水体环境因子,养殖者可及时做出调整,避免过量喂食的情况发生,减少饲料的浪费,更重要的是减少因溶氧不足带来的危害;

(2)配备散装料仓,节约包装成本,若按每亩鱼塘使用5吨饲料计算,全年可节约饲料包装袋约400元/亩。同时极大程度的减轻劳动强度,一人可管理多个鱼塘,节约人力成本,若按当前减少50%的人工计算,每年可降低人工成本500元/亩。还可以减少饲料如发霉、动物偷食等损耗,按每年节约饲料3%计算,每年可节约饲料浪费300元/亩。以上每年可节约下来的饲料和人工成本达1200元/亩,具有极大的成本节约效应;

(3)抛洒范围大,360度圆形抛洒,直径可达50米,是传统抛料机弧形抛洒面积的十倍以上。由于抛洒面积大,觅食时鱼群密度不高,既能在氧气富足的情况下进食,易于营养的吸收,又能减少鱼群因互相摩擦而导致赤皮病的发生;

(4)全中文人机界面,操作简便,更直观的监控生产过程。

此外,自动投喂系统还可实现中控电脑管理鱼塘投喂,由中控室直接管理鱼塘的投喂情况,实现全程无人式鱼塘投喂管理。

南京渔管家物联网科技有限公司(以下称“渔管家”)是南京市引进的唯一一家智慧渔业高层次人才项目的高新技术企业,公司以南京农业大学与南京邮电大学博士为核心组建,目标成为中国水产现代化智能养殖技术与服务的引领者。渔管家以云计算+智能硬件模式解决水产养殖用户水质监测、增氧控制、饵料投喂、疾病防治等刚性需求,基于大数据云平台解决用户饲料、鱼药、设备、交易等市场需求。公司服务政府渔业园区、渔业企业、合作社、家庭农场、一般养殖户,总服务面积已超过10000亩。公司地址:南京市栖霞区兴智路6号兴智科技园B座13楼。

点击进入官网https://www.360docs.net/doc/1619131475.html,,右侧电话咨询??

巨控GRM200G模块在水产养殖远程监控系统中的应用

巨控GRM200G模块在水产养殖远程监控系统中的应用 设计的水产养殖监控系统采用抗干扰能力强的PLC为处理器,现场系统操作控制选择可视及操作集于一体的组态触摸屏,GRM200G通过GPRS网络与远程终端实现信息交换,实现对养殖池塘远程监控。结果表明,该系统运行可靠,传输速率高,实时性强,操作简单方便。 标签:水产养殖;GRM200G;远程监控 水产养殖中养殖环境尤为重要。养殖环境的关键因素包括水温、光照、溶氧、氨氮、硫化物、亚硝酸盐、PH值等[1、2]。现有的水产养殖管理多以经验养殖为主,无法精准地进行监测和控制,而且耗费大量人力、物力,产量难以得到保障。该系统利用GRM200G建立一种非透传模式的GPRS远程监控方案,将养殖池塘关键环境参数实时传输到远程PC终端,同时用手机短信作为系统的辅助管理手段,實现短信报警、短信查询等功能,实现对养殖池塘的远程监控,减轻了养殖工作者的工作量。 1 系统总体设计 图1 系统总体结构图 系统总体结构如图1所示,传感器完成养殖池塘溶氧、PH值、水温等参数的采集;触摸屏主要负责对传感器采集数据进行现场实时显示储存及对历史信息统计;PLC通过对采集参数的分析判断完成对增氧泵、水泵等设备的控制;GRM200G远程通讯模块将养殖池塘信息传送到远程终端;远程主机、手机显示当前池塘环境参数及设备状态并能远程控制。 基于GRM200G无线通信模块的远程监控系统,采用一种非透传模式的GPRS远程监控方案,该方案消除了传统透传模式的各种缺点,用户无需搭建中心服务器,即可实现GPRS远程监控,并且响应速度快、扩展性好[3]。 2 巨控GRM200G模块的配置 2.1 设置关联变量 运行GRM200G开发系统GRM Developer,新建工程,选择设备型号GRM200G;设置GRM200G与下位机PLC通讯协议为标准MODBUS RTU主机协议;新建设备PLC,设置从机地址3。 建立水温、PH、溶氧量等参数,建立增氧泵、水泵、投饵机等外部控制设备。根据下位机PLC中软元件的类型及地址与GRM Developer建立的变量关联好。需要注意在用MODBUS协议传输数据与PLC进行变量关联时,寄存器地址从1开始,因此定义寄存器的地址时比要读的寄存器的实际地址加一。图2

水产品养殖场管理制度

水产品养殖场规章制度 为了本公司能够稳步健康的发展,员工能获得更大的经济利益,营造一个安全和谐的工作环境,特制定如下规章制度。 一、考勤制度 公司员工必须自觉遵守劳动纪律,按时上、下班,不迟到、不早退。工作时间不得擅自离开工作岗位,离岗外出须经本部门负责人同意。如有特殊情况不能上班需提前请假。住宿人员晚间不得擅自外出,如因此发生的各种事故,后果自负。 二、保管制度 建立物资进出库明细帐。物资、工具的出入库必须经保管人员批准,工具使用后必须入库,公司的物资不得外借和挪用,如有特殊情况需经领导批准,方可借用。 三、车间制度 1.育苗车间禁止吸烟、乱扔杂物、吃零食、工作时手上禁止擦化妆品,保持车间卫生。 2.必须做到安全生产,正确使用电器,地沟板要摆放定位。 3.进入车间必须穿靴子,不得穿拖鞋工作,以防出现事故。 4.值班人员必须坚守岗位,定时检查池内水位、充氧状态,不得脱岗。因脱岗造成的损失,当事人要负相应的责任。 5.不得在车间内接打聊天电话、大声喧哗、疯闹。 内检员职责 1、负责无公害农产品质量安全管理目标与保证声明、质量安全管理手册、无公害农产品生产技术操作规程和生产过程记录档案。 2、指导本单位工作人员具体实施无公害农产品质量安全管理体系的文件和制度。 3、组织实施无公害农产品生产的内部检查、对不符合要求的项目及时整改、完善、确保农产品质量安全。 4、按有关规定及规程要求、组织相关的附报材料向有关单位进行申报。 5、配合各级农产品管理部门对本单位无公害农产品的生产、销售及标志使用等活动将进行监督管理。 产品追溯制度 一、生产部门负责产品标识与追溯的归口管理; 二、综合管理部负责检验状态的标识; 三、仓管人员负责对物资进货与贮存的标识; 四、各生产环节人员负责实施生产过程辖区内产品的标识与追溯; 五、出厂包装人员负责对成品的标识与追溯; 六、销售人员负责对客户所有信息进行将记录。 水产养殖科学用药制度 按照农业部无公害食品《渔用药物使用准则》的有关规定执行本制度。 1、加强科学养殖,“以防为主,防治结合”,从健康养殖角度预防疾病的发生。选择正确的治疗方法,安全用药。 2、遵循国家和有关部门的规定,严禁购买和使用“三无”渔药。 3、严禁使用高毒、高残留或具有三致毒性(致癌、致畸、致突变)的渔药。 4、严禁使用对水环境有严重破坏而又难以修复的渔药。

