激光雷达测距原理与其应用

激光雷达测距原理与其应用
激光雷达测距原理与其应用

目录

摘要 (1)

关键词 (1)

Abstract (1)

Key words (1)

引言 (1)

1雷达与激光雷达系统 (2)

2激光雷达测距方程研究 (3)

2.1测距方程公式 (3)

2.2发射器特性 (4)

2.3大气传输 (5)

2.4激光目标截面 (5)

2.5接收器特性 (6)

2.6噪声中信号探测 (6)

3伪随机m序列在激光测距雷达中的应用 (7)

3.1测距原理 (7)

3.2 m序列相关积累增益 (8)

3.3 m序列测距精度 (8)

4脉冲激光测距机测距误差的理论分析 (9)

4.1脉冲激光测距机原理 (9)

4.2 测距误差简要分析 (10)

5激光雷达在移动机器人等其它方面中的应用 (10)

6结束语 (11)

致谢 (12)

参考文献 (12)

激光雷达测距原理与其应用

摘要:本文简单介绍激光雷达系统组成,激光雷达系统与普通雷达系统性能的对比,着重阐述激光雷达测距方程的研究。针对激光远程测距中的微弱信号检测,介绍一种基于m序列的激光测距方法,给出了基于高速数字信号处理器的激光测距雷达数字信号处理系统的实现方案,并理论分析了脉冲激光测距机的测距误差。了解并学习激光雷达在移动机器人等其它方面中的应用。

关键词:激光雷达;发射器和接收器特性; 伪随机序列; 脉冲激光;测距误差

Applications and Principles of laser radar ranging Student majoring in Optical Information Science and Technology Ren xiaonan

Tutor Shang lianju

Abstract:This paper briefly describes the composition of laser radar systems, laser radar system and radar system performance comparison of normal, focusing on the laser radar range equation. Laser Ranging for remote signal detection, presents a introduction of a sequence based on laser ranging method m, gives the high-speed digital signal processor-based laser ranging radar digital signal processing system implementations, and theoretical analysis of the pulse Laser rangefinder range error.We understand and learn application of Laser radar in the mobile robot and other aspects.

Key words:Laser radar; Transmitter and receiver characteristics;Pseudo-random sequence;Pulsed laser;Ranging error.

引言:激光雷达是传统雷达技术与现代激光技术相结合的产物,激光具有亮度

高、单色性好、射束窄等优点,成为光雷达的理想光源,因而它是目前激光应用主要的研究领域之一。激光雷达是一项正在迅速发展的高新技术,激光雷达技术从最简单的激光测距技术开始,逐步发展了激光跟踪、激光测速、激光扫描成像、激光多普勒成像等技术,使激光雷达成为一类具有多种功能的系统。利用激光作为遥感设备可追溯到30多年以前,从20世纪60年代到70年代,人们进行了多项试验,结果都显示了利用激光进行遥感的巨大潜力,其中包括激光测月和卫星激光测距。激光雷达测量技术是一门新兴技术,在地球科学和行星科学领域有着广泛的应用.LiDAR(LightLaser Detection and Ranging)是激光探测及测距系统的简称,通常指机载对地激光测距技术,对地激光测距的主要目标是获取地质、地形、地貌以及土地利用状况等地表信息。相对于其他遥感技术,LIDAR的相关研究是一个非常新的领域,不论是在提高LIDAR数据精度及质量方面还是在丰富LIDAR数据应用技术方面的研究都相当活跃。随着LIDAR传感器的不断进步,地表采点密度的逐步提高,单束激光可收回波数目的增多,LIDAR数据将提供更为丰富的地表和地物信息。激光测距可分为星载(卫星搭载)、机载(飞机搭载)、车载(汽车搭载)以及定位(定点测量)四大类,目前激光测距仪已投入使用,激光雷达正处在试验阶段,某些激光雷达已付诸实用.本文对激光雷达的测距原理、发射器和接收器特性、束宽、大气传输以及目标截面、外差效率进行分析, 提出基于伪随机序列的激光测距技术 ,可将激光

雷达的峰值发射功率降到几十毫瓦,并着重研究为消除激光测距雷达固有的测距周期性问题而对距离加偏置值、为降低坐标变换误差而对距离进行校正等问题.

