ADAMS常见问题

ADAMS常见问题
ADAMS常见问题

ADAMS 使用常见问题

1、ADAMS中的单位的问题

开始的时候需要为模型设置单位。在所有的预置单位系统中,时间单位是秒,角度是度。可设置:

MMKS--设置长度为毫米,质量为千克,力为牛顿。

MKS—设置长度为米,质量为千克,力为牛顿。

CGS—设置长度为厘米,质量为克,力为达因。

IPS—设置长度为英寸,质量为斯勒格(slug),力为磅。

2、如何永久改变ADAMS的启动路径

在ADAMS启动后,每次更改路径很费时,我们习惯将自己的文件存在某一文件夹下;事实上,在Adams的快捷方式上右击鼠标,选属性,再在起始位置上输入你想要得路径就可以了。

3、关于ADAMS的坐标系的问题。

当第一次启动ADAMs/View时,在窗口的左下角显示了一个三视坐标轴。该坐标轴为模型数据库的全局坐标系。缺省情况下,ADAMS/View用笛卡儿坐标系作为全局坐标系。ADAMS/View将全局坐标系固定在地面上。当创建零件时,ADAMS/View给每个零件分配一个坐标系,也就是局部坐标系。零件的局部坐标系随着零件一起移动。局部坐标系可以方便地定义物体的位置,ADAMS/View也可返回如零件的位置——零件局部坐标系相对

于全局坐标系的位移的仿真结果。局部坐标系使得对物体上的几何体和点的描述比较方便。物体坐标系不太容易理解。你可以自己建一个part,通过移动它的位置来体会。

4、关于物体的位置和方向的修改

可以有两种途径修改物体的位置和方向,一种是修改物体的局部坐标系的位置,也就是通过MODIFY物体的position属性;令一种方法就是修改物体在局部坐标系中的位置,可以通过修改控制物体的关键点来实现。我感觉这两种方法的结果是不同的,但是对于仿真过程来说,物体的位置就是质心的位置,所以对于仿真是一样的。

5、关于ADAMS中方向的描述。

对于初学的人来说,方向的描述不太容易理解。之前我们都是用方向余弦之类的量来描述方向的。在ADAMS中,为了求解方程是计算的方便,使用欧拉角来描述方向。就是用绕坐标轴转过的角度来定义。旋转的旋转轴可以自己定义,默认使用313,也就是先绕z轴,再绕x轴,再绕z轴。

6、Marker点与Pointer点区别

Marker:具有方向性,大部分情況都是伴随物件自动产生的,而Point不具有方向性,都是用户自己建立的;Marker点可以用来定义构件的几何形状和方向,定义约束与运动的方向等,而Point点常用来作为参数化的参考点,若构件与参考点相连,当修改参考点的位置时,其所关联的物体也会一起移动或改变。

7、关于约束的问题

约束是用来连接两个部件使他们之间具有一定相对运动关系。通过约束,使模型中各个独立的部件联系起来形成有机的整体。

在ADAMS/View中,有各种各样的约束,大体上将其分为四类:

基本约束:

点重合约束(ATPOINT)、共线约束(INLINE)、共面约束(INPLANE)、方向定位约束(ORIENTATION)、轴平行约束(PARALLEL_AXES)、轴垂直约束(PERPENDICULAR)等

常用铰约束:

球铰(SPHERICAL)、虎克铰(HOOKE)、广义铰(UNIVERSIAL)、常速度铰(CONVEL)、固定铰(FIXED)、平移副(TRANSLATIONAL)、圆柱副(CYLINDER)、旋转副(REVOLUTE)、螺旋副(SCREW)、齿轮副等

高副约束:

曲线-曲线约束(CVCV)、点-曲线约束(PTCV)。

驱动:

按驱动加在对象类型上分:有点驱动和铰驱动;按驱动特点来分有:平移驱动和旋转驱动。

8、驱动和力的区别

驱动和力都会引起物体的运动,但两者是有本质上的区别的。

驱动产生确定的运动,可以消除物体的自由度。

力产生的运动是不确定的,不能消除物体的自由度。

9、运动学仿真后,如何测量驱动力矩或者其他的物理量

我们在做机器人运动规划时,往往根据规划给出各个关节的运动轨迹,进行运动学分析,如果要查看实现该运动各个关节需要加的驱动力矩,可以右键单击相应的motion,然后在下拉菜单选择measure,在出现的界面里面选择Torque,点ok就出来力矩曲线了,其他物理量类同。

10、ADAMS/VIEW中的输入函数的指定方法

输入函数是指从输入状态变量取值的时间函数。只需在所建立的模型中在需要进行控制的部件施加一定的力或力矩,然后对其进行函数化:其函数的自变量为所指定的输入状态变量。这样所建立的模型就是受输入控制的系统。

11、如何将回放过程保存为AVI格式的电影文件

点击plotting(或F8)进入postprocessor ,右键--load ANIMATION,点击"record"开始录制。点击"play"开始。

12、ADAMS中的文件类型介绍

模型及分析主要有以下几种类型文件:ADAMS/View二进制数据库bin 文件、ADAMS/View命令cmd文件、ADAMS/Solver模型语言adm文件、ADAMS/Solver仿真控制语言acf文件,以及ADAMS/Solver仿真分析结果文件:req文件、res文件、gra文件、out文件、msg文件。

ADAMS/View二进制数据库bin文件以“ .bin”为文件名后缀,文件中记录了从ADAMS启动后到存储为bin文件时的全部信息-包含模型的完整拓扑结构信息、模型仿真信息以及后处理信息。可以包含多个模型、多个分析工况和结果。可以保存ADAMS/View的各种设置信息。文件为二进制不能阅读、编辑,只能通过ADAMS/View调阅,由于信息全面一般文件都比较大。

ADAMS/View命令cmd文件以“ .cmd”为文件名后缀,是由ADAMS/View 命令编写的模型文件,可以包含模型的完整拓扑结构信息(包括所有几何信息)、模型仿真信息,为文本文件,可读性强,可以进行编程,是ADAMS 的二次开发语言,不包含ADAMS/View的环境设置信息,不包含仿真结果信息,只能包含单个模型。

ADAMS/Solver模型语言(ADAMS Data Language)adm文件,以“ .adm”为文件名后缀,文件中包含模型中拓扑结构信息,但有些几何形体如 link 等不能保留。ADAMS/View的环境设置不能保留。ADAMS/Solver可以读取adm文件,与ADAMS/Solver仿真控制语言acf文件配合可以直接利用ADAMS/Solver进行求解。

ADAMS/Solver仿真控制语言acf文件,以“ .acf”为文件名后缀,文件中可以包含ADAMS/Solver命令对模型进行修改和控制的命令,从而控制仿真的进行。

ADAMS/Solver将仿真分析结果中用户定义的输出变量输出到req文件,以“ .req”为文件名后缀;ADAMS/Solver将仿真分析结果中将模型的缺省输出变量输出到res文件,以“ .res”为文件名后缀;ADAMS/Solver 将仿真分析结果中图形部分结果输出到gra文件,以“ .gra”为文件名后缀。ADAMS/Solver将仿真分析结果中用户定义的输出变量以列表的形式输出到out文件,以“ .out”为文件名后缀。ADAMS/Solver将仿真过程中的警告信息、错误信息输出到msg文件,以“.msg”为文件后缀。

13、如何使用two body two location

比如四杆机构,杆长已知,一个为机架,一个为曲柄,一个为摇杆,一个为连杆。关四个转动关节的位置如何确定

——可以試著以two body two location去做拘束,再從simulation下找simulation control便可以做組合模拟。

14、如何在ADAMS下由数据生成样条曲线

在tools->command navigator....->Data element->create->spring line 后,会出現一个输入window窗口,选择numerical将xyz数值copy 到xyz各自的表格上.......

