数据中心空调系统节能技术白皮书

数据中心空调系统节能技术白皮书
数据中心空调系统节能技术白皮书

数据中心空调系统节能技术白皮书目录

1. 自然冷却节能应用 3

概述 3

直接自然冷却 3

中国一些城市可用于直接自然冷却的气候数据: 8间接自然冷却 8

中国一些城市可用于间接自然冷却的气候数据: 16 2. 机房空调节能设计 17

动态部件 17

压缩机 17

风机 18

节流部件 19

加湿器 19

结构设计 21

冷冻水下送风机组超大面积盘管设计 21

DX型下送风机组高效后背板设计 22

控制节能 22

主备智能管理 22

EC风机转速控制 23

压差控制管理 23

冷水机组节能控制管理 26

1.自然冷却节能应用

概述

随着数据中心规模的不断扩大,服务器热密度的不断增大,数据中心的能耗在能源消耗中所占的比例不断增加。制冷系统在数据中心的能耗高达40%,而制冷系统中压缩机能耗的比例高达50%。因此将自然冷却技术引入到数据中心应用,可大幅降低制冷能耗。

自然冷却技术根据应用冷源的方式有可以分为直接自然冷却和间接自然冷却。直接自然冷却又称为新风自然冷却,直接利用室外低温冷风,作为冷源,引入室内,为数据中心提供免费的冷量;间接自然冷却,利用水(乙二醇水溶液)为媒介,用水泵作为动力,利用水的循环,将数据中心的热量带出到室外侧。

自然冷却技术科根据数据中心规模、所在地理位置、气候条件、周围环境、建筑结构等选择自然冷却方式。

直接自然冷却

直接自然冷却系统根据风箱的结构,一般可分为简易新风自然冷却新风系统和新风自然冷却系统。

简易新风直接自然冷却系统主要由普通下送风室内机组和新风自然冷却节能风帽模块组成。节能风帽配置有外部空气过滤器,过滤器上应装配有压差开关,并可以传递信号至控制器,当过滤器发生阻塞时,开关会提示过滤器报警。该节能风帽应具备新风阀及回风阀,可比例调节风阀开度,调节新风比例。

该系统根据检测到的室外温度、室内温度以及系统设定等控制自然冷却的启动与停止。

进入自然冷却运行模式的条件:主要根据室外温度及室内设定温度作为进入自然冷却模式的依据。ASHRAE TC 2008建议数据机房温度范围18-27℃,可将机房温度设定为27℃,甚至更高些。设定的室内温度越高越利于空调机组能效的提高,利用室外新风自然冷却的时间也越长。

简易新风自然冷却系统运行主要有以下模式:

1.压缩机模式

室外温度不满足自然冷却条件时,系统运行模式为压缩机运行模式。通过压缩机循环制冷来冷却机房。

压缩机模式下,新风阀关闭,排风阀关闭,回风阀打开,仅室内侧气流进行循环。

2.混合运行模式

在自然冷却可启动的温度范围内,如果自然冷却提供的冷量不能满足室内需求,机组将通过压缩机循环间歇性工作保证室内温度,此时系统运行模式为混合模式。

混合模式下,新风阀打开,排风阀打开,回风阀关闭,压缩机间歇性工作,室内气流为全新风。

3.自然冷却模式

室外新风风阀打开,排风阀打开,压缩机停止运行。室内所需的冷量,完全由新风提供。新风风阀及回风风阀的开度在0-100%范围内自动调整。

为防止结霜,室外温度低于结霜温度时应停止室外新风直接自然冷却运行模式。因此,该系统应该设置一个停止自然冷却运行的一个下限温度。

简易新风自然冷却系统,结构简单,控制及操作方便,具有以下优势:

1 更加高效节能:利用新风制冷,减少压缩机运行时间,可大幅减少制冷系统能耗;

2改造成本低:新风系统简单,只需增加一个风帽组件,并引入新风即可,改造费用低;

3 运行成本降低:压缩机能耗在制冷系统中的能耗约占50%,压缩机运行时间减少,能耗降低,运行成本降低;

4 适用机型广泛:可使用于风冷、水冷、CW及双冷源等下送风型所有机组;

5 要求精密空调机组必须为EC风机,进一步降低机房空调能耗;

6 可以一组机组共享一个外部传感器,减少设备配置投资。

简易新风自然冷却适用于中国绝大部分区域。

引入新风环境应避免太阳直射,应考虑灰尘、烟雾、湿度范围、安全、楼层高度等因素。以应用规模来讲,简易型新风自然冷却系统适用于中小型数据机房。

新风直接自然冷却系统主要由室内机组,含新风阀、回风阀及防霜风阀的节能混风箱模块及排风口组成。

当室外新风温度达到启动自然冷却启动设定温度,系统将进入自然冷却运行模式或混合运行模式。

系统根据室外温度及室内回风温度,调节新风阀、回风阀及防霜风阀进行比例调节。

直接自然冷却系统可以根据室外温度和机房热负荷的变化自动动态调节,设定的室内回风温度越高,利用室外新风自然冷却的时间越长,由机组的控制器来自动选择控制不同模式的运行(以室内回风温度设定为24℃为例)。

1.压缩机制冷模式

当室外温度高于24℃时,机组运行方式为:压缩机运行+室内侧风循环

室内回风阀完全打开,排风阀关闭,新风阀关闭,此时通过压缩机运行,室内风循环来为机房提供冷量。

2.混合运转模式

当室外温度在18℃~24℃范围内时,机组运行方式为:压缩机运行+全新风

室内回风阀完全关闭,排风阀打开,新风阀打开,室外此时压缩机间歇运行,降低新风温度,为机房提供冷量。

3.新风自然冷却模式

室外温度不高于18℃则系统可以启动自然冷却。此时压缩机不工作。室外新风风阀及排风风阀开启,依据室外温度最大可至全开。回风风阀依据需要的混合的风量调整至相应开度。此时节能效果最显着。

在该模式下,当室外温度达到结霜温度时,防霜风阀开启,进入室内新风先与部分室内回风进行一次混合,将室外冷空气预热,然后再与室内回风进行二次混合,精确控制送风温度。

但与简易型新风自然冷却系统比起来,新风自然冷却系统初投资更大,但也具备以下优势:

1 适用温度范围更加广泛:新风结构增加防霜混风箱等,可以适应更低的室外温度;

2 运行成本进一步降低:运行新风自然冷却的时间更长,进一步减少压缩机能耗。

3 自然冷却节能效果更佳:相对于间接自然冷却,新风自然冷却无需冷液作为媒介,无需水泵及室外风机的功耗,节能效果更佳显着。

新风自然冷却适用于中国大部分区域。

新风自然冷却系统应该在数据中心建设之前就考虑该方案,并围绕该制冷解决方案进行数据中心的选址、设计。

选址及设计应考虑灰尘、烟雾、湿度范围、安全、楼层高度等因素。

以应用规模来讲,新风自然冷却系统适用于中大型以及超大型数据机房。

中国一些城市可用于直接自然冷却的气候数据:

机房空调间接自然冷却系统由室内机组,室外干冷器(或冷却塔)和水泵等组成。室内机组是在水冷型机组的蒸发盘管上面增加了一套自然冷却冷水盘管。室外温度较高时,压缩机制冷运转,冷却水在板式换热器内吸热,通过干冷器,(或冷却塔)散热,;在室外温度相对低时,水温达到一定要求时,控制水阀,让部分或全部冷水流经自然冷却

冷水盘管,冷却室内部分或全部负荷。因为制冷剂循环独立于自然冷却水循环,所以该系统具有混合运行模式,即在使用自然冷却的同时,压缩机间歇性运行来保证制冷量的要求。这样一来提高了使用自然冷却的室外温度范围,产生更大的节能效果。其实物示意如下图所示:

其系统原理示意如下图所示:

该系统跟据室外温度和负载,有机房空调控制器自动进行模式切换,设定的室内回风温度越高利用室外新风自然冷却的时间越长,以室内回风温度设定为27℃为例,在室外气温低于24℃就可以启动自然制冷,进入混合模式运行。

该系统运行模式如下:

1.压缩机模式

室外温度高于24℃时,自然冷却水阀关闭,冷凝器水阀开启,机组以压缩机模式运行,为机房提供冷量。该模式下制冷系统能耗最高。

2.混合模式

当室外温度在13℃至24℃范围内,机组在混合模式下运行。此模式,自然冷却盘管水阀开启,冷凝器水阀开启,压缩机循环间隙性工作,干冷器提供的冷水继续为机房提供部分冷量,此时耗电量约在压缩机满载运行时的42~90%之间。混合模式在全年中所占比例较大,可最大程度减少压缩机运行时间。

3.自然冷却模式

室外温度低于12℃系统可以实现自然冷却。此模式下压缩机循环不工作。通过干冷器来制取冷冻水,为机房提供制冷量,此时节能效果最显着,耗电量是仅为压缩机模式下的21%~37%左右。

间接自然冷却机房空调机组的应用,具备以下优势:

1.环境适用性更好:由于无新风制冷,间接自然冷却对室外空气的质量要求降低,适用范围更广;

2.节能效果显着:在北方地区,全年可以节约40%的制冷能耗,在广州地区也可以节约12%以上的制冷能耗;

3.安装、设计更加灵活方便:采用水冷方式冷却,管道距离没有限制,干冷器可放在屋顶或地面均可,应用更加方便;

4.解决方案更加可靠:每个机组都有自己的压缩机系统,单个机组的故障不影响其他机组的运行;

5.冗余配置更加经济:室内机组及干冷器采取N+1冗余配置即可,相对于冷水主机系统的1+1或N+1配置,冗余配置成本更低;

6.过滤器维护成本降低:无新风制冷,省去新风过滤器维护成本。

间接自然冷却适用于中国大部分区域。

间接自然冷却对室外空气要求降低,适合更复杂的安装环境。

以应用规模来讲,机房空调间接自然冷却系统适用于各种规模的数据机房。

风冷冷水机组+冷冻水型机房精密空调应用解决方案中,间接自然冷却主要体现在带自然冷却盘管的冷水主机上。风冷冷水主机利用自然冷却盘管承担部分或者全部室内热负荷。自然冷却盘管同冷凝盘管并排放置合用同一风机。

系统运行示意图

夏季:采用风冷冷水机组制冷模式运行

过渡时期,当环境温度比冷冻水温度低时,可以启动自然冷却系统,自然冷却系统制冷量不足时,风冷冷冻水机组作为补偿冷源运行,从而降低机房能耗。过渡季节风冷冷水机组运行部分或者停止运行。

冬季:当室外温度低于回水温度,差值到一定程度,风冷冷水机组压缩机可以停止运行,完全采用室外冷空气直接冷却循环冷冻水,对室内机房空调机组供冷。此时,仅有风机水泵的循环动力耗能,很大程度地达到节能的效果。

该系统跟据室外温度和负载,由风冷冷水机组控制器自动进行运行模式的切换,具体运转模式如下:

1. 冷水机组压缩机运行模式

当室外温度不满足系统自然冷却模式或混合模式运行条件时,制冷系统将启动冷水机组压缩机制冷运行,为数据中心提供冷源。此时冷水机组和普通冷水主机运行方式一致。

2.混合模式

当室外温度低于某设定温度,或低于室内设定温度一定值时,进入混合制冷模式。

此模式下压缩机按照负荷需求调节制冷量输出,自然冷却盘管提供的冷水继续为机房空调提供冷源,用来冷却部分机房热负荷。混合模式在全年中所占比例较大,混合模式可以最大程度上减少压缩机运行的时间或减少压缩机制冷输出比例,从而达到节能的目的。

3. 自然冷却模式

此模式下冷水机组压缩机循环不工作。冷凝风机开启,根据需求调节转速,水泵持续运行,乙二醇水溶液在自然冷却盘管中释放热量,温度降低,为室内侧精密空调提供冷源。室内侧精密空调,则按照智能备机管理模式运行,根据机房负荷调节EC风机转速及冷液流量。

间接自然冷却风冷冷水机组的应用,具备以下优势:

1.环境适用性更好:由于无新风制冷,间接自然冷却对室外空气的质量要求降低,适用范围更广;

2.节能效果显着:在北方地区,全年可以节约40%的制冷能耗,在南方地区每年也可节约7%以上的制冷能耗;

3.安装、设计更加灵活方便:风冷冷水机组可放在屋顶或地面均可,应用更加方便;

4.快速启动:相对于水冷冷水机组,风冷冷水机组启动更加快速。

间接自然冷却适用于中国大部分区域。

间接自然冷却对室外空气要求降低,适合更复杂的安装环境。

以应用规模来讲,风冷冷水机组自然冷却系统适用于中大以及超大规模的数据机房。

水冷冷水主机本身无法利用室外自然冷却节能,该系统的自然冷却主要通过系统集成来实现的:在冷却水与冷冻水之间增加换热器,在室外温度较低时,通过控制冷却水部分或全部流向新增换热器,直接利用低温冷却水冷却冷冻水,以减少压缩机的运转从而实现节能,在系统设计时需要注意冷却水低温防冻问题防止管路冻裂暴管。由于在系统级别上集成,设计方案及控制逻辑通常由设计单位设计,而设备由不同的厂家提供,控制程序由第三方提供,故需要充分考虑切换时的应急方案避免风险。其原理示意图如下图所示:

该系统跟据室外温度和负载,由集中控制平台自动进行运行模式的切换,具体运转模式如下:

1. 冷水机组压缩机运行模式

当室外温度不满足系统自然冷却模式或混合模式运行条件时,制冷系统将启动冷水机组压缩机制冷运行,为数据中心提供冷源。按照负载需求,机组自动调节压缩机制冷量输出。

2.混合模式

当室外温度低于某设定温度,或低于室内设定温度一定值时,制冷系统将进入混合制冷模式。

此模式下压缩机按照负荷需求调节制冷量输出,自然冷却换热器提供的冷水继续为机房空调提供冷源,为机房提供部分冷量。混合模式在全年中所占比例较大,混合模式可以最大程度上减少压缩机运行的时间或减少压缩机制冷输出比例,从而达到节能的目的。

3. 自然冷却模式

此模式下冷水机组压缩机不工作。冷却塔运行,风机根据需求调节转速,水泵(冷冻水泵及冷却水泵)持续运行,冷冻水在自然冷却换热器与冷却水交换热量,冷冻水温度降低,为室内侧精密空调提供冷源。室内侧精密空调,则按照智能备机管理模式运行,根据机房负荷需求调节EC风机转速及冷液流量。

水冷冷水机组间接自然冷却的应用,具备以下优势:

1.环境适用性更好:由于无新风制冷,间接自然冷却对室外空气的质量要求降低,适用范围更广;

2.节能效果显着:尤其是北方地区;

3.安装、设计更加灵活方便:冷却塔可放在屋顶或地面均可,应用更加方便;

间接自然冷却适用于中国大部分区域。

间接自然冷却对室外空气要求降低,适合更复杂的安装环境。

以应用规模来讲,水冷冷水机组自然冷却系统适用于大规模及超大规模的数据机房。

中国一些城市可用于间接自然冷却的气候数据:

2.机房空调节能设计

随着技术的发展,节能技术不断在机房空调系统中应用,包括各动态部件的节能选型、机组结构设计、控制节能等。

动态部件

风冷及水冷室内机组制冷系统主要由压缩机、膨胀阀、蒸发盘管及室内风机。为了实现机组节能运转,机组内各部件均件经过不同阶段的发展历程。

压缩机型式从最早的活塞式、转子式、目前已经发展到高效涡旋式。机组容量的卸载方式由最初的启停控制、吸排旁通数码涡旋、交流变频无极调节至目前的高效直流无刷电机,将部分负载时的机组的COP值大大提升,目前高效EC涡旋式压缩机的部分负荷的COP 值可高达。

对于机房空调专用风冷冷水机组,其压缩机多采用涡旋压缩机或螺杆式压缩机。采用涡旋压缩机的机组,可含多个压缩系统,一个压缩机构建一个系统或多个压缩机并联组成一个系统。制冷系统根据制冷需求,可阶梯式输出制冷量。对于采用螺杆压缩机的机组,可调节压缩机转速,无级调整制冷输出。

压缩机类型对比:

室内风机也由最早交流电机皮带传动离心风机、交流直联外转子离心风机、EC离心风机、目前已经改进发展至航空级复合材料叶轮EC离心风机。

改进航空级复合材料叶轮EC离心风机,叶轮直径更大,质量更轻。在获取同等风量的情况下转速更低,功耗也更低,而且由于质量更强,在启动及运转时,自身消耗的功率更低。该风机比最早交流电机皮带传动离心风机节能高达50%以上。

风机类型对比:

在节流元件中,目前制冷系统中越来越多地使用电子膨胀阀,由于实时精确控制制冷剂流量,通常采用电子膨胀阀比采用热力膨胀阀的制冷系统节能8%左右。

目前,机房空调主要采用的加湿方式为电极式加湿及远红外加湿。随着数据机房节能减排的进一步要求,新的加湿方式如超声波加湿、湿膜加湿等被考虑应用到数据机房。考虑到机房的安全性、产品成熟度及节能性,相信超声波加湿机在数据机房的应用将有广阔的前景。

加湿方式对比:

结构设计

针对节能的结构设计思路主要有:

1)在有限空间内尽量增大换热器面积,以提高换热能力;2)降低机组内风压损失,以降低风机功耗。

基于以上思路,在结构设计上,机房空调采用的方式有:

1)对于冷冻水机组,下送风机组的换热部分与风机部分分两段设计,风机下置地板下安装,将原来机组内风机占用的空间用来增大换热器面积

2)对于DX型下送风机组,可将回风口面积增大,风量保持不变的情况下,降低风速,以减少压降,达到风机节能的目的。风口面积增大主要措施主要是增加机组深度。

冷冻水室内机组由于无压缩机等制冷零部件,主要由两大部件组成:盘管及风机。机组的主要能耗在于风机功耗,而风机的功耗主要用于克服盘管及空气过滤器的阻力,为了实现节能运转就需要从降低盘管及空气过滤器的阻力着手。同样风量下,增大盘管的面积可降低盘管迎风风速,从而降低盘管阻力,实现节能运转。目前在冷冻水室内机组中采用下置式风机模块即是基于该项考虑。新型超大面积换热器,将风机模块安装在换热器模块的下面,更大的利用机组的内部空间。

采用此种结构设计的机房空调,除换热效率提高外,同等风量条件下,风机功耗最高可降低约25%。

采用后背板设计,加深机组深度,增大机组回风口面,优化风道及制冷循环,提高机组能效,故可称为高效后背板。

高效后背板主要可以带来以下好处:

1)更均匀的制冷剂和气流分布:

机组加深后,换热器角度发生变化,可以使制冷剂分布更均匀,同时换热器迎风气流也更加均匀;

2)降低气流侧压力降

进风面积增加,降低回风风速,同时更加均匀的气流也会使气流压降降低;

3)降低风机功耗

可降低风机功耗达5%~12%

越来越多的用户选择冷冻水型精密空调解决方案,而越来越多的机房空调配置EC风机,以降低能耗。

对于配置EC风机的冷冻水型空调,在配置备份机组情况下,完全可以改变传统的主备控制方式为主备智能管理方式,以达到进一步节能目的。

假设机房空调配置为1主1备,则在传统备机模式下,1台机组运行,1台机组作为热备份,处于待机状态。机房所需的制冷量及风量有1台机组承担。

而主备智能管理模式下,2台机组都处于运行状态,承担机房所需的总制冷量和风量,即每台机组承担机房1/2的风量及制冷量。

若某一台机组出现故障,另外1台机组能自动提高风机转速,提高单台机组的制冷量和风量,直到达到机房所需的冷量和风量要求。

所以该节能运行模式下,空调机组系统的可靠性和传统模式下1台机组运行和1台备用机组待机的可靠性一样。

节能基本原理:

风机输入功率立方定律:风机的输入功率与风机的转速成三次方关系,比如风机转速降低1/2,风机的输入功率降低到原来的1/8,即风机功耗降低了7/8,采用主动备用管理模式能耗大大降低。

如:机房空调配置为1+1配置,则在主备智能管理模式下,每台空调风量为单台运行时风量的1/2,则空调转速降低至原来的1/2,能耗减少7/8。

机组的节能管理运行控制还体现在以下两个方面:

1)当室内温度达到设计值时,由控制器按比例控制,降低风机转速,这样可以减少风机功耗实现机组节能。

2)当机组进入除湿运转时,机组减少气流,既可实现快速除湿,同时又可以降低除湿时风机功耗,实现机组节能。

在数据中心里,理想的高架地板系统需要提供一个无障碍的风箱用作送风,这个风箱没

有任何的泄漏。同时应尽可能地把动压转化为静压,建议考虑加入孔板。目前大量的数

据中心现实使用情况中,采用下走线的高架地板下,各处静压非常不均匀,而高架地板

气流配送量不足以满足IT 服务器机柜的气流需求,造成机柜上下温差,引起局部热点。同时,由于出风口地板不同的开孔率,高架地板漏风等因素而冷风气流不能匹配IT 机柜的气流。这种情况下,绝大多数的用户都会采用增加空调的方法来解决。据统计,一般

数据中心的送风气流量和实际所需气流量配比在~ 之间。

压差管理系统能够很好的解决上述问题而不增加空调。通过安装压差传感器,可以确保

地板保持均衡的压力,在均衡的压力下,通过正确的选型和机组参数调整,能够保证出

风口地板出风量达到设计值,完美匹配IT 负载所需的风量。由于IT 负载的动态性,精密空调机组应能够调整制冷量从而动态匹配IT 负载热量,真正做到主动控制和动态制冷。

通过平均分布在高架地板下的静压测量值(范围0~250Pa),静压值通过信号转换器和信号线传送到精密空调机组,精密空调机组的控制器应能够维持高架地板系统在设定的值

范围,每套压差传感器连接于一台机组内。所有精密空调机组可以通过总线系统群组控制。

使用压差控制管理方案有以下优点:

1.配送的风量能够动态调节而匹配所需风量,每个地板的出风量能够满足设计值,低风

量配比。

2.减少耗电:配送的风量等于所需风量下,所需空调机组和风机数量减少,耗能减少。

3.可随需扩展的系统,容易建立高密度制冷区和低密度制冷区。

4.风机数量的减少,噪音量下降。恒定的气流配送和动态制冷能力使得机房消除热点问题。

1)对精密空调设备要求:

a. 机房空调机组必须使用EC 直连风机技术,带有无级调速功能。

b. 配置功能匹配的控制板

c. 每台精密空调配置1套压差传感器,分别用于测量机房高架地板下的静压值和高架地板上的静压值。

d. 静压传感器套管,安装于高架地板下环境和高架地板上房间环境。

2) 施工技术要求:

a. 根据ASHREA 建议的标准,高架地板尽可能做到完全密封。所有漏风的地方,包括出线孔,地板缝隙都要堵住,以免由于局部压力不均匀影响整体使用效果。

b. 在高架地板下,空调前方安装通风的金属孔板,使得地板有稳定均匀的静压,从而保证机房所有地方都有均匀的气流。

冷水机组+冷冻水型机房精密空调,是现在数据中心中常见的制冷解决方案。冷水机组与冷冻水型机房空调都有着各自控制器,按照各自的参数运行。而两者作为一个系统,现在介绍通过两者的联动控制,提高冷水机组的出水温度,达到节能运行的目的。

我们且将这种控制成为冷水机组节能控制。

我们可以设置一个冷水机组节能控制的起始温度Tstart及停止温度Tstop(机房空调回风温度),根据实际回风温度Treturn与起始温度Tstart的差值Δt与起停温度间的梯度ΔT(ΔT=Tstop-Tstart)的比值,可以输出一个0-10V的模拟信号,用于控制调整冷水机组的冷冻水设定点。

例如:我们在机房空调控制器上设置冷水机组节能控制的起始温度为℃,梯度为(可调),即chillersaver功能停止温度为℃。如果当前的回风温度为℃,输出的模拟信号则为。冷水机组根据这个的信号设定出水温度。

1)冷水机组能效提高,节能降耗

冷水机组出水温度提高1K,能效比可提高约3%,如果在保证供冷量满足需求的情况下,将冷冻水温度从7℃提高至10℃,甚至更高,冷水机组可节约9%以上的能耗;

2)减少室内侧的湿负荷

对冷冻水型机房空调的供水温度提高,有助于提高机房空调的显冷量,潜冷量的减少意味着除湿量的减少,减少了机房的湿负荷,减少了机房空调的加湿运行及其运行成本。机房工况也更加温度。

1)机房空调控制器可以设置对水阀控制,并有模拟信号输出端口至冷水机组;

2)冷水机组控制器具备接收机房空调信号的端口,并能根据该信号做出调整。

数据中心交换机buffer需求分析白皮书

数据中心交换机 buffer 需求分析白皮书

目录 1引言 (3) 1.1DC 的网络性能要求 (3) 1.2国内OTT 厂商对设备Buffer 的困惑 (4) 1.3白皮书的目标 (4) 2Buffer 需求的经典理论 (5) 2.11BDP 理论 (5) 2.2Nick Mckeown 理论 (6) 2.3经典理论的适用性 (6) 3基于尾丢弃的buffer 需求 (9) 3.1丢包的影响 (9) 3.1.2丢包对带宽利用率的影响 (9) 3.1.3丢包对FCT 的影响 (12) 3.2大buffer 的作用 (13) 3.2.1吸收突发,减少丢包,保护吞吐 (13) 3.2.2带宽分配均匀 (14) 3.2.3优化FCT (15) 3.3DC 内哪需要大buffer (15) 3.4需要多大buffer (17) 3.5带宽升级后,buffer 需求的变化 (19) 3.6 小结 (19) 4基于ECN 的buffer 需求 (21) 4.1ECN 的作用 (21) 4.2ECN 水线设置 (23) 4.3基于ECN 的buffer 需要多大 (24) 5基于大小流区分调度的buffer 需求 (27) 5.1大小流差异化调度 (27) 5.2大小流差异化调度如何实现大buffer 相当甚至更优的性能 (27) 5.3基于大小流差异化调度的buffer 需要多大 (28) 6 总结 (28) 7 缩略语 (29)