1雷达与激光雷达系统

雷达概念形成于20世纪初,是英文radar的音译,为Radio Detection And Ranging的缩写,意为无线电检测和测距的电子设备,发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。各种雷达的具体用途和结构不尽相同,但基本形式是一致的,包括:发射机、发射天线、接收机、接收天线,处理部分以及显示器。还有电源设备、数据录取设备、抗干扰设备等辅助设备。雷达所起的作用和眼睛和耳朵相似,它的信息载体是无线电波即电磁波,传播的速度是光速C,其原理是雷达设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成目标的精确距离。雷达的优点是白天黑夜均能探测远距离的目标,且不受雾、云和雨的阻挡,具有全天候、全天时的特点,并有一定的穿透能力。因此,它不仅成为军事上必不可少的电子装备,而且广泛应用于社会经济发展(如气象预报、资源探测、环境监测等)和科学研究(天体研究、大气物理等)。

LiDAR(Light Detection and Ranging),是激光探测及测距系统的简称。激光器将电脉冲变成光脉冲发射出去,光接收机再把从目标反射回来的光脉冲还原成电脉冲,送到显示器。用激光器作为发射光源,采用光电探测技术手段的主动遥感设备。激光雷达是激光技术与现代光电探测技术结合的先进探测方式,由发射系统、接收系统、信息处理等部分组成。发射系统是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器以及光学扩束单元等组成;接收系统采用望远镜和各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等组合。

激光雷达是工作于光波段的新型雷达系统,目前,激光雷达可以采用0.53μm、0.63μm、0.8~ 0.9μm、1.06μm、1.54μm、2μm 和10.6μm等7个波长段,它与微波和毫米波雷达相比, 具有以下独特优势(1) 工作频率高、波长短;(2) 距离、速度和角位置测量精度高;(3) 体积小、重量轻、机动灵活, 利于机载和航天器载。“激光雷达系统将激光用于回波测距、定向,并通过位置、径向速度及物体反射特性识别目标,体现了特殊的发射、扫描、接收和信号处理技术,激光雷达是传统雷达技术与现代激光技术相结合的产物。激光雷达之所以受到关注,是因为其具有一系列独特的优点:具有极高的角分辨率、具有极高的距离分辨率、速度分辨率高、测速范围广、能获得目标的多种图像、抗干扰能力强、比微波雷达的体积和重量小等。但是,激光雷达的技术难度很高,至今尚未成熟,而且在恶劣天气时性能下降,使其应用受到一定的限制。相对于其他遥感技术,LIDAR的相关研究是一个非常新的领域,不论是在提高LIDAR数据精度及质量方面还是在丰富LIDAR数据应用技术方面的研究都相当活跃。与遥感影像技术不同的是,LIDAR系统可以迅速地获取地表及地表上相应地物(树木、建

筑、地表等)的三维地理坐标信息,它的三维特性符合当今数字地球的主流研究需求,随着LIDAR 传感器的不断进步,地表采点密度的逐步提高,单束激光可收回波数目的增多,LIDAR 数据将提供更为丰富的地表和地物信息。对LIDAR 所采集到的地表三维点集进行过滤、插值、分类、分割等处理,可获取各类高精度的三维数字地面模型,还可对地表地物进行分类识别并实现地表地物如树木、建筑等的三维数字重构,乃至绘制三维森林、三维城市模型,构建虚拟现实。激光具有亮度高、单色性好、射束窄等优点,激光本身具有非常精确的测距能力,其测距精度可达几个厘米,而LIDAR 系统的精确度除了激光本身因素,还取决于激光、GPS 及惯性测量单元(IMU )三者同步等内在因素。 激光雷达工作原理与常规雷达大体相同。图 1示典型单基地外差或相干探测的激光雷达框图。从图看出, 激光雷达的制作工艺相当复杂。 它是把待发激光先送入发/收(T/ R )转换开关并用同一窗口发射, 发/ 收和瞄准光路平行对目标扫描; 从目标返回的光信号由扫描光学系统和光束扩展器接收, 这两部分组成光接收器; T/R 转换开关将接收到的光信号送入混频器与本振器的基准光信号混频, 再经成像光学系统聚焦在探测器上进行放大并转换成电信号; 然后经高通滤波器滤除背景和本振低频信号; 激光雷达所测目标距离和速度信息则由信号处理器提取。双基地激光雷达则由分离的光束扩展器和扫描光学系统组成接收器, 省掉了T/ R 转换开关, 其它与单基地激光雷达完全相同。