15、ADAMS中如何建模,该如何控制坐标点,才能得到精确的位置

可以粗略建立 Point 设计点后,可以 Modify,在表格编辑器 Table Editor 里可以精确定位点的坐标,还可以用Command。

16、关于bushing

、bushing一般用于模拟橡胶连接部件,主要是指线性橡胶。一般汽车底盘的轴承都有加橡胶,那就可以在轴和轴承之间用这个。输入在各个方向的刚度和阻尼就可以了。

、bushing主要是考虑到了两个物体间的弹性连接,比如麦弗逊悬架的下控制臂和副车架,幅车架和车身相连的地方都是采用了bushing,在car 里面就可以看到。对于运动学分析,采用一般的连接即可(比如万向节),做动力学分析,就得采用busing以模拟弹性力。

17、请问如何对零件进行复制

可用position move,还有一个命令是position rotation。

18、关于转动问题,如何判断转动副的方向

初学时,对转动副的运动容易糊涂,下面以图说明。

图1,构件4固定在地面上,在构件1和构件2上加了一个转动副。

1) 转动副中构件绕轴转动的方向,符合右手法则,其中First body 绕Second body 转动;

2) 图一中,构件1为first body,构件2为Second Body,则构件1相对于构件2逆时针转动,图2为转动后某时刻的图像;

3) 若修改转动副,构件2为first body,构件1为Second Body,则构件2相对于构件1逆时针转动,图3为转动后某时刻的图像,与2)恰相反;

4) 有趣的是,假设转动副加在构件1与4上,构件4为first body,构件1为Second Body,则构件4应该相对于构件1逆时针转动,但由于构件4固定在地面上,无法运动,由相对运动可知,此时运动等价于构件1相对于构件4顺时针转动,事实如此,图4为转动后某时刻的图像。

(图片看不到的话,可在版内搜索到该帖子)

19、用不同的求解器是不是不会对结果造成太大的影响

求解器不会对仿真结果造成影响的。由于ADAMS的求解器最初是用FORTRAN编写的,而随着C的普及及功能的强大,现在越来越倾向于C了。现在是两个求解器并存,将来可能只保留C一个了。在ADAMS新的版本中,有些功能只有C求解器才有的。

20、出现exception 11 detected如何解决

開始->程式集->> 2005r2->ADAMS Settings->

在Shared->Graphics_Driver, 選擇Hoops

21、接触的那些系数是什么意思该怎么填写啊

&extra=page%3D1%26filter%3Ddigest

22、碰撞力的测量

使用postprocessor绘制出contact force curve,是比较简单的;

若要在view环境下进行显示,其流程较为复杂:

buid| measure | Function| Force object | contact force

&highlight=%C5%F6%D7%B2%C1%A6%2B%B2%E2%C1%BF

23、如何创建齿轮副

关键是齿轮副定义的joint和marker点需要定义在一个物体上,基本上就是这样。如定义一个简单gear,所用了两个revolution joint1和2,joint1定义了part1和ground,joint2定义了part2和ground,marker 点定义在ground上,marker的Z轴方向应指向齿轮的啮合线方向,该marker位于啮合点上,才能成功的建立齿轮副。定义行星轮也是同样,建立在齿轮副中需要用到的joint和marker点都必须在同一物体上,不管这个物体是ground还是自建的part。

24、请教:行星齿轮副该怎么加

25、请教如何在adams里构建齿轮副

&highlight=%B3%DD%C2%D6%B8%B1

26、PROE中如何建立凸轮副

、在PRO/E里面做一个凸轮,和一顶杆.

、沿凸轮的外边圆做一条曲线(一般是外边缘偏移出),

、在顶杆顶端(以后与凸轮接触那点).做一个marker点.

、新建一个装配文件,同时做一基座零件(装配凸轮和顶杆之用),将凸轮和顶杆装配好,加上必要的约束(凸轮的铰链,和顶杆的移动副)同时在铰链上增加一马达(同时设置好必要的参数).

、关键一步是:在SET UP MECHANISM下选择DATA ELEMENTS,再选择CURVE,选择第2步所做的曲线,创建一条曲线(用以约束顶杆是的MARKER只用. 、然后从约束里面选种POINT ON CURVE 分别NAME,CONSTRAINED LACATINON(选MARKER点),CONSTRAINED FIGID BODY(选顶杆),SELECT EXISTING CURVE(选刚创建的曲线).

、创建成功后就可以看结果了

27、从pro/e导入的凸轮副如何设置

方法一:

A、首先分别在prt图里对凸轮以及从动件用“使用边”命令做出曲线,

保存好

b、在set up----data elements----curves-create........选用from geometry等,做好2个curves

c、后面的工作都可以在mech/pro里直接设置,凸轮副curve-to-curve 也一样。

方法二:

可以从两个方面来做这个:

a、用碰撞来实现导入的凸轮运动;

b、在mechpro中将运动副定义好;

c、在proe中做一个凸轮的曲线,导出igs格式,再导入到adams中。将IGS格式的曲线转化为ADAMS的spline。就可以在这个上面定义凸轮副了。具体的实现过程可以参考MSC的KB:

28、凸轮副如何加约束

见帖子:

&highlight=%CD%B9%C2%D6%B8%B1

29、用ADAMS进行蜗轮蜗杆模拟仿真示例

见帖子:&highlight=%CE%CF%C2%D6

30、用关联副模拟蜗轮蜗杆:

见帖子:&highlight=%CE%CF%C2%D6

31、【原创】Adams中的蜗轮蜗杆实现原理

见帖子:&page=1#pid178790

32、一种行星齿轮传动建模方法[经验分享]

&extra=page%3D4%26filter%3Dtype%26typeid%3D56

33、数据文件如何生成spline

用输入的方式。file-import-,打开如图所示的对话框,照图中所示的选项就可以输入数据了。将你原来产生的数据作为test data输入,这种方法比较简单实用。数据文件中存放数据有一定的格式,建议参考一下帮助文件的40到46页。

[attach]107945[/attach]

34、如何使用spline编辑器

选中spline右键进行modify即可,如下图

35、如何添加轨迹线

Review | create Trace Spline

36、有两种方式定义力的方向:

a、沿两点连线方向定义;

b、沿标架一个或多个轴的方向。

我知道你与涯叔的关系!!!

