蒸汽过热器(锅炉)爆管剖析——调节蒸汽温度(5)

蒸汽过热器(锅炉)爆管剖析——调节蒸汽温度(5)
蒸汽过热器(锅炉)爆管剖析——调节蒸汽温度(5)

编订:__________________

审核:__________________

单位:__________________

蒸汽过热器(锅炉)爆管剖析——调节蒸汽温度

(5)

Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.

Word格式 / 完整 / 可编辑

文件编号:KG-AO-2819-36 蒸汽过热器(锅炉)爆管剖析——

调节蒸汽温度(5)

使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。

为了进一步从根源上找出爆管原因,全面分析了调节蒸汽温度的各种因素,以便彻底消除减温器事故隐患,见图2:

图2 面式减温器与省煤器进水示意图

注:1——给水电动调节阀;2——给水旁通阀;3——逆止阀;4——给水直通阀;5——省煤器;6——汽包;7——减温水电动调节阀;8——减温水旋转调节阀;9——逆止阀;10——面式减温阀;11——减温器出水阀

过热蒸汽温度的调节在近1年时间内,由于8减温水旋转调节阀内漏,司炉工不得已采用手动调节11减温器出水阀,控制水量的大小,从而达到调节汽温的目的。经过减温器以后的冷却水,接至省煤器之前

与给水混合,通过4给水直通阀全部进入省煤器,因而保证了省煤器供水的稳定、可靠性。

(1)当过热蒸汽温度下降时:关小或关闭11减温器出水阀,由于冷却水量出口的减小或中断,使10面式减温器内水压增大,蒸汽将热量传播给低温冷却水,随着时间的延长,减温装置内冷却水温逐渐升高,体积不断增大,蒸汽放热与冷却水吸热之间的温差越来越小,则蒸汽传热的速度越来越慢,传播给冷却水的热量也就越少,蒸汽温度也就升高。

(2)当蒸汽温度升高时:开启或开大11减温器出水阀,由于冷却水出口的流动或加大,使10面式减温器内水压降低,把滞流在减温装置内的高温冷却水不断流出(此时常发生水冲击),水温随着流动而逐渐降低,蒸汽放热与冷却水吸热之间的温差越来越大,则蒸汽传热的速度越来越快,传播给冷却水的热也就越多,蒸汽温度也就下降。

请在这里输入公司或组织的名字

Enter The Name Of The Company Or Organization Here

锅炉过热蒸汽温度控制系统设计

课程设计任务书 题目: 锅炉过热蒸汽温度控制系统设计 摘要 本文是针对锅炉过热蒸汽温度控制系统进行的分析和设计。控制系统采用串级控制以提高系统的控制性能,在系统中采用了主控-串级控制的切换装置,使系统可以适用于不同的工作环境。通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。 关键字:过热蒸汽控制串级控制系统自动控制主控-串级切换 目录 1 生产工艺介绍 .................................................. 错误!未定义书签。 1.1 锅炉设备介绍............................................................................ 3 1.2 蒸汽过热系统的控制................................................................ 52控制原理简介 ..................................................................................... 6 2.1控制方案选择............................................................................. 6 2.1.1单回路控制方案................................................................. 6

详解蒸汽锅炉常见热温度计的原理和结构

详解蒸汽锅炉常见热电阻温度计与半导体电温计 在工业蒸汽锅炉的使用中,温度计是必备的温度仪表。下面就是分析一下工业蒸汽锅炉中常用到的热电阻温度计。热电阻温度计是利用导体或半导体的电阻随温度变化而改变的性质制成的。通过测量金属电阻值大小,得出所测温度的数值。 常用的热电阻有铂热电阻和铜热电阻两种。如图所示。热电阻外面一般要加保护套管,保护套管材料要耐温+耐腐蚀、承受温度剧变,密封性好,有足够的机械强度。 用热电阻测量500。C以下的温度,具有比热电偶更高的测量精度。铂热电阻可以测量- 200~6500C,铜热电阻可以测量50--1500C 范围温度。热电阻也能远距离测量和显示。安装方法与热电偶类似。热电阻与温度显示仪表通过导线连接而成为测温显示装置,用以测量气体、液体和蒸汽的温度。 光学温度计是非接触式测温仪表,它是利用物体的光谱辐射亮度随温度的升高而增大的原理制戚的。 光学温度计在工业蒸汽锅炉中,主要用来测量炉膛火焰温度。测温时,先将物镜对准被测火焰,移动物镜筒,使被测火焰物象与灯丝在同一平面内。再慢慢地调节电阻大小以使火焰与灯丝具有相同的亮度,即灯丝顶端消失不见,参见图.这时毫伏计即指出被测火焰的表面温度。光学温度计有隐丝式和恒亮式二种,分别可以测量900~3000。C 和900~1500度C范围温度。 七、半导体点温计

半导体点温计也叫半导体电阻温度计。它具有灵敏度高、热惯性小、体积小、结构较简单,使用方便和便于远传测量的优点,常用于测量固体散热壁面的温度测量。范围为≤3000度,在工业蒸汽锅炉上常用来测量外保温表面散热温度等。 八、蒸汽锅炉对温度仪表的要求 1.在锅炉的下列相应部位应装设测量温度的仪表。 (1)过热器出口,再热器进出口的汽温。 (2)由几段平行管组组成的过热器的每组出口的汽温。 (3)减温器前、后的汽温。 (4)铸铁省煤器出口的水温。 (5)燃煤蒸汽锅炉炉膛出口的烟温。 (6)再热器和过热器入口的烟温。 (7)空气预热器空气出口的气温。 (8)排烟处的烟温。 (9)燃油蒸汽锅炉燃烧器的燃油入口油温。 (10)额定蒸汽压力大于或等于9.8MPa锅炉的锅筒上、下壁温。(Il)额定蒸汽压力大于9.8MPa锅炉的过热器、再热器蛇形管金属壁温。 (12)燃油蒸汽锅炉空气预热器出口烟温。 有过热器的锅炉,还应装设过热蒸汽温度的记录仪表。 2.有表盘的温度测量仪表的量程,应为所测正常温度的1.5—2