1 引言 1.1DC 的网络性能要求 近几年,大数据、云计算、社交网络、物联网等应用和服务高速发展,DC 已经成为承 载这些服务的重要基础设施。 随着信息化水平的提高,移动互联网产业快速发展,尤其是视频、网络直播、游戏等行业的爆 发式增长,用户对访问体验提出了更高的要求;云计算技术的广泛应用带动数据存储规模、 计算能力以及网络流量的大幅增加;此外,物联网、智慧城市以及人工智能的发展也都对DC 提出了更多的诉求。 为了满足不断增长的网络需求,DC 内的网络性能要求主要体现在: ?低时延。随着深度学习、分布式计算等技术的兴起和发展,人工智能、高性能计算等时延敏感型业务增长迅速。计算机硬件的快速发展,使得这些应用的瓶颈已经逐渐由计 算能力转移到网络,低时延已经成为影响集群计算性能的关键指标。因此,时延敏感型 应用对DC 网络时延提出了更高的要求。目前DC 内,端到端5-10 微秒时延已经成为 主流的目标要求。 ?高带宽高吞吐。数据时代的到来,产生了海量的数据,如图1-1。基于数据的应用(如图像识别)的推广,使得网络数据呈爆发式增长,小带宽已经无法满足应用对传输 速率的需求。部分应用场景下,带宽成为制约用户体验的瓶颈。高带宽高吞吐对于提升大 数据量传输的应用性能有着至关重要的影响。为了应对大数据量传输的 应用需求,目前,百度、腾讯、阿里巴巴等互联网企业的DC 都已经全面部署100GE 网络,阿里巴巴更是规划2020 年部署400GE 网络。 图1-1 数据中心内存储的实际数据 数据来源:中国IDC 圈

数据中心机房空调系统气流组织研究与分析

IDC机房空调系统气流组织研究与分析 摘要:本文阐述了IDC机房气流组织的设计对机房制冷效率有重要影响,叙述现有空调系统气流组织的常见形式。同时重点对IDC机房常见的几种气流组织进行了研究与分析,对比了几种气流组织的优缺点,从理论与实践中探讨各种气流组织情况下冷却的效率。 关键词:IDC、气流组织、空调系统 一、概述 在IDC机房中,运行着大量的计算机、服务器等电子设备,这些设备发热量大,对环境温湿度有着严格的要求,为了能够给IDC机房等提供一个长期稳定、合理、温湿度分布均匀的运行环境,在配置机房精密空调时,通常要求冷风循环次数大于30次,机房空调送风压力75Pa,目的是在冷量一定的情况下,通过大风量的循环使机房内运行设备发出的热量能够迅速得到消除,通过高送风压力使冷风能够送到较远的距离和加大送风速度;同时通过以上方式能够使机房内部的加湿和除湿过程缩短,湿度分布均匀。 大风量小焓差也是机房专用空调区别于普通空调的一个非常重要的方面,在做机房内部机房精密空调配置时,通常在考虑空调系统的冷负荷的同时要考虑机房的冷风循环次数,但在冷量相同的条件下,空调系统的空调房间气流组织是否合理对机房环境的温湿度均匀性有直接的影响。 空调房间气流组织是否合理,不仅直接影响房间的空调冷却效果,而且也影响空调系统的能耗量,气流组织设计的目的就是合理地组织室内空气的流动使室内工作区空气的温度、湿度、速度和洁净度能更好地满足要求。 影响气流组织的因素很多,如送风口位置及型式,回风口位置,房间几何形状及室内的各种扰动等。 二、气流组织常见种类及分析: 按照送、回风口布置位置和形式的不同,可以有各种各样的气流组织形式,大致可以归纳以下五种:上送下回、侧送侧回、中送上下回、上送上回及下送上回。 1) 投入能量利用系数 气流组织设计的任务,就是以投入能量为代价将一定数量经过处理成某种参数的空气送进房间,以消除室内某种有害影响。因此,作为评价气流组织的经济指标,就应能够反映投入能量的利用程度。 恒温空调系统的“投入能量利用系数”βt,定义: (2-1) 式中: t0一一送风温度, tn一一工作区设计温度, tp一一排风温度。 通常,送风量是根据排风温度等于工作区设计温度进行计算的.实际上,房间内的温度并不处处均匀相等,因此,排风口设置在不问部位,就会有不同的排风温度,投入能量利用系数也不相同。 从式(2—1)可以看出: 当tp = tn 时,βt =1.0,表明送风经热交换吸收余热量后达到室内温度,并进而排出室外。 当tp > tn时,βt >1.0,表明送风吸收部分余热达到室内温度、且能控制工作区的温度,而排风温度可以高于室内温度,经济性好。 当tp < tn时,βt <1.0,表明投入的能量没有得到完全利用,住住是由于短路而未能发挥送入风量的排热作用,经济性差。 2) 上送下回 孔板送风和散流器送风是常见的上送下回形式。如图2-1和图2-2所示.

智慧科技-计划管理系统技术白皮书-万达信息

智慧科技-计划管理系统 技术白皮书 1产品定位 各级科委目前对科技计划的管理主要采用电子文档化的管理模式。随着业务工作发展与政府服务职能的深化,业务信息的数据量也不断积累和扩大,现有的管理方式对业务工作的支撑力度开始显得不足,主要体现在信息记录的格式缺乏统一性、信息由多人管理较为分散、对信息的查阅和利用不够便捷等。因此,建设科技计划管理系统,利用更为有效的信息化管理手段变得十分必要。 计划管理系统的建设将以实际业务需求为导向,实现科技计划的全生命周期管理,通过信息化手段规范计划管理业务的管理要素和日常工作,并对收集到的各类要素信息进行更为有效的分析利用,为业务人员在计划管理中的综合处理、高效配置、科学决策提供更为有效的支撑。 凭借多年在信息化系统建设领域的丰富实践经验,我们在方案总体设计方面,周密考虑,充分部署,力争在方案的总体架构方面体现先进性、扩展性和实用性。 一方面,根据各级科委具体需求,采用BS应用结构作为整体应用架构,实现安全的信息交换与业务处理; 其次,采用模块化设计的思想,将各个管理环节标准化和规范化,实现业务开展过程的全面推进; 第三,通过完善的后台管理功能,提供灵活的定制服务,满足业务处理的需求。 整个系统设计在考虑了现有信息系统的使用特点以及现阶段的业务需求的同时,还充分考虑了系统的潜在需求,具有先进性和较高的可扩展性。 系统总体框架如下图:

2主要功能 ●计划可研 计划可行性研究阶段,根据计划指南,部门推荐,完成计划科研报告编写(Word和在线),在计划申报系统中进行填报。 可研报告包含企业信息,计划可研书要求的信息等 ●立项管理: 计划管理最关键过程,根据可研报告,进行立项管理过程。 计划立项审查,和全省市计划库中原有计划进行对比,从计划名称、计划建设内容、考核指标、承担单位、计划负责人等各个方面进行比对, 形成相应的客观报告。 专家根据立项审查结果,进行再次审核,最终形成结果,专家随机取自专家系统库,同时各自打分可以网上网下结合进行,保证其公平透明。 ●计划申报: 计划可研和立项管理结束后,将发放计划正式立项通知书。

社会医疗保险数据中心管理平台技术白皮书(20090730)

社会医疗保险数据中心管理平台 技术白皮书 创智和宇

目录 1简介 (4) 1.1应用背景 (4) 1.2范围 (4) 1.3参考资料 (4) 2系统概述 (5) 2.1医疗保险数据中心管理平台概述 (5) 2.2总体结构图 (5) 2.2.1医疗保险数据中心管理平台的的总体结构 (6) 2.2.2医疗保险数据中心管理平台的逻辑结构 (6) 2.2.3医疗保险数据中心管理平台的的网络拓扑结构 (7) 2.3.1数据库内部组成 (7) 2.3.2生产库定义(地市级) (7) 2.3.3交换库定义(地市级) (7) 2.3.4决策分析库(地市级) (8) 2.3.5决策分析库(省级) (8) 2.4 医疗保险数据中心管理平台与其他系统关系 (8) 2.4.1与本公司开发的社保产品关系及实现接口 (8) 2.4.2与其它公司开发的社保产品关系及实现接口 (8) 2.4.3与全国联网软件关系 (9) 3业务逻辑的总体设计 (9) 3.1数据抽取建立交换数据库 (9) 3.2数据分析与决策 (9) 3.3数据交换服务 (10) 4系统采用的关键技术 (11) 4.1数据抽取 (11) 4.2增量更新 (11) 4.2.1增量更新实现步骤 (11) 4.2.3 历史数据变化情况记录 (12) 4.3数据展现 (12) 4.4数据传输 (12) 4.4.1数据传输涉及的三大元素及关系 (12) 4.4.2数据传输策略总体设计思路. (12) 4.4.3数据传输策略总体设计方案图 (12) 4.4.4数据传输策略实现概要. (14) 4.4.5打包数据的来源 (14) 4.4.6传输策略的维护 (14) 5系统开发平台和运行平台 (14) 5.1开发平台 (14) 5.2运行平台 (14) 6医疗保险数据中心管理平台功能介绍 (15) 6.1参保情况管理 (16)