水产养殖自动化设计方案

水产养殖环境远程监控系统 设计方案 追求至善 凭技术开拓市场/凭服务树立形象 圣启科技?河北

第一部分:概述 (2) 1、养殖业发展现状 (2) 2、水产养殖环境远程监控系统概述 (4) 第二部分:系统组成 (5) 1、养殖水质监测站: (6) 1、1、监测站概述. (6) 1、2、监测站配置. (6) 1、3、传感器选择. (6) 2、数据传输层(数据通信网络):6 3、远程监控中心 (7) 第三部分:系统功能 (7) 第四部分:系统特点 (12) 结束语 (12)

第一部分:概述 1、养殖业发展现状 渔业作为一种传统产业,在近代得到了快速的发展,并在社会、经济和人们 生活中显现出其重要的地位。特别是水产养殖业,最近30 年里,在全球动物性食

品生产中增长最快,而中国对水产养殖产品的生产贡献率最大, 中国水产品养殖产量约占世界 水产品养殖产量的2/3,养殖产品的质量和安全卫生水平有了较大的提高,但和先进国家相比还 有很大差距。水产养殖业尤其是工厂化养殖过程所用的设施条件还不够完善,机械化、自动化 程度不够高,水处理设备落后,基本为流水式开放系统。近年来,鱼类赖以生存的江河湖泊和浅 海等水体环境受到越来越严重的污染,致使渔业资源日趋衰退,从自然界中捕获到的名、特、优水产品的数量日益减少,另一方面,水产养殖生产经营者多以追求产量和近期经济效益为目标,养殖密度过高,加上保护养殖环境意识淡薄,养殖病害呈逐年加重之势,随之而来的是药物滥用 现象较为普遍,以至于水域环境遭到不同程度的破坏,水产品质量安全得不到有效保障,同时传 统养殖业中大量养殖污水的排放,又加剧了环境污染,使得发展传统养殖业与保护环境的矛盾日 益突出。因此,用具 有占地面积小、用水量少、无污染、不收地域、环境、气候等影响的密集化工厂化集约模式代替传统的粗放型模式势在必行,实现工厂化水产养殖的关键是水产养殖远程监控。 影响水产养殖环境的关键参数就是水温、光照、溶氧,ph值等,水质的好 坏关系到养殖效益、养殖效果、养殖风险等各方面的因素。目前国内的水产养殖业其水质监测基本上仍处于人工取样、化学分析的人工监测阶段,其耗时费力、精确度不高,并且需要有专业人 员进行操作。同时鉴于养殖池群规模大,范围广、来回不方便等特点,传统的靠取水样测水样的 控制方式已经明显不能满足实时性的需要。我们平时如能做到不间断的监控水质的变化情况, 发现问题、及时采用 相应措施进行处理,就能防止养殖对象水体环境的恶化,从而让养殖对象少生病或不生病。

自动浇花系统的设计

ANYANG INSTITUTE OF TECHNOLOGY 专科毕业论文 自动浇花系统 院(部)名称:电子信息与电气工程学院 专业班级: 学生姓名:合作者: 学号: 指导教师姓名: 指导教师职称: 2013年5 月

目录 摘要............................................................................................................................................. I 引言.. (1) 第一章系统硬件设计 (3) 1.1系统技术指标 (3) 1.2系统框图 (3) 1.3土壤湿度传感器的设计 (5) 1.4土壤湿度信号调理电路 (7) 1.5土壤湿度信号转换电路 (10) 1.6系统显示电路设计 (12) 1.6.1 显示模块的选择 (12) 1.6.2 显示电路 (12) 1.7按键电路 (14) 1.8电磁阀控制电路 (15) 1.9电路原理图 (15) 第二章系统软件设计 (16) 2.1总设计框图 (16) 2.2传感转换流程图 (16) 2.3控制模块流程图 (17) 第三章系统调试 (19) 3.1 系统硬件测试 (19) 3.2 系统的软件测试 (19) 3.3系统整体调试 (19) 3.4系统测量与误差分析 (20) 第四章总结 (21) 参考文献 (22) 致谢 (24)

附录A PCB图 (25) 附录B 程序 (26)

自动浇花系统 摘要: 本系统以方便人们花卉的浇水,实现智能浇花,让人们从繁琐的浇花工作中解放出来,自动浇花系统的设计和应用应运而生。本系统采用AT89C52单片机,配以相应的外围电路完成土壤含水量的检测和自动浇花的控制过程。由土壤湿度传感器采集土壤信息,再经过信息处理模块处理后由ADC0832 A/D转换芯片转换成数字信号,AT89C52单片机作为控制中心。配以DS1302 时钟芯片、LCD1602液晶显示模块等组成数据处理控制模块,实现智能浇花,显示时钟功能。通过一系列的设计实现,简单的电路及低价的成本实现自动浇花系统是可行的,进一步可以推广到蔬菜大棚,园林,草地等的自动浇灌管理。对于实现科技服务生活具有重要意义。 关键词:浇花;AT89C52单片机;DS1302;土壤湿度传感器;