2 激光雷达测距方程研究【1】【7】

2.1测距方程公式

单基地和双基地激光雷达测距方程的通用公式为:

211

r 2r 222124P ()()()4

4S A A KP T D T R R ηπηπφπ=?Γ (1)式中: S P 为激光发射功率(W);K 为光束分布函数;1A T 为发射器到目标的大气透射率;1η为发射器光学系统效率;φ为束宽或发散度( rad);1R 为发射器到目标距离(m); Γ为目标激光截面(m 2);2A T 为目标到接收器大气透射率;2R 为目标到接收器距离(m);D 为接收窗口径(m);r η为接收器光学系统效率;r P 为接收功率(W)。激光雷达是微波雷

图1典型外差或相干探测激光雷达组成框图

达的发展,测距原理相同。不同之处是微波波长和束宽远大于激光,瞄准误差的影响很小;而激光雷达则相反。为便于比较, 所示微波雷达的通用测距方程为:

212r 2212P ()()()4

44t S A t r A GP

T D T R R ηπηππ=?Γ式中: t G 为发射器天线增益,其中t G = 16K /2o φ。在外大气层或大气衰减条件下定点测距的单基地激光雷达, 1R = 2R = R , 1A T = 2A T = A T ,若目标角宽在方位和仰角方向上大于发射器束宽, 激光目标截面与照射面积成正比, 即Γ与φ2和R 2 成正比, 光束分布约为均

匀朗伯强度分布。则公式(1)可以简化为: 22r 2

P ()4S A r t P T D R ρηη=式中:ρ为朗伯目标的反射系数。若单基地激光雷达在弱大气衰减条件下对目标测距时,其最大测程经公式(1) 变换得min 1224max r [4P ]S t r R KP D ηηπφ=Γ.

2.2 发射器特性

发射器特性与光束分布函数、束宽及瞄准误差等外部因素有关。

I 光束成形及光束分布函数

光束在激光腔内产生, 其最低阶模(TEMoo) 为高斯模。若忽略瞄准误差而采用均匀光束分布来估算其性能和功率, 则光束分布函数为: K(ψ, φ)

; 式中, ψ为瞄准误差;φ为束宽(发散度)。采用爱里函数描述远

场光束的分布函数为: 12.44(

)(,) 4.181[ 2.44]J K πψφφ

ψφπψ=式中, 1J 为第一类第一

阶贝塞尔函数. 具有高斯强度TEMoo 模的分布函数为:

2222(,)2exp[]R K ψψφω-= 式中, 222200[1()]R ωωλπω=+ 0ω为高斯束腰半

径。

II 束宽 束宽是测量发射光束分布的角宽。其中常规雷达对束宽定义为12

最大值上的全宽度(FWHM ) , 它与光束分布无关。激光雷达束宽采用光学实验能接受而与常规雷达有差别的如下定义:(1) 衍射限束宽 由圆形输出窗均匀发射的光束称为衍射限束宽。其计算公式为: 2.44d φλ= 式中: λ为发射光波长;d 为发射窗通光孔径。采用高斯分布

【4】发射的衍射限束宽为: 1

22002arctan()[1()]R R φφληω=+,高斯束宽是光束横截于发射窗出射口全宽度

2e -的辐射度, 而常规雷达是FWHM 。如把FWHM 转换为2e -高斯束宽后的关系

为:φ= 1.699φFWHM 式中, φFWHM 为12

最大光强度上的全宽度。(2)光束性质 光束性质是实际远场束宽与理论上的衍射限束宽之比,并表示为:M T Q φφ= (3) 发散度与孔径乘积 固体激光雷达中,常用发散度( rad)

和孔径(m ) 乘积来代替光束性质,则Q=X 2.44λ 式中, 1M X d φ=为发散度与孔径乘积(4)非衍射限束宽 即发射光束偏离3λ 的束宽。光束均匀照射输出窗时非衍射限束宽为:(2.44)d φλ=Q 高斯分布非衍射限发射光束的束宽为: 122

002arctan()[1()]Q R R φωλ=+.