绿色数据中心空调系统设计方案

绿色数据中心空调系统设计方案 北京中普瑞讯信息技术有限公司(以下简称中普瑞讯),是成立于北京中关村科技园区的一家高新技术企业,汇集了多名在硅谷工作过的专家,率先将机房制冷先进的氟泵热管空调系统引进到中国。 氟泵热管空调系统技术方案适用于各种IDC机房,通信机房核心网设备,核心机房PI路由器等大功率机架;中普瑞讯对原有的产品做了优化和改良,提高节能效率的同时大大降低成本。 中普瑞讯目前拥有实用专有技术4项、发明专有技术2项;北京市高新技术企业;合肥通用所、泰尔实验室检测报告;中国移动“绿色行动计划”节能创新合作伙伴,拥有国家高新企业资质。 中普瑞讯的氟泵热管空调系统技术融合了结构简单、安装维护便捷、高效安全、不受机房限制等诸多优点,目前已在多个电信机房得到实地应用,取得广大用户一致认可,并获得相关通信部门的多次嘉奖。 中普瑞讯的ZP-RAS氟泵热管背板空调系统专门用于解决IDC高热密度机房散热问题,降低机房PUE值,该系统为采用标准化设计的新型机房节能产品,由以下三部分组成。

第一部分,室内部分,ZP-RAS-BAG热管背板空调。 第二部分,室外部分,ZP-RAS-RDU制冷分配单元。 第三部分,数据机房环境与能效监控平台。 中普瑞讯的ZP-RAS氟泵热管背板空调体统工作原理:室外制冷分配单元(RDU)机组通过与系统冷凝器(风冷、水冷)完成热交换后,RDU通过氟泵将冷却后的液体冷媒送入机房热管背板空调(BGA)。 冷媒(氟利昂)在冷热温差作用下通过相变实现冷热交换,冷却服务器排风,将冷量送入机柜,同时冷媒受热汽化,把热量带到RDU,由室外制冷分配单元(RDU)与冷凝器换热冷却,完成制冷循环。 1.室外制冷分配单元(RDU)分为风冷型和水冷型两种。制冷分配单元可以灵活选择安装在室内或室外。室外RDU可以充分利用自然冷源自动切换工作模式,当室外温度低于一定温度时,可以利用氟泵制冷,这时压缩机不运行,充分利用自然免费冷源制冷,降低系统能耗,同时提高压缩机使用寿命。 北方地区以北京为例每年可利用自然冷源制冷的时间占全年一半以上左右。从而大大降低了机房整体PUE值,机房PUE值可控制在较低的数值。 2.热管背板空调(ZP-RAS-BGA)是一种新型空调末端系统,是利用分离式热管原理将空调室内机设计成机柜背板模

华为fusionsphere6.0云套件安全技术白皮书(云数据中心)

华为F u s i o n S p h e r e6.0 云套件安全技术白皮书(云 数据中心) -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

华为FusionSphere 云套件 安全技术白皮书(云数据中心) 文档版本 发布日期 2016-04-30 华为技术有限公司

华为FusionSphere 云套件安全技术白皮书 (云数据中心) Doc Number:OFFE00019187_PMD966ZH Revision:A 拟制/Prepared by: chenfujun ; 评审/Reviewed by: huangdenghui 00283052;zouxiaowei 00348656;pengzhao jun 00286002;youwenwei 00176512;yanzhongwei 00232184 批准/Approved by: youwenwei 00176512 2015-12-29 Huawei Technologies Co., Ltd. 华为技术有限公司 All rights reserved 版权所有侵权必究

版权所有 ?华为技术有限公司 2016。保留一切权利。 非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。 商标声明 和其他华为商标均为华为技术有限公司的商标。 本文档提及的其他所有商标或注册商标,由各自的所有人拥有。 注意 您购买的产品、服务或特性等应受华为公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,华为公司对本文档内容不做任何明示或暗示的声明或保证。 由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。 华为技术有限公司 地址:深圳市龙岗区坂田华为总部办公楼邮编:518129 网址:

数据中心空调设计浅析

数据中心空调设计浅析 数据中心空调设计浅析 摘要随着网络时代的发展,服务器集成度的提高,数据中心机房的能耗急剧增加,这就要求数据中心的空调设计必须高效、节能、合理、经济,本文结合某工程实例浅谈下数据中心空调的特点和设计思路。 关键词:数据中心气流组织机房专用空调节能措施 数据中心是容纳计算机房及其支持区域的一幢建筑物或是建筑 物中的一部分。数据中心空调系统的主要任务是为数据处理设备提供合适的工作环境,保证数据通信设备运行的可靠性和有效性。本文结合工程实例浅析一下数据中心机房空调设计的特点和机房空调的节 能措施。 一、冷源及冷却方式 数据中心的空调冷源有以下几种基本形式:直接膨胀风冷式系统、直接膨胀水冷式系统、冷冻水式系统、自然冷却式系统等。 数据中心空调按冷却方式主要为三种形式:风冷式机组、水冷式机组以及双冷源机组。 二、空调设备选型 (1)空气温度要求 我国《电子信息系统机房设计规范》(GB50174―2008 )中规定:电子信息系统机房划分成 3级。对于A级与B级电子信息系统机房,其主机房设计温度为2 3±1°C,C级机房的温度控制范围是1 8―2 8°C 。 (2)空气湿度要求 我国《电子信息系统机房设计规范》(GB50174―2008 )中规定:电子信息系统机房划分成3级。对于A级与B级电子信息系统机房,其主机房设计湿度度为40―55%,C级机房的温度控制范围是 40―60%。 (3)空气过滤要求

在进入数据中心机房设备前,室外新风必须经过滤和预处理,去除尘粒和腐蚀性气体。空气中的尘粒将影响数据机房设备运行。 (4)新风要求 数据中心空调系统必须提供适量的室外新风。数据通信机房保持正压可防止污染物渗入室内。 三、气流组织合理布置 数据中心的气流组织形有下送上回、上送侧回、弥漫式送风方式。 1.下送上回 下送上回是大型数据中心机房常用的方式,空调机组送出的低温空气迅速冷却设备,利用热力环流能有效利用冷空气冷却率,如图1所示为地板下送风示意图: 图1地板下送风示意图 数据中心内计算机设备及机架采用“冷热通道”的安装方式。将机柜采用“背靠背,面对面”摆放。在热空气上方布置回风口到空调系统,进一步提高制冷效果。 2.上送侧回 上送侧回通常是采用全室空调送回风的方式,适用于中小型机房。空调机组送风出口处宜安装送风管道或送风帽。回风可通过室内直接回风。如图2所示为上送侧回示意图: 图2上送侧回示意图 四、节能措施 1、选择合理的空调冷源系统方式 在节能型数据中心空调冷源形式的选择过程中,除了要考虑冷源系统形式的节能性以外,还要综合考虑数据中心的规模、数据中心的功率密度、数据中心的投资规模、工作人员的维护能力、数据中心所在地的气候条件以及数据中心的基础条件等。 2、设计合理的室内空气温湿度 越低的送风温度意味着越低的空调系统能量利用效率。笔者认为冷通道设计温度为l5―22℃,热通道为25―32℃。 3、提高气流组织的效率 数据中心空调气流组织应尽量避免扩散和混合。在数据中心机房

数据库审计系统_技术白皮书V1.0

此处是Logo 数据库审计系统 技术白皮书 地址: 电话: 传真: 邮编:

■版权声明 本文中出现的任何文字叙述、文档格式、插图、照片、方法、过程等内容,除另有特别注明,版权均属北京所有,受到有关产权及版权法保护。任何个人、机构未经北京的书面授权许可,不得以任何方式复制或引用本文的任何内容。 ■适用性声明 文档用于撰写XX公司产品介绍、项目方案、解决方案、商业计划书等。

目录 一.产品概述 (1) 二.应用背景 (1) 2.1现状与问题 (1) 2.1.1现状 (1) 2.1.2问题 (1) 2.2需求分析 (3) 2.2.1政策需求 (3) 2.2.1.1《信息系统安全等级保护基本要求》 (3) 2.2.1.2《商业银行信息科技风险管理指引》 (3) 2.2.2技术需求 (4) 2.2.3管理需求 (4) 2.2.4性能需求 (4) 2.2.5环境与兼容性需求 (5) 2.2.6需求汇总 (5) 三.产品介绍 (5) 3.1目标 (5) 3.2产品功能 (6) 3.2.1数据库访问行为记录 (6) 3.2.2违规操作告警响应 (6) 3.2.3集中存储访问记录 (6) 3.2.4访问记录查询 (7) 3.2.5数据库安全审计报表 (7) 3.3产品部署 (7) 3.3.1旁路部署 (7) 3.3.2分布式部署 (8) 3.4产品特性 (9) 3.4.1安全便捷的部署方式 (9) 3.4.2日志检索能力 (9) 3.4.3灵活的日志查询条件 (10) 3.4.4灵活的数据库审计配置策略 (10) 3.4.5数据库入侵检测能力 (10) 3.4.6符合审计需求设计 (11) 四.用户收益 (11) 4.1对企业带来的价值 (11) 4.2全生命周期日志管理 (12) 4.3日常安全运维工作的有力工具 (12)