水产养殖―池塘养殖中氨氮的危害及其控制方法

水产养殖—池塘养殖中氨氮的危害及其控制方法相关专题: 水产养殖 时间:2012-03-13 15:25 阿里巴巴农业频道 【阿里巴巴农业】 在水产养殖过程中,我们经常碰到池塘中氨氮过高的问题,在高密度精养池塘中这个问题更加严重,给养殖造成了一定的危害。下面,我们就池塘中氨氮的形成、氨氮的危害、氨氮的消除途径以及氨氮的控制方法一一加以阐述。 一、xxxx氨氮的形成 池塘中的氨氮主要来源于三种途径,即水生动物的排泄物、施加的肥料和被微生物菌分解的饲料、粪便及动植物尸体。鱼类可通过鳃和尿液、甲壳类能通过鳃和触角腺向水中排出体内的氨氮,以免发生体内氨中毒。水生动物的粪便及动植物尸体中含有大量蛋白质,被池塘中的微生物菌分解后形成氨基酸,再进?步分解成氨氮。 二、氨氮对水生动物的危害 1.氨氮的中毒机理氨氮以两种形式存在于水中,一种是氨(NH3),又叫非离子氨,对水生生物有毒,极易溶于水。另一种是铵(NH4+),又叫离子氨,对水生生物无毒。当氨(NH3)通过鳃进入水生生物体内时,会直接增加水生生物氨氮排泄的负担,氨氮在血液中的浓度升高,血液pH随之相应上升,水生生物体内的多种酶活性受到抑制,并可降低血液的输氧能力,破坏鳃表皮组织,降低血液的携氧能力,导致氧气和废物交换不畅而窒息。此外,水中氨浓度高也影响水对水生生物的渗透性,降低内部离子浓度。 2.氨氮对水生动物的危害有急性和慢性之分。慢性氨氮中毒危害为:

摄食降低,生长减慢;组织损伤,降低氧在组织问的输送;鱼和虾均需要与水体进行离子交换(钠,钙等),氨氮过高会增加鳃的通透性,损害鳃的离子交换功能;使水生生物长期处于应激状态,增加动物对疾病的易感性,降低生长速度;降低生殖能力,减少怀卵量,降低卵的存活力,延迟产卵繁殖。急性氨氮中毒危害为: 水生生物表现为亢奋、在水中丧失平衡、抽搐,严重者甚至死亡。 三、氨氮的消除途径 1.硝化和脱氮铵(NH3)被亚硝化细菌氧化成亚硝酸,亚硝酸再被硝化细菌氧化成硝酸,称为硝化作用,硝化作用需要消耗氧气,当水中溶氧浓度低于1~2毫克/升时硝化作用速度明显降低。在水中溶氧缺乏的情况下,反硝化细菌能将硝酸还原为亚硝酸、次硝酸、羟胺或氮时,这种过程称为硝酸还原,当形成的气态氮作为代谢物释放并从系统中流失时,就称之为脱氮作用。 2.藻类和植物的吸收因为藻类和水生植物能利用铵(NH4+)合成氨基酸,所以藻类对氨氮的吸收是池塘中氨氮去除的主要方法,冬天藻类的减少和死亡会使水中的氨氮含量明显上升。 3.挥发及底泥吸收在池塘中氨氮浓度高、高pH值、采取增氧措施、有风浪、搅动水流等情况下,都会有利于氨氮的挥发。底泥土壤中的阴离子可以结合铵离予(NH4+),在拉网或发生类似的引起底部搅动的操作时,池底沉积物会暂时悬浮在水中,铵离子(NH4+)就会被释放出来。 4.矿化及回到生物体内所谓矿化,即部分氨氮以有机物的形式存在于池底土壤中,这些有机物质分解后又回到水中,分解速度依赖于温度、pH、溶氧以及有机物质的数量和质量。进入水生动物体内即当水中氨氮浓度高时,氨(NH3而不是NH4+)能通过鳃进入水生生物体内。 四、氨氮的控制方法 1.清淤、干塘每年养殖结束后,进行清淤、干塘,曝晒池底,使用生石灰、强氯精、漂白粉等对池底彻底消毒,可去除氨氮,增强水体对pH的缓冲能力,保持水体微碱性。

基于物联网技术的水产养殖智能化监控技术与系统

基于物联网技术的水产养殖智能化监控技术与系统一、项目可行性报告 (一)立项的背景和意义 我国水产养殖业的快速发展,对繁荣农村经济,优化产业结构,提高农民生活水平、建设和谐的社会主义新农村具有重要意义。《国家中长期科学和技术发展规划纲要(2006-2020)》已明确将“农业精准作业与信息化”和“畜禽水产健康养殖与疫病防控”纳入优先主题,因此,建设现代化的水产养殖业、发展农村经济和提高水产养殖业在国际市场竞争力,成为我国当前和今后相当一段时间内水产业发展的重要任务。结合浙江省的区位优势和《浙江海洋经济发展示范区规划》,发展现代水产养殖业,对浙江省建设海洋大省和海洋强省具有重要意义。本项目应用现代物联网技术,结合水产养殖特色,构建一套水产养殖水质环境信息感知—无线传感网路和可视化监控—智能化终端控制和预警预报系统,实现高效、生态、安全的现代水产养殖,对构建具有鲜明浙江特色的现代水产养殖新格局,促进我省社会主义新农村建设具有重要推动作用。 统计显示,到2010年,我省水产养殖面积稳定在480万亩,产量达到190万吨,净增20万吨;产值(一产)达到350亿元,新增130亿;出口额达到10亿美元,新增6.5亿美元。但随着我省土地资源紧缺,水产养殖池塘逐步老化、病害多发、效益下降等突出问题,如何提高养殖产品的品质、直接增加了渔农民的经济收入,实现高效、生态、安全的现代水产养殖产业成为我省亟待解决的重大问题。传统的粗放水产养殖方式,采用人工观察,单纯靠经验进行水产养殖的方法,很容易在养殖过程中造成调控不及时,反馈较慢,出现“浮头”和大面积死亡等惨象,造成重大的经济损失,上述方法已经不能满足现代水产养殖精准化和智能化的发展要求。基于上述问题,本项目重点研究水产养殖水质和环境关键因子立体分布规律和快速检测技术、水产养殖智能化和可视化无线传感网络监控系统、开发水产养殖环境关键因子(温度、pH值、溶解氧、