蒸汽过热器管断裂失效分析

蒸汽过热器管断裂失效分析 王印培陈进 (华东理工大学化机所上海200237) 摘要:某奥氏体不锈钢制蒸汽过热器管在加碱煮炉过程中发生断裂。采用力学性能测定宏微观检验及能谱分析,对该断裂管进行了分析研究。结果表明,蒸汽过热管断裂失效是由碱脆造成的。 主题词:碱脆;不锈钢;失效分析 1 概述 某炼油厂新建制氢装置的转化炉蒸汽过热器管在中压汽包加碱煮炉过程中多处发生断裂。蒸汽过热器管外径Φ89mm,壁厚6.5mm,材料为1Cr19Ni9奥氏体不锈钢。经现场检查,断裂均发生于与集汽管相连的蒸汽过热器的弯管上,裂纹大多位于焊接热影响区,为环向裂纹,在裂口周围管外有结碱。典型的裂纹宏观形貌见图1和图2。 图1 蒸汽过热器直管段裂纹宏观形貌图2 蒸汽过热器弯头裂纹宏观形貌

蒸汽过热器与中压汽包相连通,管外被转化炉炉气加热,管内为过热蒸汽。转化炉投入运行前先烘炉并对中压汽包进行加碱煮炉,煮炉碱液按每立方米各加入NaOH,Na2PO44kg的要求配制,并保证65%~75% 液位。经采样分析炉水碱度达到不小于45mg?L要求。烘炉与煮炉先后结束后(10d),转化炉对流段入口温度保持在525℃,中压汽包仍保压运行。运行一天后发现蒸汽过热器泄漏蒸汽,漏点不断扩大,迫使转化炉降温停炉。根据现场操作记录,在煮炉过程中,蒸汽过热器的蒸汽温度在200℃以上的时间达78h,其中300℃以上的达60h。 2 化学成分分析与铁素体含量测定 对蒸汽过热器直管、弯头和焊缝金属的化学成分进行分析,结果见表1。由表可见,蒸汽过热器直管与弯头的化学成分符合GB13296-1991对1Cr19Ni9钢的要求。 采用铁素体含量测定仪对蒸汽过热器中已开裂的直管、弯头及其焊缝处的铁素体含量进行测定,结果直管的铁素体含量平均为1.5%(共8点),最高为1.84%;弯头的铁素体含量平均为0.35%(共8点),最高为0.38%;焊缝处铁素体含量平均为319%,最高为6.47%。可见,蒸汽过热器管铁素体含量正常。 3 蒸汽过热器管内壁渗透液检验 为检验过热器管焊缝以外其它部位是否有裂纹,将过热器直管(部分)及弯头沿对称轴切开,进行内壁渗透液检验。结果显示,除了已穿透的裂纹及部分分叉外,未发现其它裂纹。 4 力学性能测试 力学性能试样均为两种状态,即过热器管的使用态和重新固溶热处理状态。重新固溶热处理工艺为1050℃水冷。 4.1 拉伸性能 按GB6397-1986标准,在过热器直管段取样,试样为矩形截面全厚度试样。拉伸试验按GB228-1987标准进行。试验温度为室温。试样数量为使用态和重新固溶态各两根。试验结果见表2。

4#锅炉过热蒸汽钠超标原因分析

4#锅炉过热蒸汽钠超标原因分析 一、4#炉过热蒸汽Na+超标现象: 4#锅炉过热蒸汽Na+超标,质检取样检测数据频繁超标,过热蒸汽Na+在线数据波动较大,饱和蒸汽Na+在线显示数据和质检分析数据都正常,而过热蒸汽Na+在线分析和分析检测数据与饱和蒸汽Na+数据相差较大。 二、4#炉过热蒸汽Na+超标排查处理过程: 1.锅炉取样间冷却架上,取样冷却器排污冲洗管直接汇至锅炉定期排污母管上,由于中间只加装一道隔离阀,为防止锅炉定期排污时污水反串至取样冷却器内,2017年10月22日、23日给四台锅炉取样冷却架排污管线上加装阀门,排除锅炉排污时候高压水反串至取样冷却器内。 2.4#锅炉过热蒸汽由锅炉集气集箱直接引至取样冷却间,通过两级冷却器减压后送至取样口和在线分析装置。2017年10月24日为排除4#炉过热蒸汽冷却器内漏,将冷却器重新更换。 3.2017年11月3日上午,锅炉技术人员与在线仪表人员共同在4#锅炉取样间排查4#锅炉过热蒸汽Na+超标原因。经排查后怀疑是在线表计装置冷却器内漏,在线表计冷却器采用经循环水冷却后的脱盐水冷却过热蒸汽。与在线仪表人员协商后,将在线表计冷却系统隔离,将冷却水排放干净,下午将过热蒸汽流经在线冷却装置管线短路,彻底隔断在线分析装置冷却器内漏。 4.2017年11月10日,锅炉技术人员联系在线仪表人员将在线检测管线进行滤网更换,并且冲洗管线。 三、4#炉过热蒸汽Na+超标排查处理后结果: 1.2017年11月3日将在线分析装置冷却器隔离后,自11月5日开始,质检取样检测4#炉过热蒸汽,分析化验过热蒸汽Na+合格。 2. 2017年11月5日将在线表计分析管线冲洗后,自11月5日下午17时开始4#炉过热蒸汽Na+在线表计显示数据合格,且波动范围很小,与合格的饱和蒸汽在线显示数据相差很小。 四、经验教训及结论分析 由4#锅炉过热蒸汽Na+超标,现场系统排查、处理、投运观察后,初步判断近期4#锅炉过热蒸汽Na+超标是由于在线表计冷却器冷却水内漏至取样口,导致