评论人:沉海摸鱼评论日期:2007-9-5 16:35

常用函数介绍篇

(一)、adams函数总体介绍

1、ADAMS/View™ 是MDI公司出品的动力学仿真模块,提供了强大的建模与仿真环境。用户可以应用该模块对任何一个机械系统进行建模与仿真。除此之外,还可以通过函数编辑器编写表达式、函数和子程序,以实现对力、测量和运动的定义。在仿真过程中,系统状态实时发生变化,用户能够通过编写运行过程函数实现对系统变量的实时控制。

2、ADAMS/View函数包括设计函数与运行函数两种类型,函数的建立对应有表达式模式和运行模式两种。表达式模式下在设计过程中对设计函数求值,而运行模式下会在仿真过程中对运行函数进行计算更新。ADAMS/Solver 函数支持ADAMS/View运行模式下的函数,在仿真过程中采用ADAMS/Solver 解算时对这些函数进行计算更新。

3、运行时函数

(1) 运行时函数在仿真运行过程中被触发载入运行的,设计时函数在程序刚开始启动的时候就被载入,并注册。运行时函数可用C或者Fortran代码编写,而设计时函数只能用C编写。

(2) ADAMS/View libraries增加已编译过的设计时函数,定义或者修改模型和后处理方式。ADAMS/Solver libraries为运动和力增加运动时函数,直接定义模型的行为,控制仿真执行的方式。这样可以使你利用已有的软件定义一些复杂的模型间关系,比如液压力、轮胎力等。很多模块,ADAMS/View, ADAMS/Car, ADAMS/Engine,和ADAMS/Rail,可以运行这两种库,因为它们有内部的ADAMS/Solver。

(3) 尽管有一点理解上的困难,但子程序比函数表达式提供了更多的一般性和灵活性。编写一些函数来适应自己的特定需要,链入子程序到ADAMS/Solver,可提高运行效率和仿真速度。子程序和函数表达式的用途是一样的:给ADAMS/Solver定义非标准的输入。函数表达式的使用比较容易,但不能描述复杂的问题,尤其是在包含大量的逻辑判断时;而子程序需要编程、编译和链接,比较复杂,但它的功能更强大,用途更广,包括定义模型元素和指定输出。

4、在进行建立表达式、产生和修改需要计算的度量及建立设计函数等操作时,会采用表达式模式。在建立表达式时,首先在接受表达式的文本框处右击,然后选择“Parameterize”再选择“Expression Euilder”,进入

建立设计函数表达式对话框。在该对话框中输入表达式,然后单击“OK”完成操作。

(二)、样条函数的应用

1、样条拟合是在给定曲线或曲面上的已知点间求取中间点的一种插值方法。仿真过程中通过样条拟合函数可以形成一条逼近数据点的光滑曲线。样条函数在下述情况较为通用:

. 采用试验测试数据驱动模型;

. 采用试验测试数据定义驱动力;

. 通过数据点绘制光滑曲线。

ADAMS/View 允许采用三种插值方法,即:三次样条曲线拟合、B样条曲线拟合、Akima拟合法,它们对应的函数分别为CUBSPL、CURVE、AKISPL,其拟合特征及优、缺点如下表所示:

[attach]107947[/attach]

2、AKISPL函数

格式:AKISPL (First Independent Variable, Second Independent Variable,Spline Name, Derivative Order)

参数说明:

First Independent Variable ——spline中的第一个自变量Second Independent Variable (可选) ——spline中的第二自变量Spline Name ——数据单元spline的名称

Derivative Order (可选) ——插值点的微分阶数,一般用0就可以function = AKISPL(DX(marker_1, marker_2, marker_2), 0, spline_1) spline_1用下表中的离散数据定义

自变量x 函数值y

1

2

3

4

3、函数CUBSPL( 1st_Indep_Var , 2nd_Indep_Var , Spline_Name , Deriv_Order)

其中1st_Indep_Var定为时间变量time,2nd_Indep_Var 设为0,

Spline_Name 为所保存的力与时间的曲线图名称,Deriv_Order设为0。力与时间的曲线图可以在菜单build—>data elements—>spline建立。

(三)、step函数的应用

1、Step函数格式为:step(x,x0,h0,x1,h1) 其中各参数意义如下:

x ―自变量,可以是时间或时间的任一函数

x0 ―自变量的STEP函数开始值,可以是常数或函数表达式或设计变量;x1 ―自变量的STEP函数结束值,可以是常数、函数表达式或设计变量

h0 ― STEP函数的初始值,可以是常数、设计变量或其它函数表达式

h1 ― STEP函数的最终值,可以是常数、设计变量或其它函数表达式

2、[链接汇总]step函数应用大集合!

[url]&highlight=%BA%AF%CA%FD[/url]

(四)、if函数的应用

1、格式:IF(表达式1: 表达式2, 表达式3, 表达式4)

参数说明:

表达式1-ADAMS的评估表达式;

表达式2-如果的Expression1值小于0,IF函数返回的Expression2值;表达式3-如果表达式1的值等于0,IF函数返回表达式3的值;

表达式4-如果表达式1的值大于0,IF函数返回表达式4的值;

例如:函数 IF:0,,1)

结果: if time <

if time =

if time >

2、IF((time/(time/)* 2,0,-2)

这个意思是:

time/(time/)* 函数值为:2,

time/(time/)* 函数值为:0,

time/(time/)* 函数值为:-2

3、【原创】来一个分段函数,大家来写写:

[url]&highlight=%C0%B4%D2%BB%B8%F6%B7%D6%B6%CE%BA%AF%CA%FD[/url]

(五)、sensor,acf的应用

1、acf应用实例:我的仿真过程是16秒,我想在0-4秒和8-12秒内约束1激活、约束2失效,在4-8秒和12-16秒内约束2激活、约束1失效,应该怎么写呢

——应该是:deactivate/joint,id=2

simulate/dynamic,end=4,steps=100

activate/joint,id=2

deactivate/joint,id=1

simulate/dynamic,end=8,steps=100

activate/joint,id=1

deactivate/joint,id=2

simulate/dynamic,end=12,steps=100

activate/joint,id=2

deactivate/joint,id=1

simulate/dynamic,end=16,steps=100

2、怎样删除sensor

下拉菜单edit里有delete项,在模型中任何对象不被选中的情况下单击delete,然后在数据库中选中要删除的sensor即可。同样的方法可以失效deactive一个sensor。

(六)、函数的典型应用

1、[转帖]ADAMS函数使用精华:

[url]&highlight=%BA%AF%CA%FD[/url]

2、【讨论】关于分段函数的添加:

[url]&highlight=%BA%AF%CA%FD[/url]

3、关于orient函数:

[url]&highlight=%BA%AF%CA%FD[/url]

4、【讨论】子函数参数含义:

[url]&highlight=%BA%AF%CA%FD[/url]

5、如何确定一个从动运动的motion函数:

[url]&highlight=%BA%AF%CA%FD[/url]

6、【原创】如何把MEA(或spline)加入到motion中!!