III 发射器瞄准误差 瞄准误差主要对空中小目标。如一高精度激光雷达对空中小目标测距, 瞄准误差小可测到其三维空间位置; 稍增大瞄准误差, 即使能精确测到径向距离也会产生横向距离误差.

2.3 大气传输

激光雷达的性能通常受大气传输性能的限制。大气传输性能可以用比尔定

律计算得:21

0exp[(,)]]R A d T l d dl λλαωω=-??式中: d α为大气衰减密度(2m -) ;R 为激

光雷达到目标的距离; l 为距离积分变量;ω为波长积分变量;λ1和λ2分别为最短和最长波长。若大气衰减密度在全光路和光谱区内不变, 可将公式简化为

exp[]A T R α=-式中,α为大气衰减常数(1m -)。

激光雷达大气传输性能之一是晴天大气对激光产生效应, 其中分子吸收和散射与波长相关且距离越长衰减越大。

2.4 激光目标截面

激光目标截面是与激光雷达球面方位或搜索角无关且沿接收光路返回与目标截面相等光强度的全反射球截面(LCS)。其计算公式为: 2=z πρΓ,ρ为球面反射系数; z 为球半径。

镜面反射目标:任何均方表面粗糙度小于激光波长的球面目标将产生镜面反射。镜面反射目标有立体角形反射体和反射板。因其投影面随入射角增大而减小,LCS 与入射角余弦成正比并与照射波长有关。其LCS 为: 424(3)l πλΓ=, l 为立体角形反射体的棱长.

漫反射目标:目标面的均方粗糙度大于激光波长, 反射信号均匀散射. (1) 朗伯面。小于激光雷达束宽的朗伯圆截面, 其计算公式为: 24cos z πρθΓ=式中: ρ为半球朗伯面反射系数之和;z 为朗伯圆面半径; θ为朗伯面的入射角。机载激光雷达对地面装甲、坦克等大于束宽的单目标测量时, 朗伯目标激光截面为:

22R πρφΓ= (2) 悬浮微粒和散射体大气浮粒及雨、

雪是激光雷达需抑制的杂乱回波即散射体。它们均具有后向散射β特征, β与LCS 的关系为: 222R R πφβΓ=? β为大气后向散射系数,ΔR 为激光雷达的距离分辨率。

2.5 接收器特性

2.5.1探测技术【3】 激光雷达探测技术有直接探测和外差探测两种。(1)外差探测

激光雷达外差探测框图见图1接收光信号进入探测器前先与本振CX 光波混频才会聚焦在探测器上, 两路信号产生一个差频外差信号。光外差混频如图2 所示。探测面内两路光信号相前匹配时, 其照射强度为:

2201010()[2cos()]S S t I t C E E E E εδω=++ 10E 和S E 分别为本振信号和接收信号 ε。为真空电介常数;(2) 零差探测 零差探测的本振信号经分光器从发射光源分离出来, 与调制后的接收信号混频产生外差信号, 可省去本振光源。但未经调制的C ω 发射光束与接收、本振信号的频率相同, 差频为零, 仅用于测速不可测距。因此,本振信号从发射光源分离后进入发、收隔振器前应先进行频率调制方可测距.

2.5.2性能限制 外差激光雷达的探测能力受各部件性能、设计质量、光元件质量、灵敏度、探测器频响特性以及目标与接收光轴平行误差的限制。接收器与目标和接收光路与视轴间的任一差值统称接收器瞄准误差。外差接收器灵敏度降低是因偏离信号使外差效率下降引起.