主蒸汽温度控制系统

主蒸汽温度控制系统 本机组的锅炉为单汽包、单炉膛、再热式自然循环锅炉。由汽包分离分离出的蒸汽依次流过顶棚、热回收包覆面、初级过热器、屏式过热器和未级过热器,最后达到一定的温度离开锅炉。 两级喷水减温器分别布置于初过出口、屏过入口处和屏过出口、未级过热器入口处,如图1所示。主蒸汽温度控制系统,通过这两级喷水减温,将未级过热器出口主蒸汽温度控制在某个定值上,并且保护整个过热器管路乃至主蒸汽管道及汽机金属不被高温损坏。 该系统分两级喷水控制,每级喷水又分左右两侧控制,如图1所示,同一级的两侧减温控制设计思想是相同的。一、二级减温水控制系统是相互独立的,现分别予以剖析。 1.1一级减温水控制 一级减温水的作用,简单地说是将一级减温器出口温度即屏过入口温度控制在某个定值上。图2为原理性框图。 这个温度定值通常是锅炉负荷(用汽机第一级压力P1代表),主汽压力P,主汽压偏差△P的函数(P1、P、△P)。其中,定值与负荷的关系,如图2中的曲线所示,而与压力的关系待定。但在特殊工况下,这个定值还要受最小减温水量和最大减温水量的限制。 ①最小一级减温水量限制 限制最小减温水量的目的是为了防止屏式过热器被高温烧坏,因屏过接受炉内高温火焰辐射,防止屏过内蒸汽温度过高尤为重要,因此最小一级减温水量限制又可理解成屏过出口最高蒸汽温度限制。图2中,A1为屏过出口所允许的最高汽温值。当屏过出口汽温高于这个最高值后,PID1将逐渐减小输出,最后在小值选择器之后,将取代通常的定值(P1、P,

△P),即去降低一级减温器出口温度定值,PID0将去增加一级减温水量,从而降低整个屏过段的蒸汽温度。 ②最大一级减温水量限制 限制最大一级减温水量目的是为了防止屏过入口汽温过低以致低于此处当前压力下水蒸汽的饱和点,所以又可将最大一级减温水量限制理解成屏过入口最低温度限制。图2中,f(x)输出为相应压力下屏过入口蒸汽的饱和温度,在此基础上再加上A2(约11℃)的过热度,这个和值在大值选择器中与前级的小选输出进行比较,取大值输出。这样就可限制屏过入口蒸汽温度定值,使其不致低于饱和点,从而防止了屏过入口蒸汽带水。 如果不出现两种极端情况,即屏过出口汽温过高或屏过入口汽温过低,定值将是f(P1、P、△P)。 实际屏过入口温度与其定值求偏差后,经PID0调节器运算,其输出去调节一级减温水量最终使屏过入口实际汽温与其定值相等。 由此可见,一级减温水控制回路只是一个单回路调节系统,虽然虽然在框图中有两个PID调节器“串联”在一起,但并不是串级控制系统。

蒸汽过热器(锅炉)爆管剖析——调节蒸汽温度正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 蒸汽过热器(锅炉)爆管剖析——调节蒸汽温度正式 版

蒸汽过热器(锅炉)爆管剖析——调节 蒸汽温度正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 为了进一步从根源上找出爆管原因,全面分析了调节蒸汽温度的各种因素,以便彻底消除减温器事故隐患,见图2: 图2 面式减温器与省煤器进水示意图注:1——给水电动调节阀;2——给水旁通阀;3——逆止阀;4——给水直通阀;5——省煤器;6——汽包;7——减温水电动调节阀;8——减温水旋转调节阀;9——逆止阀;10——面式减温阀;11——减温器出水阀 过热蒸汽温度的调节在近1年时间内,由于8减温水旋转调节阀内漏,司炉

工不得已采用手动调节11减温器出水阀,控制水量的大小,从而达到调节汽温的目的。经过减温器以后的冷却水,接至省煤器之前与给水混合,通过4给水直通阀全部进入省煤器,因而保证了省煤器供水的稳定、可靠性。 (1)当过热蒸汽温度下降时:关小或关闭11减温器出水阀,由于冷却水量出口的减小或中断,使10面式减温器内水压增大,蒸汽将热量传播给低温冷却水,随着时间的延长,减温装置内冷却水温逐渐升高,体积不断增大,蒸汽放热与冷却水吸热之间的温差越来越小,则蒸汽传热的速度越来越慢,传播给冷却水的热量也就越少,蒸汽温度也就升高。

蒸汽过热器爆管剖析-调节蒸汽温度(新版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 蒸汽过热器爆管剖析-调节蒸汽 温度(新版)

蒸汽过热器爆管剖析-调节蒸汽温度(新版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 为了进一步从根源上找出爆管原因,全面分析了调节蒸汽温度的各种因素,以便彻底消除减温器事故隐患,见图2: 图2面式减温器与省煤器进水示意图 注:1——给水电动调节阀;2——给水旁通阀;3——逆止阀;4——给水直通阀;5——省煤器;6——汽包;7——减温水电动调节阀;8——减温水旋转调节阀;9——逆止阀;10——面式减温阀;11——减温器出水阀 过热蒸汽温度的调节在近1年时间内,由于8减温水旋转调节阀内漏,司炉工不得已采用手动调节11减温器出水阀,控制水量的大小,从而达到调节汽温的目的。经过减温器以后的冷却水,接至省煤器之前与给水混合,通过4给水直通阀全部进入省煤器,因而保证了省煤器供水的稳定、可靠性。 (1)当过热蒸汽温度下降时:关小或关闭11减温器出水阀,由于冷却水量出口的减小或中断,使10面式减温器内水压增大,蒸汽将