花卉自动浇水系统设计与实现文献综述

xxxxxxx大学 专业文献综述 题目: 花卉自动浇水系统设计与实现综述 姓名: xxx 学院: xxxxxxxxx学院 专业: 电子信息科学与技术 班级: xxx 学号: xxxxxxxxx 成绩: 指导教师: xxx 职称: 2015 年12 月1日 xxxxxxxx教务处制

盆花自动浇水系统设计与实现 作者:xxx指导教师:xxx 摘要:针对盆栽植物浇水不及时、缺乏浇水管理导致植物生长不健康的情况,将单片机测控技术应用于盆栽植物的浇水过程中,以单片机为核心的花盆土壤湿度控制系统。采用土壤湿度传感器实时检测花盆土壤湿度,单片机根据花盆土壤的湿度值判断植物是否需要进行浇水,通过控制继电器进而控制电磁阀实现自动浇水的功能。控制系统还具有报警功能,当花盆水箱水位低于设定值时,能够及时提示为水箱加水。 关键词:单片机花盆土壤湿度湿度传感器 Potted flower design and implementation of automatic watering system Author: xxx Tutor: xxx Abstract:For potted plants is not timely, the lack of water management in plant growth is not healthy, single-chip microcomputer measurement and control technology was applied to water plants in the process of flower pot soil moisture with the single chip processor as the core control system. Real-time detection flower pot soil moisture using soil moisture sensor, microcontroller based on the flower pot soil humidity value judgment whether the need for watering plants, water automatically by the control relay and control electromagnetic valve function. Control system also has alarm function, when the flower pot water tank water level is lower than the set value, can be timely reminder to the tank with water Key words: Single Chip Microcomputer,pot,Soil moisture,Humidity sensor 1.花盆土壤湿度控制系统设计背景及意义

水产养殖监测系统的构成要素

水产养殖监测系统的构成要素 水产行业不管是在内地还是在沿海一代都是我国发展的重点对象,本身水产养殖对于水中的各项参数指标就要求很严格,再加上水里所含物质的监测本身比较困难,所以现阶段的淡水鱼养殖对养殖监控系统的要求时越来越高。 水产养殖监测系统主要有水质监测、环境监测、视频监测、远程控制、短信通知等功能,水产养殖监测系统综合利用电子技术、传感器技术、计算机与网络通信技术,实现对水产养殖各阶段的水温、pH值和溶氧量等各项基本参数进行实时监测与预警,一旦发现问题,能及时自动处理或短信通知相关人员。通过一些控制措施来调节水产养殖的溶解氧、温度、pH值和水位等养殖水质的环境因子,同时根据水产品不同生长阶段的需求制定出测控标准,通过对水产养殖环境的实时检测,将测得参数和系统设定的标准参数进行比较后自动调整水产养殖生态环境各控制设备的状态,以使各项环境因子符合既定要求。 方法与过程: 水产养殖监测系统总体硬件架构: 水产养殖监测系统主要有水质监测、环境监测、视频监测、远程控制、短信通知等功能,该系统综合利用电子技术、传感器技术、计算机与网络通信技术,实现对水产养殖各阶段的水温、pH值和溶氧量等各项基本参数进行实时监测与预警,一旦发现问题,能及时自动处理或短信通知相关人员。通过一些控制措施来调节水产养殖的溶解氧、温度、pH值和水位等养殖水质的环境因子,同时根据水产品不同生长阶段的需求制定出测控标准,通过对水产养殖环境的实时检测,将测得参数和系统设定的标准参数进行比较后自动调整水产养殖生态环境各控制设备的状态,以使各项环境因子符合既定要求。如图2所示,本系统采取分

散监控、集中操作、分级管理的方法,硬件架构主要包括3部分:信息采集模块、信息处理模块、输出及控制模块。 水产养殖监测系统信息采集模块: 已有的水产养殖监测系统都只是用无线传感器网络对水产养殖的环境进行监控,而没有结合之后水产品加工、运输、销售环节的一个追溯需求来对养殖环节中水产品的鱼种、用药情况、饲料情况、患病情况进行记录和做出相关的应对措施。针对上述情况,系统采用ZigBee技术构建一个信息集输入模块,使无线传感器网络和RFID系统互不干扰。由于ZigBee技术的诸多优点,它与GPR组成的混搭型环境监测系统是目前比较流行和有发展潜力的架构。在监测现场,采集终端采用ZigBee技术,实现设备的互联互通,数据汇集于网关节点后通过GPRS与服务器相连,将数据上传到后台数据库服务器。 信息采集输入模块的结构如图4所示。