互联网数据中心交换网络技术白皮书

互联网数据中心交换网络的设计 1 引言 互联网数据中心(internet data center,IDC)是指拥有包括高速宽带互联网接入、高性能局域网络、提供安全可靠的机房环境的设备系统、专业化管理和完善的应用级服务的服务平台。在这个平台上,IDC服务商为企业、ISP、ICP和ASP等客户提供互联网基础平台服务以及各种增值服务。 作为业务承载与分发的基础网络系统,就成为IDC平台的动脉。随着中国IDC产业不断发展和业务需求多样化,基础网络逐步发展出一套相对比较通用和开放的方案架构。 2 当前主要的IDC基础网络架构 虽然各IDC机房各有度身定制的业务需求,网络设计也有各自的关于带宽、规模、安全和投资的考虑因素,但最基本的关注点仍然集中在高可靠、高性能、高安全和可扩展性上。 2.1 通用的IDC架构 在整体设计上,层次化和模块化是IDC架构的特征,如图1,这种架构设计带来了整体网络安全和服务部署的灵活性,给上层应用系统的部署也提供了良好的支撑。 图1IDC层次化&模块化设计架构 分区结构采用模块化的设计方法,它将数据中心划分为不同的功能区域,用于部署不同的应用,使得整个数据中心的架构具备可伸缩性、灵活性和高可用性。数据中心的服务器根据用户的访问特性和核心应用功能,分成不同组,并部署在不同的区域中。由于整个数据中心的很多服务是统一提供的,例如数据备份和系统管理,因此为保持架构的统一性,避免不必要的资源浪费,功能相似的服务将统一部署在特定的功能区域内,例如与管理相关的服务器将被部署在管理区。 分区结构另一个特点是以IDC的客户群为单位进行划分,将具体客户应用集中在一个物理或逻辑范围内,便于以区域模块为单位,提供管理和其它增值服务。 层次化是将IDC具体功能分布到相应网络层、计算层和存储层,分为数据中心前端网络和后端管理等。网络本身根据不同的IDC规模,可以有接入层、汇聚层和核心层。一般情况下,数据中心网络分成标准的核心层、汇聚层和接入层三层结构。1)核心层:提供多个数据中心汇聚模块互联,并连接园区网核心;要求其具有高交换能力和突发流量适应能力;大型数据中心核心要求多汇聚模块扩展能力,中小型数据中心共用园区核心;当前以10G 接口为主,高性能的将要求4到8个10GE端口捆绑。2)汇聚层:为服务器群(server farm)提供高带宽出口;要求提供大密度GE/10GE 端口,实现接入层互联;具有较多槽位数提供增值业务模块部署。3)接入层:支持高密度千兆接入和万兆接入;接入总带宽和上行带宽存在收敛比和线速两种模式;基于机架考虑,1RU 更具灵活部署能力;支持堆叠,更具扩展能力;上行双链路冗余能力。

数据中心维护_精密空调CRAC

为什么需要精密空调? 现在,恒温恒湿环境控制要求已经远远超出了传统数据中心或计算机室的围,包括更大的一套应用,称为“技术室”。典型的技术室应用包括: ?医疗设备套件(MRI、CAT 扫描) ?洁净室 ?实验室 ?打印机/复印机/CAD 中心 ?服务器室 ?医疗设施(手术室、隔离室) ?电信(交换机室、发射区) 为什么需要精密空调? 在许多重要的工作息处理是不可或缺的一个环节。因此,贵公司的正常运转离不开恒温恒湿的技术室。 IT硬件产生不寻常的集中热负荷,同时,对温度或湿度的变化又非常敏感。温度和/或湿度的波动可能会产生一些问题,例如,处理时出现乱码,严重时甚至系统彻底停机。这会给公司带来大量的损失,具体数额取决于系统中断时间以及所损失数据和时间的价值。标准舒适型空调的设计并非为了处理技术室的热负荷集中和热负荷组成,也不是为了向这些应用提供所需的精确的温度和湿度设定点。精密空调系统的设计是为了进行精确的温度和湿度控制。精密空调系统具有高可靠性,保证系统终年连续运行,并且具有可维修性、组装灵活性和冗余性,可以保证技术室四季空调正常运行。 温度和湿度设计条件 保持温度和湿度设计条件对于技术室的平稳运行至关重要。设计条件应在72-75°F (22-24°C)以及 35-50% 的相对湿度 (R.H.)。与环境条件不合适可能造成损坏一样,温度的快速波动也可能会对硬件运行产生负面影响。这就是即使硬件未在处理数据也要使其保持运行状态的一个原因。相反,舒适型空调系统的设计只是为了在夏天 95°F

(35°C)的气温和48% R.H.的外界条件下,使室的温度和湿度分别保持80°F (27°C)和 50% R.H.的水平。相对而言,舒适型空调系统的设计只是为了在夏天95°F (35°C)的条件和48% R.H.的外界条件下,保持80°F (27°C)和50% R.H.。舒适空调没有专用的加湿及控制系统,简单的控制器无法保持温度所需的设定点的整定值(23±2°C),因此,可能会出现高温、高湿而导致环境温湿度场大围的波动。 环境不适合所造成的问题 如果技术室的环境运行不当,将对数据处理和存储工作产生负面影响。结果,可能使数据运行出错、宕机,甚至使系统故障频繁而彻底关机。 1、高温和低温 高温、低温或温度快速波动都有可能会破坏数据处理并关闭整个系统。温度波动可能会改变电子芯片和其他板卡元件的电子和物理特性,造成运行出错或故障。这些问题可能是暂时的,也可能会持续多天。即使是暂时的问题,也可能很难诊断和解决。 2、高湿度 高湿度可能会造成磁带物理变形、磁盘划伤、机架结露、纸粘连、MOS 电路击穿等故障发生。 3、低湿度 低湿度不仅产生静电,同时还加大了静电的释放。此类静电释放将会导致系统运行不稳定甚至数据出错。 欲了解更多APC相关容,请登录.apc./cn 技巧:精密空调系统工作原理及维护过程解析 精密空调的构成除了前面介绍的压缩机、冷凝器、膨胀阀和蒸发器外,还包括:风机、空气过滤器、加湿器、加热器、排水器等。因此我们在日常的机房管理工作中对空调的管理和维护,主要是针对以上部件去维护的。精密空调的构成除了前面介绍的压缩机、冷凝器、膨胀阀和蒸发器外,还包括:风机、空气过滤器、加湿器、加热器、排水器等。因此我们在日常的机房管理工作中对空调的管理和维护,主要是针对以上部件去维护的。 一、精密空调的结构及工作原理 精密空调主要由压缩机、冷凝器、膨胀阀和蒸发器组成。

EPSV3.0综合档案管理系统技术白皮书2013

EPS档案信息管理系统V3.0 技术白皮书 南京科海智博信息技术有限公司 2013年

目录 1.产品简介 (4) 1.1 文档信息化发展趋势 (4) 1.2 产品研发背景 (4) 1.3系统特点 (5) 2.总体架构 (5) 2.1 产品技术架构 (5) 2.2 产品业务架构 (6) 3.运行环境 (6) 3.1 硬件环境 (6) 3.1.1 服务器配置 (6) 3.1.2客户端配置 (6) 3.1.3存储设备 (7) 3.1.4网络环境 (7) 3.2软件环境 (7) 3.2.1 数据库支持 (7) 3.2.2中间件支持 (7) 3.2.3浏览器支持 (7) 3.2.4 容灾支持 (7) 4.基本功能 (7) 4.1系统管理 (8) 4.2业务管理 (13) 4.3文件收集 (13) 4.4文件整编 (14) 4.5档案管理 (15) 4.6库房管理 (16) 4.7统计信息 (16) 4.8档案利用 (17) 4.9档案编研 (18) 4.10光盘打包 (18)

5.扩展功能 (19) 5.1 企业档案门户集成 (19) 5.2企业年鉴展示 (19) 5.3照片档案展示 (20) 5.4 数据安全控制 (20) 5.5数据一体化接口 (20) 5.6信息提醒接口 (20) 6.技术创新 (21) 6.1文档安全控制 (21) 6.2 全文检索技术 (22) 6.3 光盘打包技术 (23) 6.4工作流技术 (23) 6.5 海量存储技术 (24) 6.6异构数据接口 (24) 6.7系统的可扩展性 (24) 6.8档案管理平台综合业务管理 (24) 7.公司简介 (24)

IT数据中心运维服务白皮书

鹏博士电信传媒集团股份有限公司 IT服务白皮书 二零一三年十一月

目录 第一章运维服务概述 (4) 1、 (4) 2、 (4) 3、 (4) 第二章监控巡检服务 (4) 1、实时监控 (4) 2、日常监控 (4) 第三章服务器运维管理服务 (4) 1、服务器健康检查 (4) 2、服务器日常维护 (5) 3、服务器配置管理 (6) 4、服务器性能管理 (7) 第四章网络运维管理服务 (8) 1、网络拓扑规划和优化 (8) 2、网络设备安装、配置、调试 (8) 3、网络设备“高可用”配置和维护 (8) 4、网络设备性能管理 (8) 第五章存储运维管理服务 (8)