锅炉主蒸汽温度低原因及处理

我厂三期机组主蒸汽温度低原因及处理 近期,我厂#6、7机组机组负荷在50%及以上时经常出现主蒸汽温度低现象,现总结其原因及其处理方向。 一、主蒸汽温度过低的危害 当主蒸汽压力和凝结真空不变,主蒸汽温度降低时,主蒸汽在汽轮机内的总焓降减少,若要维持额定 负荷,必须开大调速汽阀的开度,增加主蒸汽的进汽量。一般机组主蒸汽温度每降低10C,汽耗量要 增加 1.3%~1.5%。 主蒸汽温度降低时,不但影响机组的经济性,也威胁着机组的运行安全。其主要危害是: (1)末级叶片可能过负荷。因为主蒸汽温度降低后,为维持额定负荷不变,则主蒸汽流量要增加,末级焓降增大,末级叶片可能过负荷状态。 (2)末几级叶片的蒸汽湿度增大。主蒸汽压力不变,温度降低时,末几级叶片的蒸汽湿度将要增加,这样除了会增大末几级动叶的湿汽损失外,同时还将加剧开几级动叶的水滴冲蚀,缩短叶片的使用寿命。 (3 )各级反动度增加。由于主蒸汽温度降低,则各级反动度增加,转子的轴向推力明显增大,推力瓦块温度升高,机组运行的安全可靠性降低。 (4)高温部件将产生很大的热应力和热变形。若主蒸汽温度快速下降较多时,自动主汽阀外壳、调节级、汽缸等高温部件的内壁温度会急剧下降而产生很大的热应力和热变形,严重时可能使金属部件产生裂纹或使汽轮机内动、静部分造成磨损事故;当主蒸汽温度降至极限值时,应打闸停机。 (5)有水击的可能。当主蒸汽温度急剧下降50C以上时,往往是发生水冲击事故的先兆,汽轮机值班员必须密切注意,当主蒸汽温度还继续下降时,为确保机组安全,应立即打闸停机。 二、引起主蒸汽温度低的因素: 1)水煤比。 在直流锅炉动态分析中,汽轮机调节汽阀的扰动,对直流锅炉是一种典型的负荷扰动。当调节汽阀阶 跃开大时,蒸汽流量D和机组输出功率N E立即增加,随即逐渐减少,并恢复初始值,汽轮机阀前压力 P T一开始立即下降,然后逐渐下降至新的平衡压力。由于直流锅炉的蓄热系数比汽包锅炉小,所以直流锅炉的汽压变化比汽包锅炉大得多。当负荷扰动时,过热汽温T2近似不变,这是由于给水流量和燃 烧率保持不变,过热汽温就基本保持不变。 燃烧率扰动是燃料量、送风量和引风量同时协调变化的一种扰动。当燃烧率B阶跃增加时,经过一段 较短的迟延时间,蒸汽流量D会暂时向增加方向变化;过热汽温T2则经过一段较长的迟延时间后单调上升,最后稳定在较高的温度上;汽压P T和功率N E的变化也因汽温的上升而最后稳定在较高的数值。 当燃烧率不变而给水流量增加时,一开始由于加热段和蒸发段的伸长而推出一部分蒸汽,因此蒸汽流 量D、汽压P T、功率Nk几乎没有迟延的开始增加,但由于汽温T2的下降,最后虽然蒸汽流量D增加,而输出功率N E却有所减少;汽压Pr也降至略高于扰动前的汽压,过热汽温T2则经过一段较长的迟延时间后,最后稳定在较低的温度。 给水和燃料复合扰动时的动态特性是两者单独扰动时的动态特性之和,由图2可知,当给水和燃料按 比例变化时,蒸发量D立即变化,然后稳定在新的数值上,过热汽温则保持在原来的数值上(额定汽温)。这就是说明严格控制水煤比是直流炉主蒸汽调节的关键。

蒸汽过热器(锅炉)爆管剖析——调节蒸汽温度(5)

编订:__________________ 审核:__________________ 单位:__________________ 蒸汽过热器(锅炉)爆管剖析——调节蒸汽温度 (5) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2819-36 蒸汽过热器(锅炉)爆管剖析—— 调节蒸汽温度(5) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 为了进一步从根源上找出爆管原因,全面分析了调节蒸汽温度的各种因素,以便彻底消除减温器事故隐患,见图2: 图2 面式减温器与省煤器进水示意图 注:1——给水电动调节阀;2——给水旁通阀;3——逆止阀;4——给水直通阀;5——省煤器;6——汽包;7——减温水电动调节阀;8——减温水旋转调节阀;9——逆止阀;10——面式减温阀;11——减温器出水阀 过热蒸汽温度的调节在近1年时间内,由于8减温水旋转调节阀内漏,司炉工不得已采用手动调节11减温器出水阀,控制水量的大小,从而达到调节汽温的目的。经过减温器以后的冷却水,接至省煤器之前

与给水混合,通过4给水直通阀全部进入省煤器,因而保证了省煤器供水的稳定、可靠性。 (1)当过热蒸汽温度下降时:关小或关闭11减温器出水阀,由于冷却水量出口的减小或中断,使10面式减温器内水压增大,蒸汽将热量传播给低温冷却水,随着时间的延长,减温装置内冷却水温逐渐升高,体积不断增大,蒸汽放热与冷却水吸热之间的温差越来越小,则蒸汽传热的速度越来越慢,传播给冷却水的热量也就越少,蒸汽温度也就升高。 (2)当蒸汽温度升高时:开启或开大11减温器出水阀,由于冷却水出口的流动或加大,使10面式减温器内水压降低,把滞流在减温装置内的高温冷却水不断流出(此时常发生水冲击),水温随着流动而逐渐降低,蒸汽放热与冷却水吸热之间的温差越来越大,则蒸汽传热的速度越来越快,传播给冷却水的热也就越多,蒸汽温度也就下降。 请在这里输入公司或组织的名字 Enter The Name Of The Company Or Organization Here