水产养殖中的主要安全危害及其来源

水产养殖中的主要安全危害及其来源 一、化学危害 1. 渔用药品和农药 杀虫剂、杀菌剂、杀藻剂、除草剂、消毒剂、防腐剂和抗氧化剂等污染水体后,可在养殖水产品中富集。可以富集的化学物质至少具备3个特性:不溶于水;在食物链的生物体内稳定存在;对生物体的毒性较低。这些特性使化学物质在食物链中不会断裂并形成逐级积累。一些很难代谢分解并直接排出生物体的化学物质,其富集作用的危害是不能低估的[1]。 2. 抗菌药 水产养殖业中越来越多地使用兽用或渔用抗菌药,它们的残留对人体健康的影响已受到人们的关注。作为治疗剂抗菌药(包括抗菌素)在水产养殖业中使用会对水环境产生潜在的影响,同时也会对人类健康产生潜在危害。 3. 激素 我国是大规模使用催产剂对鱼类进行人工繁殖的国家。近些年来,大量的团头鲂、异育银鲫、彭泽鲫、鲤鱼、鳜鱼、黄颡鱼在催产以后直接作食用鱼在市场上出售。也有用避孕药喂养黄鳝的报道。为了获得全雄或全雌鱼,用激素进行性转变,常用的有己烯雌酚、甲基睾酮、去甲睾酮等。食品中激素类药物残留会使正常人的生理功能发生紊乱,使儿童患肥胖症或性早熟。水产品中激素残留的潜在危害需要进一步研究。 4. 重金属与有害元素 水是一种高效溶剂,源于自然界和人类活动的大量化学物质都会溶入水中,其中重金属对水产养殖动物的毒性一般以汞最大,银、铜、镉、铅、锌次之。从食品安全考虑,重金属对人类健康危害是很大的。重金属污染以镉(Cd)最为严重,其次是汞(Hg)、铅(Pb)和非金属砷(As)。在水产养殖产品中主要有:镉、汞、铅、砷和酚类物质的残留。 5. 环境激素污染物 环境激素污染物是特指具有干扰人类和其他动物内分泌、免疫和神经系统的有毒污染物。2001年5月22日,在瑞典斯德哥尔摩,中国及其他90个国家的环境部长签署了与难降解有机物相关的控制公约,规定禁止或限制使用12种有机物:艾氏剂、氯丹、狄氏剂、异狄氏剂、七氯、毒杀酚、灭蚊灵、滴滴涕、六氯苯、多氯联苯、多氯二苯并对二噁英和多氯二苯并呋喃。前8种属农药类;后4种为工业副产物和燃烧产物。这12种物质在环境中不易降解,不仅破坏生态环境,而且干扰人类和其他动物的内分泌系统,影响生育能力,均属于环境激素类污染物。 二、生物危害 1. 寄生虫类 寄生虫类的生物危害主要包括吸虫、绦虫、线虫等,它一般以螺类、鱼类或甲壳类作为中间寄主,并以人和一些哺乳动物是它的最终寄主,并引起人类疾病。 2. 细菌 病原菌对养殖产品的污染程度取决于环境以及养殖水体中细菌的种类,引起水产品污染的细菌主要有2大类:本地区微生物区系;由环境污染所带来的细菌。主要种类有嗜水气单胞菌、肉毒杆菌、副溶血弧菌、霍乱弧菌、沙门氏菌、贺氏菌、大肠杆菌等。 3. 病毒 病毒是一类体积微小、能通过滤菌器,只能在活细胞内生长增殖的非细胞形态的微生物。病毒对水产动物造成的危害很大,目前已确定的病毒性疾病至少在23种以上,如草鱼出血病、对虾杆状病毒病、三角帆蚌瘟病等。病毒只对特定动物的特定细胞产生感染作用。 因此,食品安全只需考虑对人类有致病作用的病毒。很少量的病毒就可致人生病。病毒

水产养殖自动投喂系统

水产养殖自动投喂系统推荐渔管家。目前国内水产养殖业的养殖成本中占比例最大的是饲料成本,如草鱼养殖过程中饲料成本一般占总成本的75%,若能在一定程度上节约饲料成本,就可以提高养殖竞争力、增加赢利能力,对水产养殖的发展具有极大的促进作用。 而影响饲料成本最大的因素又在于投喂,定时、定点、定量的投喂饲料可以有效地提高饲料利用率,合理的储存饲料也能有效地减少饲料浪费。下面简单介绍水产养殖自动投喂系统。 自动投喂系统的优势 自动投喂系统以智能投料机为突破口,集合了料塔、称重模块、抛料模块、溶氧模块、在线监测水质模块及控制模块。实现了物料定量控制过程中的全部动作,具有高精度、高速度、环境适应性强、系统可靠性好等特点。 传统的料台式投料机在大规模养殖场的使用会存在这些缺陷: (1)使用寿命短,通常一年内要多次维修;

(2)必需使用包装饲料,增加饲料成本; (3)人工需求大,并需要工人高强度的体力劳动; (4)安装在鱼塘边,打料面积小,投料处鱼塘的鱼群多、溶氧低,容易导致养殖鱼的免疫力低下,饲料系数增高,也增加了养殖成本。 然而,自动投料机及其投喂管理系统与传统的料台式投料机完全不同,它极大幅度地改善了水产养殖的投料管理,大幅度降低了养殖成本,从根本上解决了大面积、大规模养殖场的高成本、难管理的课题。 自动投喂系统具备以下优势: (1)能够精确定量的控制喂料量,同时实时监控水体环境因子,养殖者可及时做出调整,避免过量喂食的情况发生,减少饲料的浪费,更重要的是减少因溶氧不足带来的危害; (2)配备散装料仓,节约包装成本,若按每亩鱼塘使用5吨饲料计算,全年可节约饲料包装袋约400元/亩。同时极大程度的减轻劳动强度,一人可管理多个鱼塘,节约人力成本,若按当前减少50%的人工计算,每年可降低人工成本500元/亩。还可以减少饲料如发霉、动物偷食等损耗,按每年节约饲料3%计算,每年可节约饲料浪费300元/亩。以上每年可节约下来的饲料和人工成本达1200元/亩,具有极大的成本节约效应; (3)抛洒范围大,360度圆形抛洒,直径可达50米,是传统抛料机弧形抛洒面积的十倍以上。由于抛洒面积大,觅食时鱼群密度不高,既能在氧气富足的情况下进食,易于营养的吸收,又能减少鱼群因互相摩擦而导致赤皮病的发生; (4)全中文人机界面,操作简便,更直观的监控生产过程。 此外,自动投喂系统还可实现中控电脑管理鱼塘投喂,由中控室直接管理鱼塘的投喂情况,实现全程无人式鱼塘投喂管理。