2.5.3接收窗口径 外差探测的有效接收口径受照射目标截面斑纹波瓣的限制,当接收口径大于斑纹波瓣的平均直径时, 有效接收口径为: 1

2

r s (d )D D = ,r D 为接收窗通光孔径; s d 为平均斑纹波瓣直径。

2.6 噪声中信号探测【3】

接收器SNR 是峰值信号功率与均方噪声功率之比。外差激光雷达的信噪比为r P HQ SNR h Bf ηθτ= HQ η为外差量子效率θ为光频B 为接收器有效带宽;f 为脉冲重复频率;τ为脉冲宽度。激光雷达的SNR 因受外部条件约束和技术限制, 经多次测量后可以提高其系统性能。提高探测概率的有效方法是经n 次测量后取信号的平均值。若接收信号与测量相关而与噪声不相关, 则SNR 提高,探测概率增大,误差减小;若信号与测量全相关而与噪声不相关, 从n 次无关的测量中得到

的净SNR 为nee SNR = nee SNR 为净SNR;SNR 为单次测量得到的信噪比。接收器带宽对全系统SNR 影响很大。带宽太宽会进入过剩噪声;反之, 部分有用信号受抑制。抑制的信号或过剩的噪声均会降低SNR 。因此,激光雷达接收器带宽要兼顾系统SNR 。

3 伪随机m 序列在激光测距雷达中的应用

3.1测距原理【1】

图1为伪随机序列激光测距雷达框图,图中,数字信号处理器 ( DSP )作为系统的实时数字信号处理器,实现实时信号处理与控制。可编程逻辑器件 EPLD 作为信号处理板的逻辑控制和地址译码 , 同时 EPLD 作为m 序列的发生器。激光雷达是微波雷达的发展,测距原理相同,不同之处是微波波长和束宽远大于激光,瞄准误差的影响很小;而激光雷达则相反。在大气衰减条件下定点测距单基地激光测距雷达作用方程为2224Pr 4S A t r KP T D R

ηηπφΓ=式中:S P 为激光发射功率(W); K 为光束分布函数;A T 为雷达到目标的大气透射率;Γ为目标激光截面(2m ) ; D 为接收窗口径(m);ηt 为发射器光学系统效率;ηr 为接收器光学系统效率;φ为束宽或发散度( rad) ; R 为雷达到目标的距离; Pr 为接收功率(W) .如果目标角宽在方位和仰角方向上大于发射器束宽 ,激光目标截面与照射面积成正比 ,即Γ与φ2和 R

2成正比 ,光束分布约为均匀朗伯强度分布。则公式简化为222Pr 4S A t r P T D R ρηηπ=,

ρ为朗伯目标的反射系数。当接收回波功率P r 恰好等于最小可检测信号min S 时,可得到激光雷达的最大作用距离2122max min

()4S A t r P T D R S ρηηπ=。 最小可检测信号功率与最小输出信噪比有关,为了提高雷达的作用距离,必须提高激光测距雷达的输出信噪比。而提出利用m 序列的相关特性,采用相关检测理论和相干积累信号处理技术,可提高激光雷达的信号处理增益,从而获得高的测距精度和远的探测距离。这一点可以通过接收机相关接收的扩频增益来体现。m 序列是最长线性移位寄存器序列的简称。m 序列是由多级移位寄存器或其他延迟元件通过线性反馈

光探测器

图2 光外差混频过程

产生的最长的码序列。m 序列的自相关特性:m 序列{1i x =+或- 1 ,i = 1 , ?, N }

自相关函数为1,0;()1,0.N

xx i i i N R x x ττττ-==?==?≠?∑

伪随机序列的相关特性意着当序列足够长的时候,伪随机序列具有尖锐的二电平特性,并接近理想的delta 函数。引用“处理增益”Gp 来描述信号处理机的处理增益。p O I G SNR SNR =,O SNR 为输出信号噪声比;I SNR 为输入信号噪声比。当仅存在加性噪声干扰时,

接收信号可表示为

()()()()()x n s n w n n w n ττ=-+=-+; c(n) 为m 序列码;τ为回波时延;

2[()]P E s n =为发射信号功率;

w ( n) 为高斯白噪声,其均值为0 ,方差为2w σ. 则输入信号信噪比为2I w SNR P σ=.