1、存储设备安装、配置、调试 (8) 2、存储容量空间管理 (8) 3、存储性能管理 (8) 第六章数据库管理服务 (8) 1、数据库安装、配置、调试 (8) 2、数据库性能管理 (8) 3、数据库容量空间管理 (8) 4、数据库备份和恢复管理 (8) 第七章安全管理 (8) 1、服务器安全管理 (9) 2、网络安全管理 (9) 第八章管理制度、流程 (9) 1、服务支持 (9) 2、服务交付 (9) 第九章应急管理 (9) 1、应急预案开发和维护 (9) 2、应急演练 (9)

第一章运维服务概述 1、 2、 3、 第二章监控巡检服务 1、实时监控 2、日常监控 第三章服务器运维管理服务 1、服务器健康检查 为了提高系统的可用性,将故障排除在发生之前至关重要。健康检查服务是鹏博士提供的一项针对设备的非常有效的事故预防服务,是主动式服务的一种。通过健康巡检服务可以尽早发现系统的问题或潜在问题,保证系统的安全、稳定运行。 健康巡检将帮助客户从技术角度对正在运行的服务范围内系统的技术特征、故障隐患有一个全面的了解,以便根据业务发展需求和目前系统资源状况,制定合理、可行的系统扩容、改造、维护计划,提高系统运行的安全性。 服务内容如下: 根据客户需求制定健康检查计划、方案、流程;

数据中心空调系统节能技术白皮书

数据中心空调系统节能技术白皮书目录 1. 自然冷却节能应用 3 概述 3 直接自然冷却 3 中国一些城市可用于直接自然冷却的气候数据: 8间接自然冷却 8 中国一些城市可用于间接自然冷却的气候数据: 16 2. 机房空调节能设计 17 动态部件 17 压缩机 17 风机 18 节流部件 19 加湿器 19 结构设计 21 冷冻水下送风机组超大面积盘管设计 21 DX型下送风机组高效后背板设计 22 控制节能 22

主备智能管理 22 EC风机转速控制 23 压差控制管理 23 冷水机组节能控制管理 26 1.自然冷却节能应用 概述 随着数据中心规模的不断扩大,服务器热密度的不断增大,数据中心的能耗在能源消耗中所占的比例不断增加。制冷系统在数据中心的能耗高达40%,而制冷系统中压缩机能耗的比例高达50%。因此将自然冷却技术引入到数据中心应用,可大幅降低制冷能耗。 自然冷却技术根据应用冷源的方式有可以分为直接自然冷却和间接自然冷却。直接自然冷却又称为新风自然冷却,直接利用室外低温冷风,作为冷源,引入室内,为数据中心提供免费的冷量;间接自然冷却,利用水(乙二醇水溶液)为媒介,用水泵作为动力,利用水的循环,将数据中心的热量带出到室外侧。 自然冷却技术科根据数据中心规模、所在地理位置、气候条件、周围环境、建筑结构等选择自然冷却方式。 直接自然冷却 直接自然冷却系统根据风箱的结构,一般可分为简易新风自然冷却新风系统和新风自然冷却系统。 简易新风直接自然冷却系统主要由普通下送风室内机组和新风自然冷却节能风帽模块组成。节能风帽配置有外部空气过滤器,过滤器上应装配有压差开关,并可以传递信号至控制器,当过滤器发生阻塞时,开关会提示过滤器报警。该节能风帽应具备新风阀及回风阀,可比例调节风阀开度,调节新风比例。 该系统根据检测到的室外温度、室内温度以及系统设定等控制自然冷却的启动与停止。

数据中心空调系统应用白皮书

数据中心空调系统应用白皮书

目录 一引言 (5) 1.1目的和范围 (5) 1.2编制依据 (5) 1.3编制原则 (6) 二术语 (6) 三数据中心分级 (8) 3.1概述 (9) 3.2 数据中心的分类和分级 (9) 四:数据中心的环境要求 (10) 4.1 数据中心的功能分区 (10) 4.2 数据中心的温、湿度环境要求 (11) 4.2.1 数据中心环境特点 (11) 4.2.2 国标对数据中心环境的规定和要求 (12) 4.3 数据中心的其它相关要求 (16) 五: 数据中心的机柜和空调设备布局 (18) 5.1 机柜散热 (19) 5.1.1数据中心机柜 (19) 5.1.2 机柜的布局 (21) 5.2 机房空调及其布置 (23) 5.2.1 机房空调概述 (23) 5.2.2 机房空调送回风方式 (25) 5.2.3 机房空调布局 (25) 六:数据中心空调方案设计 (26) 6.1 数据中心的制冷量需求确定 (26) 6.2 数据中心的气流组织 (29) 6.2.1 下送上回气流组织 (29) 6.2.2 上送下(侧)回气流组织 (33) 6.2.3 局部区域送回风方式 (36) 6.3 空调系统的冷却方式选择 (37) 6.4 空调设备的选择 (46) 七: 数据中心中高热密度解决方案 (48) 7.1 区域高热密度解决方案 (48) 7.2 局部热点解决方式 (50) 7.3高热密度封闭机柜 (52) 7.4其它高热密度制冷方式 (54) 八: 数据中心制冷系统发展趋势 (54) 8.1数据中心发展趋势: (54) 8.2 数据中心制冷系统发展趋势 (57) 九机房环境评估和优化 (58) 附件一:数据中心要求控制环境参数的原因 (62) 附件二:机房专用空调机组 (70)

终端安全配置管理系统技术白皮书

终端安全配置管理系统 技术白皮书 国家信息中心

目录 第一章终端安全配置管理系统简介 (1) 1.1 为什么要做终端安全配置 (1) 1.2 机构如何实现机构高效的终端安全配置管理 (2) 1.3 终端安全配置管理系统技术优势 (3) 第二章终端安全配置管理系统逻辑结构 (5) 第三章终端安全配置管理系统功能 (7) 第四章终端安全配置基线介绍 (9) 4.1 基线概述 (9) 4.2 终端硬件安全配置 (9) 4.3 终端软件安全配置 (10) 4.4 终端核心安全配置 (11) 第五章系统应用方案 (14) 5.1 应用架构 (14) 5.2 实施流程 (16) 5.3 运行环境要求 (16) 第六章技术支持服务 (18) 附录一W INDOW7操作系统安全配置清单(示例) (19) 附录二国家信息中心简介 (24) i

第一章终端安全配置管理系统简介 1.1 为什么要做终端安全配置 在构成信息系统的网络、服务器和终端三要素中,对终端的攻击和利用终端实施的窃密事件急剧增多,终端安全问题日益突显。攻击和窃密是终端安全的外部原因,计算机系统存在缺陷或漏洞、系统配置不当是终端安全的内部原因。外因通过内因起作用,内因是决定因素。据调查,针对系统核心的攻击中,5%是零日攻击,30%是没有打补丁,65%是由于错误的配置。因此正确的安全配置才是保障终端安全性的必要条件。 计算机终端核心配置最早由美国联邦政府提出,称为联邦桌面核心配置计划(FDCC)。该计划由美国联邦预算管理办公室(OMB)负责推动,旨在提高美国联邦政府计算机终端的安全性,并实现计算机管理的统一化和标准化。美国空军最先实施桌面标准配置并取得了良好的应用效果。2007年,美国联邦政府强制规定所有使用Windows的计算机必须符合FDCC的配置要求。 近年来,我国逐步认识到终端安全配置管理对于加强计算机终端安全保障工作的重要作用,对美国联邦政府实施的桌面核心配置进行了跟踪研究,并开展了我国终端安全配置标准的研制工作。多家科研院所和安全厂商参与了相关研究工作,其中,国家信息中心是国内最早开展终端安全配置研究的单位之一,目前已编制完成政务终端安全核心配置标准草案,并开发出一整套标准应用支撑工具—终端安全配置管理系统。该系统在各地方的试点应用取得了明显的成效。 终端安全配置分为硬件安全配置、软件安全配置和核心安全配置,如图1所示。分别介绍如下: 硬件安全配置:根据计算机硬件列装的安全要求,仅可安装符合规定的硬件和外联设备,关闭存在安全隐患的接口以及驱动,以满足政府机构和大型企业对硬件环境的安全需求。包括计算机部件清单、外联设备清单、外联接口安全配置和硬件驱动安全配置; 软件安全配置:根据计算机软件安装的安全要求,仅可安装符合规定的操作系统和软件,禁止非法软件安装,以满足政府机构和大型机构对软件环境的安全需求。包括应安装软件列表、可安装软件列表和禁止安装软件列表; 核心安全配置:对终端操作系统、办公软件和浏览器、邮件系统软件、其它常用软件等与安全有关的可选项进行参数设置,限制或禁止存在安全隐患或漏洞的功能,启用