关于花卉自动浇水系统研究——文献综述

关于花卉自动浇水系统研究——文献综述 摘要:随着现代化脚步的加快,自动化已成为当今社会的发展主题,当然花卉自动浇水系统也越来越受到养花者的青睐。花卉自动浇水系统能自动给花卉浇水,很好地解决繁忙养花者不能及时给花卉浇水的问题。本文主要分析了花卉自动浇水系统中的土壤检测技术、自动浇水技术和它的主要应用及发展。 关键词:自动浇水系统,土壤检测技术,自动浇水技术,应用及发展 1、引言 随着当今社会现代化脚步的加快,自动化已成为当今世界的发展主题。花卉的生长发育需要有一定的环境条件,这些环境条件主要有温度、水分、光照、空气成分、土壤的成分、物理机械性质、营养液的温度和成分等。其中花卉能否良好生长最为重要的在于土壤湿度的适合程度。如何能有效及时的控制好土壤湿度问题已经成为养花爱花者们最为关心的问题。 花谚说:“活不活在于水,长不长在于肥”。盆栽花卉由于受容积小、蓄水保水性差、蒸发量大又无地下水补充等特定条件所限故,不耐旱,浇水就显得尤为重要。如果盆花缺水,植物体内的生理活动就会受到破坏,磷酸钾、硼、钙的吸收就会变弱,而这些元素的缺乏会导致生长点附近生长不良。盆花缺水还会造成土壤养分的浓度相对偏高, 也最易出现“肥伤”[1]。花卉生长所需的水分,大部分是从土壤中吸收来的,保持土壤适当的含水量,是花卉正常发育和获得更高观赏品质的必要条件[2]。常见的花卉按其需水习性和对不同水分环境的适应能力,可分为水生花卉、湿生花卉、中生花卉和旱生花卉四种。不同的花卉我们需要浇的水量也不一样[3]。不同的花卉需水量不同,相同的花卉在不同的生长阶段所需的水量也是不尽相同的。花卉对土壤水分的要求在各生长阶段不同而不同。我们要根据花卉的生长季节及生长期合理安排[4]。综上所述,盆花的合理浇水就显得尤为重要。 随着自动化设备的不断完善,各种自动浇花装置也不时的涌入社会。根据土壤湿度传感器设计的花卉自动浇水系统能根据作物及其不同生长阶段对环境条件的具体需要,随时调整控制花卉土壤湿度,让花卉能良好生长。 2、土壤检测技术 2.1烘干法[5] 烘干法也即土钻法(SA)是一直被公认的最经典和最精确的方法,因操作简单曾得到广泛应用,是直接测定的方法。 (1)测定方法: 经典的方法是烘箱烘干法,即取土样放入烘箱,在105-110℃条件下,烘至恒重,为烘干土重,以此为基础计算水分重(蒸发损失量)的百分比(%),从而获得土壤水分含量。 烘干法通常还有所谓的快速测定法,其程序与常规法相同,实质仍是采用一些手段使土样烘至恒重的时间尽可能缩短,如酒精燃烧法、红外线法、炉烤法等。 (2)方法的应用及优缺点: 烘干法是测定土壤含水量最普遍的方法,也是目前国际上的标准方法。烘干法的优点是

水产养殖中硫化氢的危害及处理

在日常养殖中,我们经常需要检测硫化氢,那么什么才是硫化氢?对养殖有哪些危害?如何处理呢? 下面我们简单的聊聊 首先,硫化氢的来源,在缺氧条件下,含硫的有机物经厌氧细菌分解而产生;在富硫酸盐的池水中,经硫酸盐还原细菌的作用,使硫酸盐转化成硫化物,在缺氧条件下进一步生成硫化氢。 硫化物和硫化氢均具毒性。硫化氢有臭蛋味,具刺激、麻醉作用。硫化氢在有氧条件下很不稳定,可通过化学或微生物作用转化为硫酸盐。在底层水中有一定量的活性铁,可被转化为无毒的硫或硫化铁。 硫化氢对鱼类的毒害作用 水体中的硫化氢通过鱼鳃表面和粘膜可很快被吸收,与组织中的钠离子结合形成具有强烈刺激作用的硫化钠,并还可与细胞色素氧化酶中的铁相结合,使血红素量减少,因而影响鱼类呼吸,为此H2S对鱼类具有较强毒性,检测水中的硫化氢可以使用奥克丹水产养殖水质检测仪。在养殖水体中硫化氢含量达0.1毫克/升就可影响幼鱼的生存和生长,当达到6.3毫克/升时可使鲤鱼全部死亡。中毒鱼类的主要症状为鳃呈紫红色,鳃盖、胸鳍张开、鱼体失去光泽,漂浮在水面上。 (三)控制硫化氢具体措施: 提高水中含氧量。严重的鱼池可每亩泼洒300毫升~500毫升双氧水;使用氧化铁剂每亩放入一定量的铁屑。 硫化氢一般是在缺氧条件下,含硫的有机物经厌氧细菌分解而产生的,因为水体中的硫化氢通过呼吸系统表面和粘膜可很快被吸收,与组织中的钠离子结合形成具有强烈刺激作用的硫化钠,并还可与细胞色素氧化酶中的铁相结合,使血红素量减少,因而影响呼吸,为此H2S对小龙虾具有较强毒性,在养殖水体中硫化氢含量达0.1mg/L就可影响幼小龙虾的生存和生长。奥克丹水产养殖水质检测仪可以快速准确检测硫化氢,氨氮,亚硝酸盐等常规理化指标。 解决方法:提高水中含氧量。严重的鱼池可每亩泼洒300毫升~500毫升双氧水;使用氧化铁剂每亩放入一定量的铁屑。