火力发电厂高温过热器失效原因分析及寿命评估

火力发电厂高温过热器失效原因分析及寿命评估 刘东辉 神华神东电力有限责任公司,陕西神木719300 摘要:随着社会科技的不断发展,人们对于能源的获取方式还有利用已经发生了天翻地覆的变化,时至今日可以说电力资源的使用已经成为了人们不能或缺的能源。为了能够给人们提供稳定的电力能源,各种发电厂起着重要的作用,其中火力发电厂已经是重要的发电地点之一。而火力发电厂当中的高温过热器则是核心之一,人们对它的关注从来没有减少。 关键词:火力发电厂高温过热器失效寿命评估 火力发电厂是人们最主要的电力能源提供地点之一,其中最重要的操作机器可以说是电站锅炉,而电站锅炉当中过热器又是最主要的运行设备,但是由于高温或者是工作条件相对恶劣等种种原因,过热器在运行的过程当中经常会发生爆管一类的事故,当过热器发生故障的时候,机组的安全运行也就失去了保障,而且还会消耗大量无谓的能量。 过热器的运作原理其实并不复杂,就是利用烟气所产生的热量来加热饱和蒸汽,而高温加热器却是一般都会布置在炉膛的高温烟区进行运作,这些高温加热器一般指的是屏式过热器或者是高温对流过热器。 正如左图所表示的一样,加热器的内部有高温蒸汽作为构件,而外部则是高温烟气,这样的工作环境可以说已经是非常简单的。特别是对于大容量机组来说,因为它不仅机组本身的内外两个部分都要承受很高的蒸汽压力,而且两者还要同时的承受烟气腐蚀和高温蒸汽腐蚀的危害。在锅炉运作的时候会对内部很多因素产生影响,这些影响对于过热器

的运行参数会有复杂而巨大的影响,这些因素包括了燃料品质、负荷还有机组太过于频繁的启动和停止,这些因素共同作用之下,让过热器失效的速度加快。 一、高温过热器失效的影响因素 导致供温过热器失效的影响因素有很多,但是有几种最是经常也是最明显的影响因素,包括蠕变、疲劳、劳损还有腐蚀这四种方式。 1、蠕变对高温过热器的影响 所谓蠕变的影响指的是过热器的当中由金属材料组成的部件因为过热器本身不断的高温工作,在这样的条件之下发生了永久变形的行为。我们知道,过热器的工作温度一般来说都是在540摄氏度以上,有的时候甚至会高达600摄氏度。而钢材在温度大概是350摄氏度的时候就会产生蠕变的现象,在这样的工作环境之下,发生蠕变其实是很正常的事情,所以高温蠕变损伤其实对管道影响很普遍,也是它失效的一个重要因素。 2、疲劳对高温过热器的影响 一般来说,金属材料在经过反复交变的载荷作用之后会逐渐的失去本身的一些特性,这样之后金属的作用就会慢慢的失去。高温过热器的机组启动或者是变荷运行的时候,过热器的内部会产生剧烈的变动,这些变动的源头来自于蒸汽压力还有内部温度的变化还有波动,在这种时候过热器的内部需要承受着反复的交变应力,这样的变化直接的导致管道金属的疲劳寿命有剧烈的损耗。因为过热器的管道构造一般都是比较薄的,所以它管道壁的内外温度相差并不大,所以产生的热应力也比较小,所以说热应力造成的疲劳失效对高温过热器的影响基本小到可以忽略不计。 3、磨损对高温过热器的影响 磨损指的是由于高温过热器的烟气当中通常会携带固体颗粒,然后在流过受热面的时候因为速度过快对壁管撞击造成了磨损。过热器的外表面因为长期的暴露在高温烟道当中,而这样每天有大量的烟气经过,并且携带颗粒对管道外表面造成很大程度的磨损伤害。除此之外,还有存在一定量的飞灰沉积在管道的表面,这样子就直接的导致了传热热阻数值的增大,炉内传热功能弱化,过热器在这些部分就会有高温的现象,局部的超温也对过热器使用有很大影响。这些烟尘会对管壁产生腐蚀的作用让管壁不断的变得薄,这样使用的寿命也会急剧缩短,引起

(应急预案)锅炉应急预案

锅炉事故预想及处理方案 第一篇锅炉满水 锅炉满水分轻微满水和严重满水两种。当水位超过汽包水位计最高允许水位器在水位计中仍能看到水位时,为轻微满水,若水位超过汽包水位计上部可见部分,即汽包水位计内全部充满水时为严重满水。 一、现象: 1、汽包水位指示超过正常高水位。 2、高水位报警,报警器鸣叫。 3、给水流量不正常大于蒸汽流量。 4、过热蒸汽温度有所下降,蒸汽含盐量增加。 5、严重满水时,汽温直线下降,蒸汽管道发生水冲击,阀门法兰盘根处冒白汽。 二、处理: 1、班长汇报主任,锅炉发生满水事故,通知汽机,电气人员做好停炉的准备工作。 2、若轻微满水,操作员应适当减少给水量,使给水流量小于蒸汽流量。必要时可开启部分定排或事故放水门对锅炉进行放水。 3、若过热蒸汽温度下降,开启过热器疏水门,班长通知汽机人员注意汽温变化,开启主汽管道上的疏水门,降低锅炉负荷。 4、经处理无效,水位继续上升,超过水位计可见水位,为严重满水时,操作员应立即停炉,不上水时,操作员开启省煤器再循环门。 5、停炉后操作员继续对锅炉放水,监视水位变化,若水位在水位计中出现时关闭放水门,保持水位正常。 6、待查的事故原因并消除事故后,班长可安排重新启动。 三、事故分析: 运行中发生锅炉满水事故,主要是运行人员对水位监视不够,调整不及时误判断,误操作造成的,特别是锅炉在启、停和负荷变化过大时运行人员未调整或