[url]&highlight=spline%2Bandyxin[/url]

7、[链接汇总]spline运用:

[url]&highlight=spline[/url]

13 ADAMS_CAR模块详细实例教程(柔性体篇)

13柔性体介绍 (253) 13.1柔性体引入ADAMS建模 (253) 13.1.1打开原有的X5后悬架模板 (253) 13.1.2将小连杆的模态中性文件导入ADAMS (254) 13.2利用Hyper Mesh及Motion View软件来生成模态中性文件MNF (256) 13.2.1创建小连接杆的CAD模型 (256) 13.2.2将iges格式文件导入到Hyper Mesh划分网格 (257) 13.2.3创建材料 (268) 13.2.4创建刚性单元 (273) 13.2.5给刚性中心节点编号 (282) 13.2.6导出nastran模板格式文件 (283) 13.2.7创建h3d文件及MNF文件 (284) 252

《柔性体篇》 13柔性体介绍 在模型中引入柔性体可以提高仿真的精度。柔性体可采用模态中性文件(MNF)来描述。该文件是一个二进制文件,包含了以下信息: 几何信息(结点位置及其连接); 结点质量和惯量; 模态; 模态质量和模态刚度。 可以利用ANSYS、NASTRAN、ABAQUS等限元软件包进行分析并将结果写成模态中性文件,输入到ADAMS/View或ADAMS/Car中,建立相应零件的柔性体。 13.1柔性体引入ADAMS建模 在模型中引入柔性体首先要在ADAMS/Car中读入模态中性文件,然后ADAMS/Car会创建必要的几何实体用以显示柔性体。然后在模型中与其它刚体部件之间施加约束。本教程以后悬架的小连接板为例。 13.1.1打开原有的X5后悬架模板 253

13.1.2将小连杆的模态中性文件导入ADAMS 在ADAMS/Car中读入模态中性文件的过程如下: Parts>Flexible Body>New 1)从Build菜单中选择 设定对话框如下,在Left Modal Neutral File和Right Modal Neutral File里右击鼠标选择自己已经创建好的MNF文件,点击OK。 254

ADAMS分析实例 超值

ADAMS 分析实例-定轴轮系和行星轮系传动模拟 有一对外啮合渐开线直齿圆柱体齿轮传动.已知ο20,4,25,5021====αmm m z z ,两个齿轮的厚度都是 50mm 。 ⒈ 启动ADAMS 双击桌面上ADAMS/View 的快捷图标,打开ADAMS/View 。在欢迎对话框中选择“Create a new model ”,在模型名 称(Model name )栏中输入:dingzhouluenxi ;在重力名称(Gravity )栏中选择“Earth Normal (-Global Y)”;在单位名称(Units )栏中选择“MMKS –mm,kg,N,s,deg ”。如图1-1所示。 图1-1 欢迎对话框 ⒉ 设置工作环境 对于这个模型,网格间距需要设置成更高的精度以满足要求。在ADAMS/View 菜单栏中,选择设置(Setting )下拉菜单中的工作网格(Working Grid )命令。系统弹出设置工作网格对话框,将网格的尺寸(Size )中的X 和Y 分别设置成750mm 和500mm ,间距(Spacing )中的X 和Y 都设置成50mm 。然后点击“OK ”确定。如图2-1所表示。 用鼠标左键点击选择(Select )图标,控制面板出现在工 具箱中。 用鼠标左键点击动态放大(Dynamic Zoom )图标,在 模型窗口中,点击鼠标左键并按住不放,移动鼠标进行放大或缩小。 ⒊创建齿轮 在ADAMS/View 零件库中选择圆柱体 (Cylinder )图标 ,参数选择为“New Part ”,长度(Length )选择50mm (齿轮的厚度),半径 ( Radius ) 选 择 100mm (1002 5042z m 1=?=?) 。如图3-1所示。 图 2-1 设 置工作网格对话框 图3-1设置圆柱体选项 在ADAMS/View 工作窗口中先用鼠标任意左键选择点(0,0,0)mm ,然后选择点(0,50,0)。则一个圆柱体(PART_2)创建出来。如图3-2所示。 图3-2 创建圆柱体(齿轮) 在ADAMS/View 中位置/方向库中选择位置旋转(Position: Rotate …)图标,在角度(Angle )一栏中输入 90,表示将对象旋转90度。如图3-3所示。 在ADAMS/View 窗口中用鼠标左键选择圆柱体,将出来一个白 色箭头,移动光标,使白色箭头的位置和指向如图3-4所示。 然后点击鼠标左键,旋转后的圆柱体如图3-5所示。

【Adams应用教程】第10章ADAMS参数化建模及优化设计

第10章 ADAMS参数化建模及优化设计

本章将通过一个具体的工程实例,介绍ADAMS/View的参数化建模以及ADAMS/View 提供的3种类型的参数化分析方法:设计研究(Design study)、试验设计(Design of Experiments, DOE)和优化分析(Optimization)。其中DOE是通过ADAMS/Insight来完成,设计研究和优化分析在ADAMS/View中完成。通过本章学习,可以初步了解ADAMS参数化建模和优化的功能。 10.1 ADAMS参数化建模简介 ADAMS提供了强大的参数化建模功能。在建立模型时,根据分析需要,确定相关的关键变量,并将这些关键变量设置为可以改变的设计变量。在分析时,只需要改变这些设计变量值的大小,虚拟样机模型自动得到更新。如果,需要仿真根据事先确定好的参数进行,可以由程序预先设置好一系列可变的参数,ADAMS自动进行系列仿真,以便于观察不同参数值下样机性能的变化。 进行参数化建模时,确定好影响样机性能的关键输入值后,ADAMS/View提供了4种参数化的方法: (1)参数化点坐标在建模过程中,点坐标用于几何形体、约束点位置和驱动的位置。点坐标参数化时,修改点坐标值,与参数化点相关联的对象都得以自动修改。 (2)使用设计变量通过使用设计变量,可以方便的修改模型中的已被设置为设计变量的对象。例如,我们可以将连杆的长度或弹簧的刚度设置为设计变量。当设计变量的参数值发生改变时,与设计变量相关联的对象的属性也得到更新。 (3)参数化运动方式通过参数化运动方式,可以方便的指定模型的运动方式和轨迹。 (4)使用参数表达式使用参数表达式是模型参数化的最基本的一种参数化途径。当以上三种方法不能表达对象间的复杂关系时,可以通过参数表达式来进行参数化。 参数化的模型可以使用户方便的修改模型而不用考虑模型内部之间的关联变动,而且可以达到对模型优化的目的。参数化机制是ADAMS中重要的机制。 10.2 ADAMS参数化分析简介 参数化分析有利于了解各设计变量对样机性能的影响。在参数化分析过程中,根据参数化建模时建立的设计变量,采用不同的参数值,进行一系列的仿真。然后根据返回的分析结果进行参数化分析,得出一个或多个参数变化对样机性能的影响。再进一步对各种参数进行优化分析,得出最优化的样机。ADAMS/View提供的3种类型的参数化分析方法包括:设计研究(Design study)、试验设计(Design of Experiments, DOE)和优化分析(Optimization)。 10.2.1 设计研究(Design study) 在建立好参数化模型后,当取不同的设计变量,或者当设计变量值的大小发生改变时,仿真过程中,样机的性能将会发生变化。而样机的性能怎样变化,这是设计研究主要考虑的内容。在设计研究过程中,设计变量按照一定的规则在一定的范围内进行取值。根据设计变

ADAMS二次开发及实例

第11章ADAMS二次开发及实例 ADAMS具有很强的二次开发功能,包括ADAMS/View界面的用户化设计,利用cmd语言实现自动建模和仿真控制,通过编制用户子程序满足用户的某些特定需求,甚至可以拓展ADAMS的功能。 本章主要介绍如何定制用户化界面、宏命令的用法和条件循环命令的用法,以及综合以上功能的应用实例。由于用户子程序的主要内容已在第9章进行了详细介绍,因此本章只对所涉及到的用户子程序编译联接操作过程进行简单介绍。 11.1 定制用户界面 ADAMS/View的界面对象都是以层次结构存储在模型数据库中,类似于零件模型的层次结构。所有定制的界面对象都存储在名为GUI的数据库中,该数据库可以很方便地管理所有的标准界面对象。如图11-1所示。