2021年水产养殖场实习日记

xx.16 星期五阵雨 今天是正式实习的第一天,早上六点钟就起来了,从来没有过的早,至少是xx年中我起来的最早的一天了。听肖姐说早上六点钟起床在这边就是很正常的事,所以这不得不让我在这两天之内要把自己的生物钟调整过来,习惯成自然,坚持一下就好了。 吃了早饭之后就跟着冷经理和肖姐一起去养殖场开始做事了,才去的时候还没有下雨,当我们刚好在一个小塘子晒完一包优加益生菌后,突然就下起了大雨,我们不得不跑到一个小房子里躲雨。在小房子里我又和肖姐一起将肝胆泰乐、迪诺康和黄金多糖拌于饲料中,我们先后共拌了16包共计66斤。在饲料要拌完之后冷经理给我们送来两件雨衣,我和肖姐一人一件,拌完饲料之后我们穿着雨衣在返回的途中又将三袋蟹草肥晒入一个小塘的中,目的是促进伊乐草的生长。 完成上午的工作计划之后我们回来才发现才1点多钟,然后那个蒋老板就叫我们吃饭,我开始以为是他们的早饭,最后问肖姐才知道这居然是他们的午饭。他们的午饭也吃的太早了,第一次这么早吃午饭,还有点不能接受。当我正吃的时候感觉自己真的有点饿了,想到早上起来那么早,又那么早吃早饭,然后干了几个小时的活,如果挨到12点钟去吃午饭的话肯定受不了,1点多钟吃午饭也是合情合理。 吃了午饭后看了会电视,外面的雨还是不停的下,就没有见要停的迹象,因此养殖场下午也没有什么事可干,我们就提前回了家。 通过第一天的实习,让我感受很多。江苏这边的人生活节奏比起四川重庆那是快很多,可能我们一天只能工作1小时,但他们这边可以工作13个小时。在这边也让我体验到一天有多么的长,一天可以做多少事。以前在学校或在家里,早上起来基本上可以抵得上这边吃午饭了,想想就很惭愧。 xx.17 星期六多云 今天冷经理出差去武汉,所以早上只有我和肖姐两个人打车去了养殖场。到了养殖场之后,我们带上了两包优加益生菌和四罐全效底改然后直奔小塘而去,然后刚出去不久就发现我的自行车前胎一点气都没有了,以为是爆胎了。然后肖姐给一个工人打电话准备借用那个工人的自行车用一下,我又返回去骑的时候发现他的自行车前胎也爆胎了。塘上工人的摩托车又借不到,走路去拌料投药也有点不现实,主要是养殖场面积太大,等我还没有走到目的地,肖姐说不定一个人就在那里完事了,最后肖姐叫我回办公室等她,看看书也可以。 我回了办公室,看了一些关于河蟹养殖方面的书,边看边回忆自己在这个养殖场所遇到的一些情况,发现很多都能对应上,这样理解起来就很容易,并且映像还很深。水产水产,就是要把理论和实践结合起来学习这样效果才是最好的。 11点多钟的时候我看到外面突然又下起雨来,想到肖姐走的时候没有带雨衣,我就带着雨衣向北塘奔去,走了2几分钟雨又停了,想一想走了这么远了干脆就这样一直走下去吧。半途中看到一个小房子里有辆自行车,里面又没人,先借用一下把雨衣送过去马上回来还在这里。在北塘边终于遇到肖姐了,她也正往回走,在回来的途中我们又在一个小房子里拌了2包饲料。

物联网水产养殖智能监控系统方案

CICTA 中欧农业信息技术研究所 https://www.360docs.net/doc/1619131475.html,:8088/lab_cn/system/index.php?detail=1&id=8 水产养殖环境智能监控系统 1、系统简介 水产养殖环境智能监控系统是面向水产养殖集约、高产、高效、生态、安全的发展需求,基于智能传感、无线传感网、通信、智能处理与智能控制等物联网技术开发的,集水质环境参数在线采集、智能组网、无线传输、智能处理、预警信息发布、决策支持、远程与自动控制等功能于一体的水产养殖物联网系统。 养殖户可以通过手机、PDA、计算机等信息终端,实时掌握养殖水质环境信息,及时获取异常报警信息及水质预警信息,并可以根据水质监测结果,实时调整控制设备,实现水产养殖的科学养殖与管理,最终实现节能降耗、绿色环保、增产增收的目标。 2、系统组成 该系统由水质监测站、增氧控制站、现场及远程监控中心等子系统组成。 水质监测站可以选装溶解氧传感器、pH传感器、水位传感器、盐度传感器、浊度传感器等,配合智能数据采集器,主要实现对养殖场水质环境参数的在线采集、处理与传输。 增氧控制站包括无线控制终端、配电箱、空气压缩机与曝气增氧管道(或增氧机),无线控制终端汇聚水质监测站采集的信息,根据不同养殖品种对溶解氧的需求,通过算法模型控制增氧设备动作。 现场监控中心包括WSN无线接入点和现场监控计算机,无线控制终端汇聚的数据通过无线接入点汇总到现场监控计算机,用户可在本地查询水质参数数据,同时监控计算机对数据进行分析处理,做出控制决策,通过无线接入点向配电箱发送控制指令。 远程监控中心通过GPRS远程接入点接收无线控制终端汇聚的数据信息,用户可以通过手机、PDA、计算机等信息终端远程查询水质信息,同时也可通过对数据进行分析处理,做出控制决策,远程控制增氧设备。

文献综述-自动浇花系统

本科毕业设计(文献综述) 题目自动浇花系统的设计 姓名刘富强 专业自动化 学号 201042048 指导教师赵明冬 郑州科技学院电气工程学院 二○一四年五月

自动浇花系统的设计文献综述 1 前言 现在生活中,随着人们生活水平的提高,人们对花卉、树木等绿色植物的喜爱和种植越来越多,在家里养盆花能够陶冶情操,使生活多姿多彩。而且,盆花通过光合作用能吸收二氧化碳,净化空气,在有花草的地方空气中阴离子聚积较多,所以空气也会特别清新,另外,有许多花木还可吸收空气中的有害气体,因此,如今许多的人喜爱养盆花。随着我国房地产的发展,近年来出现高档住宅社区和别墅区,一部分拥有了私家花园,家庭式的浇灌在国内也没正式的起步,和人们现在的生活压力大,没有时间来照看自己家的花卉和小草,但是人们现在生活的环境中太多的电子产品,影响我们的身体健康,所以我们不得不养些花花草草的,还可以陶冶一下情操。[1]然而以前对花木的浇灌、施肥等工作都需要人工来实现,由于现代生活节奏的加快,人们往往忙于工作而忘记定期、及时的为花卉补充水分及养料,或者由于放假回家而将花放办公室等处没人管理导致花木枯死。水是植物生存、生长的最基本的需要.花卉生长所需的水分,大部分是从土壤中吸收来的,保持土壤适当的含水量,是花卉正常发育和获得更高观赏品质的必要条件。常见的花卉按其需水习性和对不同水分环境的适应能力,可分为水生花卉、湿生花卉、中生花卉和旱生花卉四种。不同的花卉我们需要浇的水量也不一样。不同的花卉需水量不同,相同的花卉在不同的生长阶段所需的水量也是不尽相同的。花卉对土壤水分的要求在各生长阶段不同而不同。我们要根据花卉的生长季节及生长期合理安排。综上所述,盆花的合理浇水就显得尤为重要。[2] 随着自动化设备的不断完善,各种自动浇花装置也不时的涌入社会。根据土壤湿度传感器设计的花卉自动浇水系统能根据作物及其不同生长阶段对环境条件的具体需要,随时调整控制花卉土壤湿度,让花卉能良好生长。 2 自动浇花系统的设计要求