调整幅度过大,造成锅炉满水,另外给水投自动,自动装置失灵,或调整机构故障,运行人员未及时发现和处理,水位计指示不准确造成运行人员误判断都可能造成满水事故,锅炉负荷减少过快,运行中给水压力突然增高,运行人员控制调整不当,也可能会造成满水事故的发生。 第二篇锅炉缺水 锅炉缺水分轻微缺水和严重缺水两种情况,当水位降至允许水位以下或在水位计中无法看到,但用叫水法仍能叫出水位时,为轻微缺水,若水位在水位计中消失,且用叫水法也叫不出水位时,为严重缺水。 一、现象: 汽包水位低于正常水位,且水位在水位计中消失。 低水位报警,报警器鸣叫。 蒸汽流量不正常,大于给水流量。 严重缺水时,过热蒸汽温度升高。 二、处理: 1、班长汇报主任,锅炉发生缺水事故,并通知汽机及电气人员做好停炉准备工作。 2、当水位低于最低允许水位以下时,操作员可适当开大给水阀,增大给水量,必要时,联系汽机人员提高给水压力。 3、若水位在水位计中消失,看不到水位时,操作员应立即停炉,停止向锅炉进水。关闭给水门,开启省煤器在循环门。 4、停炉后,操作通过校水法判断为轻微缺水时,可开启给水门,操作员可适当上水,待水位正常后,班长可安排启动。 5、停炉后,通过叫水法判断为严重缺水时,关闭所有给水门,严禁向锅炉进水,待锅炉冷却正常后,可向锅炉上水,待水位正常后,班长可安排组织人员重新启动。 三、事故分析: 锅炉发生缺水事故主要是运行人员过失,水位计指示失准,造成运行人员误判断操作、给水自动装置失灵和调节阀故障,给水泵故障,或给水压力过低,使

锅炉过热蒸汽温度控制系统设计

锅炉过热蒸汽温度控制系统设计 一、摘要 这次课程设计任务是对锅炉过热蒸汽温度控制系统进行设计与分析。在控制系统的设计与分析中,分别对串级控制系统和单回路控制系统进行了分析与阐述,通过分析比较发现,采用串级控制系统控制效果更好,可以使系统更能适应不通环境,从而达到更好的控制效果。通过使用该控制系统,可以使锅炉过热器出口蒸汽温度在允许的范围内变化,并保证过热器壁温度不超过工作允许的温度,使其能够正常工作。 二、锅炉设备的介绍及设计任务的分析 1、锅炉设备介绍 锅炉是石油化工、发电等工业过程必不可少的重要动力设备,它所产生的高压蒸汽既可作为驱动透平的动力源,又可作为精馏、干燥、反应、加热等过程的热源。随着工业生产规模的不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。 锅炉设备根据用途、燃料性质、压力高低等有多种类型和名称,工艺流程多种多样,常用的锅炉设备的蒸汽发生系统是由给水泵、给水控制阀、省煤器、汽包及循环管等组成。 燃料与空气按照一定比例送入锅炉燃烧室燃烧,生成的热量传递给蒸汽发生系统,产生饱和蒸汽,形成一点观其文的过热蒸汽,在汇集到蒸汽母管。过热蒸汽经负荷设备控制,供给负荷设备用,于此同时,燃烧过程中产生的烟气,除将饱和蒸汽变成过热蒸汽外,还经省煤器预热锅炉给水和空气预热器预热空气,最后经引风送往烟囱,排入大气。

过热蒸汽送负荷设备 热空气汽包 炉膛 烟气排出 冷空气送入 水送入 热空气送往炉膛过热器 减温器 空气预热器 图1锅炉设备主要工艺流程图 锅炉设备的控制任务是根据生产负荷的需要,供应一定压力或温度的蒸汽,同时要使锅炉在安全、经济的条件下运行。为达到这些控制要求,锅炉设备将有多个不同的控制系统,如下: 锅炉汽包水位控制系统,要求保证汽包水位平稳; 锅炉过热蒸汽温度控制系统,要求保证过热蒸汽温度稳定; 锅炉蒸汽出口压力控制系统,要求保证蒸汽出口压力保持在一定范围内,同时实现逻辑提量和逻辑减量; 锅炉蒸汽出口压力控制系统,要求保证蒸汽出口压力保持在一定范围内,同时实现燃烧过程的经济运行; 锅炉炉膛负压控制系统,要求保证炉膛负压在一定范围内,以保证锅炉的安全运行。 锅炉安全连锁控制系统,以防止回火和脱火。 本设计根据任务要求主要对锅炉过热蒸汽温度控制系统进行设计与分析。 2、任务分析与设计思路 锅炉过热蒸汽温度控制系统则是锅炉系统安全正常运行,确保蒸汽质量的重要部分。这个设计我们的任务是锅炉过热蒸汽温度控制系统的设计与分析。 蒸汽过热系统包括一级过热器、减温器、二级过热器。控制任务是使过热器

锅炉各种指标解释

锅炉指标解释

第一节锅炉技术经济指标 1.1 锅炉运行技术经济指标 1.1.1 锅炉实际蒸发量 锅炉实际蒸发量是指锅炉的主蒸汽流量(kg/h)。应取锅炉末级过热器出口的蒸汽流量值,或者根据进入锅炉省煤器的给水流量来进行计算确定,具体计算可根据汽轮机运行技术经济指标中主蒸汽流量的计算方法确定。 1045吨/小时 1.1.2 锅炉主蒸汽压力 锅炉主蒸汽压力是指锅炉出口的蒸汽压力值(Mpa)。应取锅炉末级过热器出口的蒸汽压力值。如果锅炉末级过热器出口有多路主蒸汽管,应取算术平均值。 17.5MPa 1.1.3 锅炉主蒸汽温度 锅炉主蒸汽温度是指锅炉过热器出口的蒸汽温度值(℃)。应取锅炉末级过热器出口的蒸汽温度值。如果锅炉末级过热器出口有多路主蒸汽管,应取算术平均值。 540度 1.1.4 再热蒸汽压力 锅炉再热蒸汽压力是指锅炉再热器出口的再热蒸汽压力值(Mpa)。应取锅炉末级再热器出口的蒸汽压力值。如果锅炉末级再热器出口有多路再热蒸汽管,应取算术平均值。 3.2MPa 1.1.5 再热蒸汽温度 锅炉再热蒸汽温度是指锅炉再热器出口的再热蒸汽温度值(℃)。应取锅炉末级再热器出口的蒸汽温度值。如果锅炉末级再热器出口有多路主蒸汽管,应取算术平均值。 540度 1.1.6 锅炉给水温度