图11-1 界面对象的层次结构 最上层的界面对象是窗口和对话框。如果主要建模窗口起名为main的话,其数据库全名应为.gui.main。 尽管窗口和对话框看起来很相似,但它们却是很不相同的。窗口通常是在用户工作的时候在屏幕上停留一段时间,而对话框通常是在用户输入数据或是进行访问控制时才会出现。窗口有工具条和菜单栏,窗口和对话框也包含其他的界面对象如按钮,标签等等。 大多数用户化操作涉及到创建对话框或者修改标准对话框。但若不用创建一个完整的用户化界面时,则通常只用修改菜单条和工具栏。

ADAMS所包含界面对象属性如表11-1所示。

在大多数情况下,用户定制界面是指制作用户自己的菜单和对话框。

通常可使用菜单编辑器和对话框编辑器来定制界面,通过它们可以很快地访问并改变大多数界面对象和功能。下面就这两方面的内容作简单介绍。11.1.1 定制菜单 1。菜单编辑器 通过以下菜单路径可以调出菜单编辑器窗口: Main menu==》Tools==》Menu==》Modify…… 菜单编辑器窗口如图11-2所示: 图11-2 菜单编辑窗口 在菜单编辑器窗口中显示的是ADAMS菜单文件,菜单文件是按照一定的语法书写的解释性程序文件,在默认情况下,菜单编辑器窗口里显示的是描述ADAMS标准菜单的菜单文件,通过按照一定的语法规则修改该菜

adams应用实例

牵引制动系统性能的问题 机车车辆的牵引制动性能是关系到车辆运行安全与否的一个重要因素。机车车辆的牵引制动系统的牵引制动性能除了要考虑牵引电机、传动系统、制动系统之外,还要考虑轮轨接触的影响。通过MSC.ADAMS/Rail可以对机车车辆的牵引制动性能进行精确的仿真。利用ADAMS/Rail的模板建模方式可以很方便的建立牵引制动系统的模板,然后建立牵引制动子系统,再与转向架和车体等其它子系统组装成整车模型。在ADAMS/Rail中可以定义轮轨之间非线性的摩擦特性,随着蠕滑率的变化而变化的摩擦系数是进行牵引或制动性能分析至关重要的特性。同时,还可以定义随着轨道长度方向变化的摩擦系数,这样可以分析钢轨表面干燥/潮湿的影响。下面是这方面的应用实例。 实例1:Voith Turbo是德国铁道车辆传动系统的一级供应商,主要开发、制造并组装机械、液压及电动系统。他们提供铁道动车的驱动系统,可使机械系统运转更有效,使车辆运营速度更高,更舒适,并节省能源,减少噪音。(摘自:https://www.360docs.net/doc/166755183.html,) Voith Turbo公司的分析部门需要研究驱动系统和动车系统之间在牵引或制动时的相互耦合作用,如在牵引/制动时的轴系的谐振问题。ADAMS/Rail、ADAMS/Flex、ADAMS/Exchange使得Voith Turbo实现了在其产品开发流程内虚拟产品开发的技术。ADAMS/Rail的模版建模方式使得Voith Turbo能够将其建立的驱动系统模型与其他的供应商提供的车辆模型(包括转向架和车身子系统)联合起来建立一个包含驱动系统的整车模型,非常容易测试配臵不同驱动系统的车辆的动力学性能。其意义在于可以对驱动系统的谐振和稳定性进行研究,并进行优化,以使驱动系统的悬挂装臵所受的冲击加速度不超过许可的范围。 上图所示为考虑传动系统的整车模型在通过湿滑轨面启动时牵引电机的输出扭矩随着仿真时间的变化过程,通过仿真发现了由于轨面的湿滑而导致输出扭矩的振动现象,这一现象是由于机车经过湿滑轨面时产生了打滑现象,引起了传动系统的扭振,所以电机的输出扭矩出现了上下的波动。

ADAMS_实例教程--中文01

英文资料翻译:MSC.ADAMS/View使用入门 MSC.ADAMS/View 使用入门练习 欢迎浏览MSC.Software的网址 美国总部:https://www.360docs.net/doc/166755183.html, 中国办事处:https://www.360docs.net/doc/166755183.html,

目 录 第一章弹簧挂锁设计问题介绍 总论--------------------------------------------------------------------------------1 你将学习的内容----------------------------------------------------------------------1 你将创建的模型----------------------------------------------------------------------2 设计要求------------------------------------------------------------------------3 弹簧挂锁的工作原理--------------------------------------------------------------3 第二章建模 总论--------------------------------------------------------------------------------5 建造曲柄和手柄----------------------------------------------------------------------5 启动ADAMS/View并建立一个新的数据文件-------------------------------------------6 熟悉ADAMS/View的界面 ----------------------------------------------------------6 设置工作环境--------------------------------------------------------------------7 创建设计点----------------------------------------------------------------------8 建造曲柄(pivot)---------------------------------------------------------------9 重新命名曲柄(pivot)-----------------------------------------------------------9 建造手柄(handle)--------------------------------------------------------------9 用转动副连接各个构件------------------------------------------------------------9 模拟模型的运动-----------------------------------------------------------------10 观察参数化的效果---------------------------------------------------------------10 建造钩子(Hook)和连杆(Slider)---------------------------------------------------10 建造钩子和连杆-----------------------------------------------------------------11 用铰链连接各构件---------------------------------------------------------------12 模型运动仿真-------------------------------------------------------------------12 存储你的数据文件-------------------------------------------------------------------12 第三章测试初始模型 总论-------------------------------------------------------------------------------13 生成地块(Ground Block)-------------------------------------------------------------14 加一个Inplane 虚约束---------------------------------------------------------------14 加一个拉压弹簧---------------------------------------------------------------------15 加一个手柄力-----------------------------------------------------------------------15 弹簧力的测试-----------------------------------------------------------------------16 角度测试---------------------------------------------------------------------------17 生成一个传感器---------------------------------------------------------------------18 存储模型---------------------------------------------------------------------------18 模型仿真---------------------------------------------------------------------------18 第四章验证测试结果 总论-------------------------------------------------------------------------------20 输入物理样机试验数据---------------------------------------------------------------20 用物理样机试验数据建立曲线图-------------------------------------------------------21 编辑曲线图-------------------------------------------------------------------------22 用仿真数据建立曲线图---------------------------------------------------------------22 存储模型--------------------------------------------------------------------------23