自动浇水系统设计

自动浇水系统设计 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

毕业论文﹙设计﹚ 题目自动浇水系统的设计 学生姓名学号 所在院(系) 物理与电信工程学院 专业班级电子083 指导教师 2012年6月5日 毕业论文﹙设计﹚任务书 院(系) 物理与电信工程学院专业班级电子083学生姓名 一、毕业论文﹙设计﹚题目盆花自动浇水系统设计与实现 二、毕业论文﹙设计﹚工作自___2012__年__2 _月__27__日起至__2012 _年 6 月__15 日止 三、毕业论文﹙设计﹚进行地点: 电子信息工程系实验室 四、毕业论文﹙设计﹚的内容要求: 本课题要求设计一个盆花自动浇水系统,要求:1.实现湿度的显示;2.配合使雨水检测器,即使你设定的浇水时间天突然下雨了,浇水控制器就会自动关阀停止浇水; 3.每天可设定八次定时浇水选择,每次为1分钟至9小时59分,也可以根据需要的时间设计; 4.采用电机阀技术,浇水自动控制器不受水压影响,而且不易受水质影响和堵塞。

解决途径:用51系列单片机作为主控芯片,配合温、湿度传感器、雨水检测器以及对应的测量电路完成对环境的检测,驱动数码管或LCD进行温、湿度显示,驱动浇水装置实现自动浇水。 主要任务:进行硬件电路设计和软件程序的编写调试,烧录程序并完成系统联调,最后撰写毕业设计论文。 进度安排: 2月27日-3月30日:查阅资料及方案论证 4月2日-5月11日:编写软件、调试运行及单元电路调试 5月14日-5月25日:整体联调 5月28日-6月8日:整理数据及撰写论文 6月11日-6月15日:准备答辩 指导教师系(教研室)应用电子技术教研室系(教研室)主任签名批准日期 接受论文 (设计)任务开始执行日期学生签名 盆花自动浇水系统的设计 [摘要]本设计主要的内容是土壤湿度检测电路的设计与制作。该电路的工作原理是由AT89C51单 片机和ADC0809组成系统的核心部分,湿度传感器将采集到的数据直接传送到ADC0809的IN端作为输入的 模拟信号。选用湿度传感器和AD转换,电路内部包含有湿度采集、AD转换、单片机译码显示等功能。单片 机需要采集数据时,发出指令启动A/D转换器工作,ADC0809根据送来的地址信号选通IN3通道,然后对输 入的模拟信号进行转换,转换结束时,EOC输出高电平,通知单片机可以读取转换结果,单片机通过调用中 断程序,读取转换后的数据。最后,单片机把采集到的湿度数据经过软件程序处理后送到LED数码管进行显 示。自动浇水系统设计为智能和手动两个部分:智能浇水部分是通过单片机程序设计浇水的上下限值与感应 电路送入单片机的土壤湿度值相比较,当低于下限值时,单片机输出一个信号控制浇水,高于上限值时再由 单片机输出一个信号控制停止浇水;手动部分是由通过关闭单片机电源,由外围电路供电进行浇灌、[关键词]AT89C51 干湿度的采集与显示 LED Design of potted flowerss automatic watering system (Grade 08,Class 3,Major electronics and information engineering ,School of physics and

智能水产养殖系统设计方案

智能水产养殖系统设计方案 工厂化水产养殖具有稳产、高产、品质好、耗水少等优点,能有效检测与控制养殖水中的各种环境参数,建立适于鱼类生长的最佳环境。目前国内外学者通过水产品生长营养需求的分析和研究,已得到了很多水产品营养需求的数据。国内养殖场通常利用这些数据结合养殖经验来进行投喂决策,但是如何以最低成本实现最佳的投喂仍然是亟待解决的问题。 分析国内外学者在水产品智能化养殖方面的研究工作,本文基于物联网设计智能化水产养殖监控系统,采用无线传感器、RFID、智能化自动控制等先进的信息技术和管理方法对养殖环境、水质、鱼类生长状况、药物使用、废水处理等进行全方位的管理和监测。 智能水产养殖系统系统总体硬件架构: 物联网智能化养殖监控系统主要有水质监测、环境监测、视频监测、远程控制、短信通知等功能,该系统综合利用电子技术、传感器技术、计算机与网络通信技术,实现对水产养殖各阶段的水温、pH值和溶氧量等各项基本参数进行实时监测与预警,一旦发现问题,能及时自动处理或短信通知相关人员。通过一些控制措施来调节水产养殖的溶解氧、温度、pH值和水位等养殖水质的环境因子,同时根据水产品不同生长阶段的需求制定出测控标准,通过对水产养殖环境的实时检测,将测得参数和系统设定的标准参数进行比较后自动调整水产养殖生态环境各控制设备的状态,以使各项环境因子符合既定要求。如图2所示,本系统采取分散监控、集中操作、分级管理的方法,硬件架构主要包括3部分:信息

采集模块、信息处理模块、输出及控制模块。 智能水产养殖系统信息采集模块: 已有的水产品智能养殖监控系统都只是用无线传感器网络对水产养殖的环境进行监控,而没有结合之后水产品加工、运输、销售环节的一个追溯需求来对养殖环节中水产品的鱼种、用药情况、饲料情况、患病情况进行记录和做出相关的应对措施。针对上述情况,系统采用ZigBee技术构建一个信息集输入模块,使无线传感器网络和RFID系统互不干扰。由于ZigBee技术的诸多优点,它与GPR组成的混搭型环境监测系统是目前比较流行和有发展潜力的架构。在监测现场,采集终端采用ZigBee技术,实现设备的互联互通,数据汇集于网关节点后通过GPRS与服务器相连,将数据上传到后台数据库服务器。信息采集输入模块的结构如图4所示。

相关文档
最新文档