锅炉给水温度是锅炉省煤器入口的给水温度值(℃)。应取锅炉省煤器前的给水温度值。 272.2度 1.1.7 过热器减温水流量 过热器减温水流量是指进入主蒸汽系统的减温水流量(t/h)。对于主蒸汽系统有多级减温器设置的锅炉,过热器减温水流量为各级主蒸汽减温水流量之和。 一级14.5、二级7.35 1.1.8 再热器减温水流量 再热器减温水流量是指进入再热汽系统的减温水流量(t/h)。对于再热汽系统有多级减温器设置的锅炉,再热器减温水流量为各级再热汽减温水流量之和。 0 t/h 1.1.9 排烟温度 排烟温度指锅炉末级受热面后的烟气温度(℃)。对于锅炉末级受热面出口有两个或两个以上烟道,排烟温度应取各烟道排烟温度的算术平均值。 149度 1.1.10 锅炉氧量 锅炉氧量是指锅炉省煤器后的烟气中氧的容积含量百分率(%)。对于锅炉省煤器出口有两个或两个以上烟道,锅炉氧量应取各烟道烟气氧量的算术平均值。 3-5% 1.1.11 送风温度 送风温度指锅炉空气系统风机入口处的空气温度(℃)。对于有两台送风机,送风温度为两台送风机入口温度的算术平均值;对于采用热风再循环的系统,送风温度应为冷风与热风再循环混合之前的冷风温度。 26度 1.1.12 飞灰含碳量

锅炉主汽温度控制系统设计说明书

内蒙古科技大学 本科生过程控制课程设计说明书 摘要 随着先进的电子和计算机技术的发展和控制功能的不断完善以及对热电厂中锅炉仪表控制系统进行的先进改造,以先进的DCS系统作为锅炉的控制核心,锅炉鼓风机和引风机采用变频驱动技术,以保护电机和节约能源,结合实际的现场仪表、变频调速器、DCS控制方案的具体实施方案。而在锅炉主汽温度控制系统中,也有越来越多的方法可以实现生产控制,这里需要我们对过热器的出口蒸汽温度进行检测,当温度不在控制范围内时就通过对过热器阀门的控制,设计锅炉主汽温度控制系统,实现对汽包主蒸汽温度的控制,以产生合格的产品,这个就是这次设计的主要内容。 关键词:锅炉;主汽;温度;控制

目录 第一章绪论 (3) 第二章热电厂概述 (4) 2.1锅炉概述 (4) 2.2锅炉、锅筒设备及结构 (5) 2.3锅炉控制的工作原理 (6) 第三章锅炉主汽温度控制系统概述 (7) 3.1锅炉蒸汽温度控制概述 (7) 3.2过热器的基本概念 (7) 3.3锅炉主汽温度控制系统的总体设计方案 (8) 第四章锅炉主汽温度控制的设计过程 (9) 4.1锅炉主汽温度控制说明 (9) 4.2锅炉主汽温度控制系统的分析与初步设计 (10) 4.3锅炉主汽温度串级控制系统图解及仪表选型 (11) 4.4锅炉主汽温度控制系统安全保护对策 (13) 第五章总结 (15) 参考文献 (16)

第一章绪论 这个学期的第一个课程设计是过程控制课程设计,通过上个学期的热电厂的实习,以及对热电厂的工艺和锅炉的生产设备及工艺的了解,我们选择了各自的课程设计题目,我的设计主要是介绍锅炉控制中的主汽温度控制系统的设计。随着科学的进步以及各种仪器的发展,现在已经有很成熟的控制方法来控制锅炉的生产,我这里是根据一般的场合所需要的控制方案,设计了一个串级的控制系统。对一些大的生产设备和一些有大的延迟或者是大的滞后的生产过程就不做叙述了。

锅炉蒸汽温度控制系统

引言 随着科学技术的发展,自动控制在现代工业中起着主要的作用,目前已广泛应用于工农业生产及其他建设方面。生产过程自动化是保持生产稳定、降低成本、改善劳动成本、促进文明生产、保证生产安全和提高劳动生产率的重要手段,是20世纪科学与技术进步的特征,是工业现代化的标志之一。可以说,自动化水平是衡量一个国家的生产技术和科学水平先进与否的一项重要标志。电力工业中电厂热工生产过程自动化技术相对于其他民用工业部门有较长的历史和较高的自动化水平,电厂热工自动化水平的高低是衡量电厂生产技术的先进与否和企业现代化的重要标志。 本次毕业设计的主要是针对单元机组汽温控制系统的设计。锅炉汽温控制系统主要包括过热蒸汽和再热蒸汽温度的调节。主蒸汽温度与再热蒸汽温度的稳定对机组的安全经济运行是非常重要的。过热蒸汽温度控制的任务是维持过热器出口蒸汽温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。过热蒸汽温度是锅炉汽水系统中的温度最高点,蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全。一般规定过热器的温度与规定值的暂时偏差不超过±10℃,长期偏差不超过±5℃。 如果过热蒸汽温度偏低,则会降低电厂的工作效率,据估计,温度每降低5℃,热经济性将下降约1%;且汽温偏低会使汽轮机尾部蒸汽温度升高,甚至使之带水,严重影响汽轮机的安全运行。一般规定过热汽温下限不低于其额定值10℃。通常,高参数电厂都要求保持过热汽温在540℃的范围内。 由于汽温对象的复杂性,给汽温控制带来许多的困难,其主要难点表现在以下几个方面: (1)影响汽温变化的因素很多,例如,蒸汽负荷、减温水量、烟气侧的过剩空气系数和火焰中心位置、燃料成分等都可能引起汽温变化。 (2)汽温对象具有大延迟、大惯性的特点,尤其随着机组容量和参数的增加,蒸汽的过热受热面的比例加大,使其延迟和惯性更大,从而进一步加大了汽温控制的难度。 (3)汽温对象在各种扰动作用下(如负荷、工况变化等)反映出非线性、时变等特性,使其控制的难度加大。