adams振动分析实例中文版

1.问题描述 研究太阳能板展开前和卫星或火箭分离前卫星的运行。研究其发射振动环境及其对卫星各部件的影响。 2.待解决的问题 在发射过程中,运载火箭给敏感部分航天器部件以高载荷。每个航天器部件和子系统必学设计成能够承受这些高载荷。这就会带来附加的质量,花费高、降低整体性能。 更好的选择是设计运载火箭适配器(launch vehicle adapter)结构。 这部分,将设计一个(launch vehicle adapter)的隔离mount,以在有效频率范围降低发射震动传到敏感部件的部分。关心的敏感部件在太阳能板上,对70-100HZ的输入很敏感,尤其是垂直于板方向的。 三个bushings将launch vehicle adapter和火箭连接起来。Bushing的刚度和阻尼影响70-100HZ范围传递的震动载荷。所以设计问题如下: 找到运载火箭适配器系统理想刚度和阻尼从而达到以下目的: 传到航天器的垂直加速度不被放大; 70-100HZ传递的水平加速度最小。 3.将要学习的 Step1——build:在adams中已存在的模型上添加输入通道和振动执行器来时系统振动,添加输出通道测量响应。 Step2——test:定义输入范围并运行一个振动分析来获得自由和强迫振动响应。 Step3——review:对自由振动观察模态振型和瞬态响应,对强迫振动,观察整体响应动画,传递函数。 Step4——improve:在横向添加力并检查传递加速度,改变bushing的刚度阻尼并将结果作比较。添加频域测量供后续设计研究和优化使用。 需创建的东西:振动执行器、输入通道、输出通道 完全非线性模型 打开模型在install dir/vibration/examples/tutorial satellite 文件夹下可将其复制到工作木录。 加载Adams/vibration模块:Tools/ plugin Manager. 仿真卫星模型:仿真看其是否工作正常,仿真之前关掉重力,这个仿真太阳能板在太空中的位置。 关掉重力:Settings——Gravity ; 仿真:tool面板——simulation ,设置仿真时间是15s,步长为500;点击,将停在仿真后mode 返回最初的模型状态:点击,把重力打开,这时模型回到振动分析准确的发射状态。 创建输入通道:payload adapter中心创建两个输入通道(全局x和y方向)并为其创建振动执行器。 输入通道给系统提供通道,可以用来:plot频率响应,使用振动执行器 (加载力、位移、速度、加速度)驱动系统。 当以PSD形式输入时一个典型的设计可能需要输入加速度水平是g2/Hz, 我们将采用一个等效力normalized to a value of 1的输入,因为我们只对 不同频率的相对加速度感兴趣。

Adams柔性体例子—机器人Adams虚拟实验详细步骤

一.ADAMS软件简介 (2) 1.1ADAMS软件概述 (2) 1.2用户界面模块(ADAMS/View) (3) 1.3求解器模块(ADAMS/Solver) (5) 1.4后处理模块(ADAMS/PostProcessor) (6) 1.5控制模块(ADAMS/Controls) (8) 二.典型机器人虚拟实验 (9) 2.1串联机器人 (9) 2.1.1 运动学分析 (9) 2.1.2 动力学分析 (14) 2.1.3 轨迹规划 (17) 2.1.4 基于ADAMS和MATLAB的联合运动控制 (22)

一.ADAMS软件简介 虚拟样机仿真分析软件ADAMS(Automatic Dynamic Analysis of Mechanical Systems)是对机械系统的运动学与动力学进行仿真的商用软件,由美国MDI (Mechnical Dynamics Inc.)开发,在经历了12个版本后,被美国MSC公司收购。ADAMS集建模、计算和后处理于一体,ADAMS有许多个模块组成,基本模块是View模块和Postprocess模块,通常的机械系统都可以用这两个模块来完成,另外在ADAMS中还针对专业领域而单独开发的一些专用模块和嵌入模块,例如专业模块包括汽车模块ADAMS/Car、发动机模块ADAMS/Engine、火车模块 ADAMS/Rail、飞机模块ADAMS/Aircraft等;嵌入模块如振动模块 ADAMS/Vibration、耐久性模块ADAMS/Durability、液压模块ADAMS/Hydraulic、控制模块ADAMS/Control和柔性体模块ADAMS/AutoFlex等[3]。 1.1ADAMS软件概述 ADAMS是以计算多体系统动力学(Computational Dynamics of Multibody Systems)为基础,包含多个专业模块和专业领域的虚拟样机开发系统软件,利用它可以建立复杂机械系统的运动学和动力学模型,其模型可以是刚体的,也可以是柔性体,以及刚柔混合体模型。如果在产品的概念设计阶段就采取ADAMS进行辅助分析,就可以在建造真实的物理样机之前,对产品进行各种性能测试,达到缩短开发周期、降低开发成本的目的。 ADAMS,即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems)该软件是美国MDI公司(Mechnical Dynamics Inc.)开发的虚

ADAMS_CAR模块实例(悬架分析篇)

10悬架分析 (225) 10.1悬架模型参数调整 (225) 10.2悬架参数设定 (229) 10.3悬架仿真 (231) 10.4查看后处理结果 (233) 附例 (234) 224

《悬架分析篇》 10悬架分析 在ADAMS/Car下可进行的悬架分析包括: (1)车轮同向运动(Parallel wheel analysis) (2)车轮反向运动(Oppositel wheel analysis) (3)侧倾和垂直力分析(Roll and vertical forces)-悬架的侧倾角变化,同时保持作用于悬架的总垂直力不变,因此作用于左右车轮的垂直力会变化,导致左右轮心的位置改变。 (4)单轮运动(Single wheel travel)-一个车轮固定,另一个车轮运动。 转向(Steering)-在给定轮心高度下,在转向盘或转向机上施加运动。 (5)静态分析(Static load)-可以在轮心或轮胎印迹上施加载荷,如纵向力、侧向力、垂直力。 (6)外部文件分析(External file)-利用外部文件来驱动仿真。 1)载荷分析(Loadcase),文件中包含的输入可以是轮心位移、转向盘转角,或 者是作用力; 2)车轮包络分析(wheel envelope),车轮同向运动的同时,车轮发生转到,主 要是与CAD软件结合检查悬架、转向系等与车身的干涉。 10.1悬架模型参数调整 在前面第8章已经完成前悬架模块的装配,在子系统或装配体中质量、硬点、衬套、弹簧和减振器特性是可以修该的,以满足用户实际情况。 1)修改质量特性 在部件附近右击鼠标,在出现的清单里找到所要修改的部件,选择Modify。 出现如下窗口: 225

ADAMS仿真实例

A Report Submitted in Partial Fulfillment of the Requirements for SYDE 461

Contents Contents ii Table of Figures iv 1Project Summary 1 1.1 Problem statement (1) 1.2 Phase 1 goals (2) 2Design Process 4 3Results Achieved 8 3.1 PCB modifications (8) 3.2 Mechanical issues resolved (9) Limit switches (10) Hip motor encoders (11) 3.3 Gait research (12) 3.4 ADAMS simulation (13) 3.5 Communication testing (15) 4Future Plans 17

5Tentative Schedule 19 Appendix A C3 Meeting Minutes 22 C3 meeting #1 (22) C3 meeting #2 (25) C3 meeting #3 (29)

Table of Figures Figure 1: Black-Box System (4) Figure 2: Detailed System Diagram (5) Figure 3: Limit Switch Placement (10) Figure 4: Hip motor encoder (11) Figure 5: ADAMS model of Hexplorer (14)