最新机房线路管理系统白皮书

机房线路管理系统 -CVMS 一、当前现状 机房线路及设备管理现状 ?采用手工记录管理现有线缆标识、线路连接关系 ?缺乏统一的资料管理平台 ?网络物理线路查询困难 ?人员变更交接资料繁琐 ?缺乏规范的管理流程 ?无法清楚的了解网络设备的配置和资源使用状况 ?维护效率低,增加维护成本 为什么我们推出软件形式的机房线路管理系统? ?提高企业/政府/教育/金融IT管理部门的效 率 ?解脱繁琐的传统文档管理工序 ?迅速诊断和定位网络问题 ?提升内部安全性能 ?极为合理的投资成本 ?实现管理图形化和数字化 ?纯软件系统对线路及网络硬件没有任何不良影响 智邦(知微?)机房线路管理系统是对机房系统中设备的维护信息和连接信息进行图形化管理,把图形、数据和连接关系三种对象紧密的结合,为管理员提供一个直观、易用的图形化管理平台。

二、系统特点 CVMS 是一套专业的机房线路管理软件,通过创建“可视化数据库”,将信息和图形有机结合,能帮助企业更好地规划、管理和维护其物理网络、通信、视频、监控及布线基础设施。 基于B/S(浏览器/服务器)结构模型,客户端以浏览器的web 页面形式运行; 系统后台采用SQL Server数据库; 纯软件架构,不需要对现有的网络和硬件进行任何改动; 管理界面友好、精美、简单、功能强大、操作灵活; 可实行跨地域管理和分工管理; 数据和图形相结合; 图形定位快捷; 设备、线缆、终端链路关联处理; 文档、设备、线路连接统一管理,建立完整的技术管理平台; 通过操作日志、管理权限、角色管理来实现对操作人员的管理; 线缆线标的管理使您的管理能精确到每一根线缆; 通过派工单管理,规范机房线路系统的维护工作流程。 三、应用范围 广泛应用于政府、军队、金融、税务、烟草、交通、教育、医疗、能源、电信、广电、司法、电力等多个行业 四、功能模块 1.数据采集 该模块的主要功能是对整个项目的内容进行录入,建立项目数据库。 模块特点: 以目录树的形式自上而下对项目内容进行逐步录入 上传楼层或区域平面图,使每个端口或信息点都可以在楼层平面图上的准确物理位 置以闪烁的形式标明 由机柜信息自动生成机柜和设备模拟图,并确定设备在机柜中的位置 定义信息点、终端设备的类型和内容 建立设备之间的连接关系,生成链路关系模拟图 支持数据批量录入,支持多人同时分工录入 支持线缆线标的批量录入

数据中心机房制冷空调系统运维技术考核题目答案参考

数据中心(机房)制冷空调系统运维技术考核题目答案参考 类数据机房温湿度范围?单点温湿度波动范围? A类机房温湿度要求:23±1℃,40--55% ;单点温度波动小于5℃/h,湿度波动小于5%/h 参考:GB50174《电子信息系统机房设计规范》 2.空调回风参数:温度25℃,相对湿度50%;求露点温度? ℃参考:标准大气压湿空气焓湿图;此题关注会查空气状态点对应的露点温度和湿球温度 3.自然冷却模式、预冷模式、普通制冷模式的切换依据,对应的环境湿球温度值是多少? 湿球温度<10℃适合自然冷却模式,10--15℃之间适合预冷模式,>15℃适合普通制冷模式 参考:水冷自控系统供冷模式转换控制逻辑 4.机房空调送风距离多少米为宜?6-10m为宜 5.数据机房采用地板送风,风速范围多少m/s为宜? ( m/s最佳)参考:GB50174《电子信息系统机房设计规范》 6.数据机房新风正压要求数值? 机房与走廊;机房与室外参考:GB50174《电子信息系统机房设计规范》 7.数据机房新风量:人均参考值?每平米参考值?按机房换气次数每小时几次为宜? 按工作人员每人40m3/h;每平米25--30 m3/h;机房换气次数次/h(人员进出的机房取4次/h) 8.计算:900个标准机柜(13A)需要多大面积的机房合适?如选用艾默生冷水型机房空调P3150G至少需要多少台?按4-5台以上备份1台的标准,最多需要多少台?需要多大冷量的冷水机组提供冷源?需要多大风量的新风空调提供机房正压? 每个机柜加上冷热通道,平均面积取;×900=2070㎡(可分成4个㎡模块间,每个模块225台机柜) 每平米可用制冷量不能小于+每平米维护结构热负荷=每平米冷量需求 总冷量需求:×2070=3312KW 查艾默生冷水型空调样本:P3150G标准冷量为;需留有20%的预留(使用系数取) 艾默生P3150G冷水型空调单机净冷量:×= ○标准需求台数:3312÷≈28台;冗余配置(4+1):28÷4=7台(需配备机7台);含备机需28+7=35台 ○IT设备功耗转换成热量系数(取计算);13A机柜功耗,转换为热量÷≈ 总热负荷:×900=3429KW,除以P3150G空调单机净冷量≈29台,按冗余配置(4+1),需配备机7台;含备机需29+7=36台 ○空调系统制冷量取IT负载的倍;IT总负载:×900=2574KW;空调系统总制冷量:2574×= 除以P3150G空调单机净冷量≈28台,按冗余配置(4+1),需配备机7台;含备机需28+7=35台 ●需要冷量为3429KW(约1000RT)的冷水机组(离心式)1台提供冷源 新风量每平米25--30 m3/h(取30 m3/h);总新风需求30×2070=62100 m3/h,建议规划4个模块间单独提供新风62100÷4=15525 m3/h,需要新风量15525 m3/h的组合空调4台 9.制冷设备能效比EER是如何计算的? EER即制冷设备的制冷性能系数,也称能效比,表示制冷设备的单位功率制冷量。EER值越高,表示制冷设备中蒸发吸收的热量较多,压缩机耗电较少。数学计算公式:EER=制冷量(KW)/制冷消耗功率(KW) 单位:W/W或KW/h/W 10.冷站(动力站)COP是如何计算的? 冷水机组实际制冷量和配套设备(压缩机-马达+冷冻水循环泵+冷却水循环泵+冷却塔风机-马达)实际输入功率之比 11.数据机房PUE是如何计算的?绿色节能机房PUE标准? PUE是评价数据中心能源效率的指标,是数据中心消耗的所有能源(电能)与IT负载使用的能源(电能)之比PUE=数据中心总设备能耗/IT设备能耗;基准是2,越接近1表明能效水平越好 绿色节能机房PUE标准:以下 12.接题目8,匹配适合该冷水机组的冷却塔参数(流量)?冷却塔设在楼顶距冷站(动力站)20米,匹配适合该冷水机组的冷却循环泵参数(扬程和流量)?匹配适合该冷水机组和机房空调的冷冻循环泵参数(扬程和流量)(注:水泵出口至管网最高点垂直高度15米)? 水量需求:冷凝器()/RT 蒸发器(3/h)/RT

小额贷款公司综合业务管理系统技术白皮书

小额贷款公司综合业务管理系统

目录 1、前言 (3) 2、方案概述 (4) 3、系统功能 (5) 4、系统逻辑结构 (8) 6、运行环境 (11) 7、案例介绍 (12) 8、附录 (15)

1、前言 “小额贷款”(Micro Loan),是指以广大微小企业、个体工商户、农户为服务对象,以生产经营为主要用途的贷款品种,特点是:单笔贷款金额不超过100万人民币(平均每笔贷款金额在5万元左右);贷款期限以1年以内为主;由正规金融机构按照商业化经营模式运作。与扶贫式贷款不同,这种小额贷款经营模式强调的是贷款本身的可持续性。 小额贷款主要是解决传统银行难以服务到的低端客户的金融服务问题,目标客户群体包括有生产能力的贫困和低收入人口、微小型企业主等。发展小额贷款属世界性难题,直到孟加拉乡村银行采取商业化、可持续发展模式获得成功,才为各国发展小额贷款业务提供了可资借鉴的案例。 小额贷款公司综合业务管理系统(Micro Loan Management System 简称MLMS)通过设计小额贷款管理目标、组织系统、监控系统、信息系统、管理政策、资源配置及小额贷款操作中的贷款对象、用途、额度、期限、方式、利率等要素,以及贷款的条件、调查和监管技术,解决当前小额贷款业务管理过程中存在的漏洞,填补国内小额贷款技术的空白.

2、方案概述 本方案是针对各金融机构、各银行小额贷款业务部进行电子信息管理的完整的技术解决方案。小额贷款公司综合业务管理系统,是以服务于中小型金融机构、各银行小额贷款业务部为目标,全面提升信息系统的技术内涵,实现"以产品为中心向以客户服务为中心"的战略转移,达到对外充分适应、快速反应,对内高效沟通、快速决策。 小额贷款公司综合业务管理系统(MLMS)解决方案可以在各金融机构、银行小额贷款业务部范围内更好地管理项目和资源,同时高效完成资料收集、数据分析、款项审批和报告。基于Web的数据分析管理工具帮助项目执行人员将人员、数据和分析结果完美地结合起来,及时发现企业经营中所存在的问题,并进行相关预警。各部室人员通过审批工具来传递资料,进行相互协作。可扩展的基础架构使各金融机构和银行小额贷款业务部可以将MLMS解决方案与现有的第三方系统系统进行无缝集成

相关文档
最新文档