电厂锅炉过热器管失效分析及残余寿命预测

2003年3月第21卷第1期 长沙铁道学院学报 JOURNAL OF CHANGSHA RAILWAY UNIVERSITY No1 ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Mar.2003文章编号:1000-2499(2003)01-0108-05 电厂锅炉过热器管失效分析及残余寿命预测 贺株莉" (长沙电力学院,湖南长沙410077) 摘要:对运行后的管材进行金相分析、蠕变孔洞观察及评级、高温持久实验等.采用综合分析法对其寿命进行预测. 关键词:锅炉管;后屏过热器;蠕变损伤;珠光体球化 中图分类号:TK223.13;TG146.2文献标识码:A Anaiysis on Invaiidation of Overheater Pipes in Power Piants and Prediction of Their Life Expectancy HE Zhu-ii (Changsha University of Eiectric Power,Changsha410075,China) Abstract:Based on the metaiiographicai anaiysis,observation,grading creeping hoies as weii as the exper-iment with the high-temperature creeprupture,this paper predicts the iife expectancy of the overheater pipes after https://www.360docs.net/doc/162508628.html,prehensive anaiysis is adopted here. Keywords:boiier pipe;rear screen overheater;creeping damage;spheroidization of pear iife 电厂锅炉过热器是火力发电厂中的高温承压部件,它能否安全工作对整个机组的安全运行有着十分重要的意义,因此,对其进行寿命预测,使其超期安全运行,经济效益十分可观.作者从材料学方面对平圩发电厂2号炉后屏过热器进行寿命分析,采用综合分析法对其寿命进行预测.对运行后管材进行金相分析、蠕变孔洞观察及评级、高温持久实验等.根据实验数据及分析结果,结合壁温的结果,判断在影响材料寿命的诸因素(蠕变、球化、碳化物形成、材料的氧化腐蚀等)中,哪一个是主要因素,从而对其寿命作出比较科学全面的评判. 1试验条件 为了对后屏过热器的管壁进行实时监控,现场布置了几十个壁温测点,测量结果表明,左侧后屏过热器壁温高于右侧.本次从左侧后屏中共取6根管子,材料为12CriMoV,规格为!60 mm X11mm.已运行43510.74h,试验设备为4x1金相显微镜和HITACHIx-650型扫描电镜. "收稿日期:2002-12-30 作者简介:贺株莉(1963-),女,湖南株洲人,长沙电力学院工程师.

锅炉过热蒸汽温度控制系统

锅炉过热蒸汽温度控制系统 在燃煤锅炉运行中,过热蒸汽温度是一个很重要的控制参数。过热蒸汽温度是锅炉运行质量的重要指标之一,过热蒸汽温度较高,可能造成过热器蒸汽管道损坏;过热蒸汽温度过低,会降低内功率。所以在锅炉运行中,必须保持过热蒸汽温度稳定在规定值附近。 本文介绍模糊控制在中小型燃煤锅炉过热蒸汽温度中的应用,采用模糊控制系统的思路,并用此方法控制燃煤锅炉的过热蒸汽温度,使得锅炉过热蒸汽温度即使在扰动幅度较大的情况下仍能保持平稳。模糊控制的控制算法不依赖于对象的数学模型,算法简单,易于实现,且对干扰和对象模型时变具有较强的适应性,它能根据输出偏差的大小进行自动调节,使输出达到给定值。能提高国内锅炉的燃烧效率、燃料适应性、负荷调节性能、污染、灰渣等众多独特优点而受到越来越广泛的重视,在电力、供热、工厂蒸汽生产中得到越来越广泛的应用。 以某600MW汽轮发电机组的汽包锅炉为例,其过热蒸汽生产流程简图和流程图如下图所示: 过热蒸汽流程图

1. 1 过热蒸汽温度控制的任务 过热蒸汽温度控制的主要任务是维持过热器出口温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。过热蒸汽温度是锅炉汽水系统中的温度最高点,蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全;过热蒸汽温度偏低,则会降低发电机组能量转换效率。据分析,气温每降低5℃,热经济性将下降 1 %;且汽温偏低会使汽轮机尾部蒸汽湿度增大,甚至使之带水,严重影响汽轮机的安全运行。该机组要求控制过热蒸汽温在5 3 8~ 5 4 8℃的范围内。 2 .2 影响过热蒸汽温度的主要因素 2 .2. 1 燃料、给水比(煤水比) 只要燃料、给水比的值不变,过热汽温就不变。只要保持适当的煤水比,在任何负荷和工况下,直流锅炉都能维持一定的过热汽温。 2.2. 2 给水温度 正常情况下,给水温度一般不会有大的变动;但当高压加热器因故障退出运行时,给水温度就会降低。对于直流锅炉,若燃料不变,由于给水温度降低时,加热段会加长、过热段缩短,因而过热汽温会随之降低,负荷也会降低。 2.2. 3 过剩空气系数 过剩空气系数的变化直接影响锅炉的排烟损失。影响对流受热面与辐射受热面的吸热比例。当过剩空气系数增大时,除排烟损失增加、锅炉效率降低外炉膛水冷壁吸热减少,造成过热器进口温度降低、屏式过热器出口温度降低;虽然对流过热器吸热量有所增加,但在煤水比不变的情况下,末级过热器出口汽温会有所下降。过剩空气系数减小时的结果与增加时的相反。若要保持过热汽温不变,则需重新调整煤水比。 2.2. 4 火焰中心高度 火焰中心高度变化造成的影响与过剩空气系数变化的影响相似。在煤水比不变的情况下,火焰中心上移类似于过剩空气系数增加,过热汽温略有下降;反之,过热汽温略有上升。若要保持过热温不变,亦需重新调整煤水比。 2.2. 5 受热面结渣 煤水比不变的调节下,炉膛水冷壁结渣时,过热汽温会有所降低;过热器结渣或积灰时,过热汽温下降较明显。前者情况发生时,调整煤水比就可;后者情况发生时,不可随便调整煤水比,必须在保证水冷壁温度不超限的前提下调整煤水比。对于直流锅炉,在水冷壁温度不超限的条件下,后四种影响过热汽温因素都可以通过调整煤水比来消除;所以,只要控制、调节好煤水比,在相当大的负荷范围内,直流锅炉的过热汽温可保持在额定值。此优点是汽包锅炉无法比拟的;但煤水比的调整,只有自动控制才能可靠完成。

相关文档
最新文档