【Adams应用教程】第11章ADAMS二次开发及实例

第11章 ADAMS二次开发及实例 ADAMS具有很强的二次开发功能,包括ADAMS/View界面的用户化设计,利用cmd语言实现自动建模和仿真控制,通过编制用户子程序满足用户的某些特定需求,甚至可以拓展ADAMS的功能。 本章主要介绍如何定制用户化界面、宏命令的用法和条件循环命令的用法,以及综合以上功能的应用实例。由于用户子程序的主要内容已在第9章进行了详细介绍,因此本章只对所涉及到的用户子程序编译联接操作过程进行简单介绍。 11.1 定制用户界面 ADAMS/View的界面对象都是以层次结构存储在模型数据库中,类似于零件模型的层次结构。所有定制的界面对象都存储在名为GUI的数据库中,该数据库可以很方便地管理所有的标准界面对象。如图11-1所示。 图11-1 界面对象的层次结构

机械系统动力学分析及ADAMS应用 最上层的界面对象是窗口和对话框。如果主要建模窗口起名为main的话,其数据库全名应为.gui.main。 尽管窗口和对话框看起来很相似,但它们却是很不相同的。窗口通常是在用户工作的时候在屏幕上停留一段时间,而对话框通常是在用户输入数据或是进行访问控制时才会出现。窗口有工具条和菜单栏,窗口和对话框也包含其他的界面对象如按钮,标签等等。 大多数用户化操作涉及到创建对话框或者修改标准对话框。但若不用创建一个完整的用户化界面时,则通常只用修改菜单条和工具栏。 ADAMS所包含界面对象属性如表11-1所示。 表11-1 ADAMS所包含界面对象属性

第11章ADAMS二次开发及实例 在大多数情况下,用户定制界面是指制作用户自己的菜单和对话框。通常可使用菜单编辑器和对话框编辑器来定制界面,通过它们可以很快地访问并改变大多数界面对象和功能。下面就这两方面的内容作简单介绍。 11.1.1 定制菜单 1。菜单编辑器 通过以下菜单路径可以调出菜单编辑器窗口: Main menu==》Tools==》Menu==》Modify…… 菜单编辑器窗口如图11-2所示: 图11-2 菜单编辑窗口 在菜单编辑器窗口中显示的是ADAMS菜单文件,菜单文件是按照一定的语法书写的解释性程序文件,在默认情况下,菜单编辑器窗口里显示的是描述ADAMS标准菜单的菜单文件,通过按照一定的语法规则修改该菜单文件,就可以得到用户化的菜单。

工程案例—机器人Adams虚拟实验详细步骤(精)

一.ADAMS软件简介 虚拟样机仿真分析软件ADAMS(Automatic Dynamic Analysis of Mechanical Systems)是对机械系统的运动学与动力学进行仿真的商用软件,由美国MDI (Mechnical Dynamics Inc.)开发,在经历了12个版本后,被美国MSC公司收购。ADAMS集建模、计算和后处理于一体,ADAMS有许多个模块组成,基本模块是View模块和Postprocess模块,通常的机械系统都可以用这两个模块来完成,另外在ADAMS中还针对专业领域而单独开发的一些专用模块和嵌入模块,例如专业模块包括汽车模块ADAMS/Car、发动机模块ADAMS/Engine、火车模块ADAMS/Rail、飞机模块ADAMS/Aircraft等;嵌入模块如振动模块ADAMS/Vibration、耐久性模块ADAMS/Durability、液压模块ADAMS/Hydraulic、控制模块ADAMS/Control和柔性体模块ADAMS/AutoFlex等[3]。 1.1ADAMS软件概述 ADAMS是以计算多体系统动力学(Computational Dynamics of Multibody Systems)为基础,包含多个专业模块和专业领域的虚拟样机开发系统软件,利用它可以建立复杂机械系统的运动学和动力学模型,其模型可以是刚体的,也可以是柔性体,以及刚柔混合体模型。如果在产品的概念设计阶段就采取ADAMS 进行辅助分析,就可以在建造真实的物理样机之前,对产品进行各种性能测试,达到缩短开发周期、降低开发成本的目的。 ADAMS,即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems)该软件是美国MDI公司(Mechnical Dynamics Inc.)开发的虚拟样机分析软件。目前,ADAMS已经被全世界各行各业的数百家主要制造商采用。根据1999年机械系统动态分析软件国际市场份额的统计资料,ADAMS 软件销售总额近八千万美元、占据了51%的份额。 ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格朗日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,

虚拟样机技术与ADAMS应用实例教程

湖南工业大学 课程设计 资料袋 科技学院(系、部)2014 ~ 2015 学年第1 学期课程名称虚拟样机技术与ADAMS应用实例教程 指导教师周明 学生姓名专业班级 学号 题目工作输送机 起止日期2014 年12月15 日~2014 年12 月30 日成绩 目录清单

课程名称:虚拟样机技术与ADAMS应用实例教程设计题目:工作输送机 专业:机械设计制造及其自动化班级: 学生姓名:学号: 起迄日期:2014 年 12月16 日 ~ 2014 年 12月31日指导教师:周明

目录 第一章机械原理课程设计的任务与要求 (4) 生产线上的步进式工件输送机 (4) 第二章创新机构 (5) 一、机构运动简图绘制 (6) 二、利用ADAMS软件建模 (7) 三、利用ADAMS软件仿真 (8) 1、滑块的位移、速度及加速度曲线 (8) 2、各构件的角速度和角加速度 (9) 3、原动件的驱动力矩 (12) 4、各运动副的支反力 (12) 四、最终输出构件的压力角 (14) 第三章参考文献 (15) 第四章致谢 (16)

第一章机械原理课程设计的任务与要求 生产线上的步进式工件输送机 工作输送机能间歇的输送工件,电动机通过传动装置、工作机构驱动滑架往复移动,工作行程时滑架上的推爪推动工件前移一个步长,当滑架返回时,由于推爪与轴间装有扭簧,推爪得以从工件底面滑过,工件保持不动。当滑架再次向前推进时,滑爪己复位,井推动新的工件前移,前方推爪也推动前一工位的工件前移。其传动装置常由减速器和一级开式齿轮传动组成。 ADAMS是英文Automatic Dynamic Analysis of Mechanical Systems的缩 写,是由美国MDI公司(Mechanical Dynamics Inc.)开发的机械系统动 力学自动分析软件。 在当今动力学分析软件市场上ADAMS独占鳌头,拥有70%的市场份额,ADAMS 拥有windows版和unix两个版本,目前最高版本为ADAMS 2005。 ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型(虚拟机械系统,虚拟样机),其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运 动学和动力学分析,输出位移、速度、加速度和反作用力曲线。 ADAMS软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、 峰值载荷以及计算有限元的输入载荷等。 我们选择题号8 高度H为800—1000mm,摆角40?—50?左右,L CD =(0.6—0.7)L DF ,L EF =(0.2 ~0.3)L DF 减速箱的输入转速为360 r/min,各杆件质量与长度成正比。 工作阻力为2600N,步长为525mm,往复次数30次,行程速比系数K为1.25。

ADAMS实例仿真解析

ADAMS大作业 姓名:柴猛

学号:20107064 目录 绪论 (1) 模型机构 (2) 模型建立 (3) 约束添

加 (9) 运动添加 (11) 模型仿真 (14) 小结 (17) 参考文献 (17)