根据最佳接收理论[4],在输入为确知信号加白噪声的情况下,采用相关接收,输出信噪比最大。数字相关计算公式为:

11()()()()()()()]N N

n n g k x n c n k n c n k c n k w n τ===-=--+-∑∑. 对于上式 k=τ时,

()g k 取得最大值。由m 序列与加性白噪声无相关性,有[()]E g τ=22var[()][()][()]g E g E g τττ=-=

211[()()()()]][()()()()]]N N n m E n c n c n w n m c m c m w m PN ττττττ==??--+---+--=

????

∑∑

22

11[()()()()]N N n m PN E c n c m w n w m PN ττ==+---=∑∑21()()N w n c n c n ττσ=--∑,

2w n m N σ==. 所以,

输出信号噪声比为22[()]var[()]O w w

E g P SNR N g ττσ===.相关信号处理增益为22O w p I w

P N SNR G N P

SNR σσ===. 3.3 m 序列测距精度

根据雷达测距原理,为了使雷达测距不模糊,作发射信号的伪随机序列满足 max c =p c 2R T , max R 是雷达最大的作用距离; p 是伪随机序列周期长度; c T 为伪随机序列的码元宽度。同时,雷达距离分辨力ΔR 由下式决定:c =c 2R T ??

当c T 很小,而p 很大的时候,就能保证高的距离分辨力和远的作用距离。

c T 不能无限小,系统中采用10μs, 所以,理论上激光雷达测距精度由上式有ΔR = 1 500 m ,此分辨力远远不能达到系统测距的要求。所以,系统采用提高采样率和引用插值

的数字处理技术,提高系统的测距精度。A/D 采样频率为f s = 10 ×c

1T = 1 MHz.此时的理论雷达分辨力为10sampling =150m R ?.

采样3点插值计算,可以使理论测距精度小10m. 根据m 序列相关特性,采用的3 点插值公式为

=;

in max =Y +2L R Y Y Y -;max X 为回波与本地序列相关峰所在距离单元;max Y 为相关峰值; L Y 为相关峰左侧距离单元相关幅值; R Y 为相关峰右侧距离单元相关幅值; in Y 为3 点插值所计算的目标位置; in Y 为3 点插值计算所得相关峰。

m 序列激光测距雷达有很多的优点, 属于连续波雷达, 可以充分利用发射机功率, 采用相关检测和相干积累信号处理提高信号处理增益提高激光测距雷达的抗干扰能力和测距精度, 3 点插值算法运用在m 序列测距中能够改善激光雷达的测距精度。

4 脉冲激光测距机测距误差的理论分析

由于激光具有方向性好、单色性好、亮度高的特点,因此,激光测距和光学测距相比,有精度高、快速、测得远的优点。近年来,各国生产和装备于部队坦克、地炮、舰炮、高炮及火控系统的激光测距机已有170余种,并且已经形成了标准化和系列化的产品。除军事应用外,它在大地测量、国民经济建设工程施工中及空间目标的测量方面也被广泛地应用。

4.1脉冲激光测距机原理

脉冲激光测距机的测距原理见下图。由激光发射器对准目标发射一个激光脉冲,然后由接收系统接收从目标反射回来的回波脉冲,通过测定脉冲在待测距离

上往返时间t ,已知光速为c ,则可用(1) 式求得待测目标的距离S 为: S = ct/ 2 (1)由于时间t 十分短, 所以必须用能产生标准固定频率的时标振荡器和电子计数器来记录。如果时标振荡器振荡频率为f ,在测距机和目标之间往返的时间t 内(即取样信号和回波信号之间的时间间隔)包含时标脉冲个数为n ,则待测距离S 为: cn2f

S (2) 式中,c 和f均为已知,只要测出n,便可由(2)式求出

测距离S.

4.2测距误差简要分析

激光测距机的测距精度主要依赖于计数器的计数精度和仪器的测距误差。计数精度决定于计数器中基准振荡频率,也就是说,基准振荡器频率一定,那么计数精度

就是一个定值。而测距误差是指测距机的显示结果与实际距离之差。影响测距误差的主要因素:A .晶体振荡器频率稳定度的影响 B.接收系统响应时间的影响C.激光脉冲宽度的影响.

总之,用同一台脉冲激光测距机测量同一远距离目标时,测距机的测距误差为

Δ=Δ+Δ+Δ。

5 激光雷达在移动机器人等其它方面的应用【8】

距离测量是移动机器人必不可少的技术. 目前, 移动机器人中广泛采用激

光测距雷达( 以下简称LRS,Laser Range Sensor)进行三维测距, 这主要有以下几

个原因.

1)作为一种有源测距手段, LRS 测距与无源测距技术相比具有不存在复杂的图

像匹配技术且不易受到环境光照影响等优点.

2)在有源测距仪中, LRS 的测距精度相对较高,方向性好, 镜面反射小而造低.

3) 在直接获取距离的测距方法中, 主要有超声波、短波及激光调制波3 种波源. 但超声波方向性差镜面反射严重且可测距离较短, 短波测距的精度低于激光调

制波且超短波雷达的造价也较高, 而激光调制波与其他波源相比具有以下优点: A.强度大, 这对远距离目标的测量及目标与背景的区分十分有用.

B.光束窄, 平行性好, 散射小, 这保证了很好的测距方向分辨率.

C.一般都是单一频率的光波, 光谱较纯, 这保证了较高的信噪比.

对于移动机器人三维视觉系统中测距方法的评价主要有3 方面: 测距精度、最大可测距离及测距速率, 具体地说, 应考虑以下几方面的因素

视场:只有足够宽的视场才能满足移动机器人航行的需要;

测距能力: 包括最小检测距离及最大检测距离;

准确度及分辨率: 应能满足准确检测障碍物的要求;

检测环境中所有物体的能力: 物体会吸收发射的能量, 目标表面可能是镜面反射或漫反射, 环境条件和噪声可能影响测距过程;

操作的实时性: 快速、实时的数据更新频率要与机器人前进的速度相适应;

解释数据的简练程度: 应该从处理需求的观点出发实现输出格式;

系统结构的紧凑程度: 系统应是模块化结构, 以便于在移动机器人中的维护和升级;

功耗和体积: 功耗应该低, 体积应尽可能小, 以便于LRS 在移动机器人上工作. 作为移动机器人的关键组成部分之一, LRS 在移动机器人中的应用主要有3 个方面, 即:障碍物检测、路标检测及地图匹配、越野行驶时建立地形图.显而易见, 由于LRS 能快速提供环境的三维信息, 移动机器人的发展在一定程度上得益于LRS, 另一方面, 移动机器人应用的需求又反过来推动了LRS 的发展. 由于其本身原理上所固有的以及外部环境等因素的影响, LRS 在移动机器人中的三维测距存在以下不足之处: 1) 噪声问题及环境因素对LRS 测距的影响. 2) 景物空间的非均匀取样及测距盲区问题. 3) 设备误差. 4) 因移动机器人运动而产生的测距问题. 5) 相对测距问题.

激光测距在空间技术中的应用简况 1. 空间碎片探测. 空间碎片俗称太空垃圾, 是指宇宙空间中除正常工作的飞行器外的所有人造物体, 空间碎片的存在严重威胁着在轨运行航天器的安全,空间碎片的不断产生对有限的轨道资源也构成了严重威胁,. 为了安全、持续地开发和利用空间资源, 必须不断提高对空间碎片的跟踪监视技术, 增强对空间碎片环境的分析预测能力, 基于激光测距技术的激光雷达探测系统在空间碎片探测方面具有独特的优点。它采用主动探测方式, 不受光照条件限制, 波束窄, 探测距离远, 空间分辨率高, 测量精度高, 并且可以同时进行测距和测速.2. 对地观测及深空探测. 利用卫星或航天飞机等航天器搭载激光测距装置在空间轨道上对地球或其他星球表面进行观测, 这种激光测距装置通常称激光高度计。