绪论 大型旋挖钻机是我国近年来引进、发展的桩工机械, 逐步取代了对环境污染严重、效率低下的其它建筑工程桩孔施工机械。旋挖钻机的钻桅变幅机构对整机布局和操纵稳定性影响很大, 它是实现钻孔位置变化及改变钻桅位置状态的关键部件。钻桅是旋挖钻机主执行机构的重要支撑, 其为钻具、调整机构、加压系统等提供结构支撑, 整个桅杆对于保证整机的正常运行和工作质量起着至关重要的作用。 旋挖钻机主要是运用于灌注桩施工,功能为钻孔。而在当今灌注桩施工中旋挖钻机具有优于其它方式的优点: 1.钻井效率高; 2.成孔质量好; 3.环境污染小。 本文主要是对旋挖钻机的钻桅举升装置进行运动仿真分析。

模型机构 钻桅举升装置主要由钻头,钻杆,变幅机构,桅杆以及油缸组成, 工作过程:对孔,下钻,钻进,提钻,回转,卸土六个主要步骤。 对孔:为了保证钻桅的垂直度,采用了平行四边形平动机构,并结合液压杆及回转机构完成孔的定位; 下钻:由于钻具质量大,应控制其下降速度,将钢丝绳与钻杆通过回转接头连接,采用卷扬提升系统控制钻具的升降;钻进:通过动力头驱动扭矩并传递给钻杆,再由钻杆传递给钻钭以实现钻进;提钻:与下钻具有相同的控制系统和运动过程; 回转:由回转机构完成;卸土:通过卷扬系统和连杆的旋转来完成。

模型建立 把实际模型按比例缩 小 一.底座 因为底座不参与运动分析,所以可以用方块代替底座:

adams分析实例经典超值

模型窗口中,点击鼠标左键并按住不放,移动鼠标进行 放大或缩 C inc ADAM 分析实例-定轴轮系和行星轮系传动模拟 有一对外啮合渐开线直齿圆柱体齿轮传动.已知乙=50, z 2 = 25,m = 4mm,「- 20 :,两个齿 轮的厚度都是50mm 1.启动 ADAMS 双击桌面上ADAMS/View 的快捷图标,打开ADAMS/View 在欢迎对话框中选择“ Create a new model”,在模型名称(Model name 栏中输入:dingzhouluenxi ;在重力名称(Gravity ) 栏 中选择“ Earth Normal (-Global Y ) ”;在单位名称(Un its )栏 中选择“ MMKS -mm,kg,N,s,deg ”。如图 1-1 所示。 图1-1 欢迎对话框 2.设置工作环境 2.1对于这个模型,网格间距需要设置成更高的精度以满足要求。在ADAMS/View 菜单栏 中,选 择设置(Setting )下拉菜单中的工作网格(Working Grid )命令。系统弹出设置工 作网格对话框,将网格的尺寸(Size )中的X 和Y 分别设置成750mn 和500mm 间距(Spaci ng ) 中的X 和丫都设置成50mm 然后点击“ OK 确定。如图2-1所表示。 2.2 用鼠标左键点击选择(Select )图标共,控 现在工 IS? Sh 诃rmidig mill 金 K?E I ut^ril-az-广 T O I-KT 制面板出 具箱中。 2.3 用鼠标左键点击动态放大(Dynamic Zoom 图标 1 Working Grid SeLliiiy p Tfilt 2血耙習 CTW RIS ) iCSOOnn) nfai 曲Q ,在 Set Jl IdilLali-QlL a-ai4::uai dpi OK H ^jjly

adams car帮助文件实例教程5_flex_body_tutorial

Flexible Bodies Tutorial 147 Flexible Bodies Tutorial

Getting Started Using Adams/Car 148 Overview Overview In this tutorial, you run analyses on suspension and full-vehicle assemblies to see the effects of flexible bodies. Before you work through this tutorial, make sure you have: ?Adams/Flex. ?Completed the tutorial we’ve provided with Adams/Flex in the guide, Getting Started Using Adams/Flex. ? A moderate level of finite element modeling proficiency. This chapter includes the following sections: ?About Modal Flexibility in Adams/Car ?What You Will Create and Analyze ?Working with Flexible Bodies in Suspension Assemblies ?Working with Flexible Bodies in Full-Vehicle Assemblies This tutorial takes about one hour to complete.

ADAMS入门教程

英文资料翻译:ADAMS/View使用入门 浏览我们的WWW地址 https://www.360docs.net/doc/166755183.html,

第一章弹簧挂锁设计问题介绍 总论 本指导教程将向你介绍如何运用机械系统动力学分析仿真软件ADAMS/View解决工程问题。我们假定你会循序渐进地学习本指导教程,因此在起始阶段我们会给予你较多的指导,伴随着你的进步,这样的指导就会逐渐减少。如果你不想按照既定的顺序学习,那么你也可以在不同的地方将命令文件输入到ADAMS/View中,并且从那里开始学习。但如果这样,你会为了一些最基本的概念而不得不去参阅初始几章。 在每章的开始只要见到溶入标志,就可以找到该输入的文件名。 本章包括以下内容: 你将学习的内容 你将创建的模型 你将学习的内容 本指导教程将引导你进行如图1所示的设计步骤。无论你在什么时候使用ADAMS/View来创建和测试模型,你都须遵循以下七个基本步骤: 1、创建一个包括运动件、运动副、柔性连接和作用力等在内的机械系统模 型; 2、通过模拟仿真模型在实际操作过程中的动作来测试所建模型; 3、通过将模拟仿真结果与物理样机试验数据对照比较来验证所设计的方案; 4、细化模型,使你的仿真测试数据符合物理样机试验数据; 5、深化设计,评估系统模型针对不同的设计变量的灵敏度; 6、优化设计方案,找到能够获得最佳性能的最优化设计组合; 7、使各设计步骤自动化,以便你能迅速地测试不同的设计可选方案。

●你将建造的模型 本指导教程将通过建立一个弹簧挂锁模型教你如何使用ADAMS/View。在与Houston的Manned Spacecraft Center签订的一份合同中,North American Aviation,Inc. 的Earl V. Holman发明了一个挂锁模型,它能够将运输集装箱的两部分夹紧在一起,由此而产生了该弹簧挂锁的设计问题。该模型共有十二个,在Apollo登月计划中,它们被用来夹紧登月仓和指挥服务仓。 其物理样机模型如图2所示,虚拟样机模型如图3所示。 ●设计要求: 1能产生至少800N的夹紧力。 2手动夹紧,用力不大于80N。 3手动松开时做功最少。 4必须在给定的空间内工作。 5有震动时,仍能保持可靠夹紧。 ●弹簧挂锁模型的工作原理 在POINT_4处下压操作手柄(handle),挂锁就能够夹紧。下压时,曲柄(pivot)绕POINT_1顺时针转动,将钩子(hook)上的POINT_2向后拖动,此时,连杆(slider)上的POINT_5向下运动。当POINT_5越过POINT_6和POINT_3的连线后,夹紧力达到最大值。POINT_5应该在POINT_3和POINT_6连线的下方移动,直到操作手柄(handle)停在钩子(hook)上部。这样使得夹紧力接近最大值,但只需一个较小的力就可以打开挂锁。 根据对挂锁操作过程的描述可知,POINT_1与POINT_6的相对位置对于保证挂锁满足设计要求是非常重要的。因此,在建立和测试模型时,你可以通过改变这两点之间的相对位置来研究它们对设计要求的影响。

相关文档
最新文档