激光雷达是集激光技术、光学技术和微弱信号探测技术于一体而发展起来的一种现代化光学遥感手段,激光雷达由于探测波长的缩短、波束定向性的增强,能量密度的提高,因此具有高空间分辨率、高的探测灵敏度、能分辨被探测物种和不存在探测盲区等优点,已经成为目前对大气、海洋和陆地进行高精度遥感探测的有效手段,广泛地应用于环境监测、航天、通信、导航和定位等高新技术领域。激光雷达可以探测气溶胶、云粒子的分布,也可以进行大气成分、污染环境气体的探测, 对主要污染源、城市上空污染环境物的扩散、沙尘暴过程等进行有效监测,从而进行天气预报和监控大气污染。

6.结束语

综上所述,激光雷达测距技术的应用日益广泛。由于激光雷达独特的物理性能,其全天候、高精度、抗干扰、小型化等得天独厚的优势, 激光测距越来越受

到关注, 已成为空间探测领域一个重要技术手段,在军事和工业等方面有着极高的应用价值。但是,由于激光自身传输中的缺陷、大功率激光器的研制及其相应配套光电设施和技术的限制,目前激光雷达还有许多有待改进的不尽人意之处. 我们相信,随着科学技术的发展,在不久的将来,激光雷达测距技术会在国民经济和军事中发挥越来越重要的作用。

参考文献:

[1]谭显裕. 激光测距雷达方程研究[J]. 电光与控制, 2001, (1):12-18.

[2]戴永江. 激光雷达原理[M]. 北京: 国防出版社, 2002.

[3]叶嘉雄. 光电系统与信号处理. 北京: 科学出版社, 1997.

[4]周炳琨等. 激光原理[M]. 第五版. 国防工业出版社,2008.

[5]J J Degnan. Satellite laser ranging: current status and future prospect[J]. IEEE Trans Geosci.

Remote Sensing,1985, 23: 398-413.

[6]Besl P. Active, optical range imaging sensors. Machine Vision & Applications. 1988,1:

127-152

[7]S Fouler Etal, Analysis of Hetero dyne Efficiency for Coherent Laser Radars[A], To Be

Presented At SPIE Conf on Applied Laser Radar Technology, Orlando, Fl ,April 1993

[8]MARITZA R M,JOHN T S,BART D B.Scannerless range imaging with a square wave ]//Proceedings of SPIE,Applied Laser Radar Technology II,1995, 2472: 106-113.

雷达测速与测距

雷达测速与测距标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

雷达测速与测距 GZH 2016/3/29 系统流程图 模块分析 1 脉冲压缩 原理分析 雷达的基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空间位置。雷达分辨力是雷达的主要性能参数之一。所谓雷达分辨力是指在各种目标环境下区分两个或两个以上的邻近目标的能力。一般说来目标距离不同、方位角不同、高度不同以及速度不同等因素都可用来分辨目标,而与信号波形紧密联系的则是距离分辨力和速度(径向)分辨力。两个目标在同一角度但处在不同距离上,其最小可区分的距离称为距离分辨力,雷达的距离分辨力取决于信号带宽。对于给定的雷达系统,可达到的 雷达的速度分辨率可用速度分辨常数表征,信号在时域上的持续宽度越大,在频域上的分辨率能力就越好,即速度分辨率越好。 对于简单的脉冲雷达,B=?f=1/τ,此处,τ为发射脉冲宽度。因此,对于简单的脉冲雷达系统,将有 δr=c 2τ() 在普通脉冲雷达中,由于信号的时宽带宽积为一常数(约为1),因此不能兼顾距离分辨力和速度分辨力两项指标。 雷达对目标进行连续观测的空域叫做雷达的探测范围,也是雷达的重要性能数,它决定于雷达的最小可测距离和最大作用距离,仰角和方位角的探测范围。而发射功率的大小影响作用距离,功率大则作用距离大。发射功率分脉冲功率和平均功率。雷达在发射脉冲信号期间内所输出的功率称脉冲功率,用Pt表示;平均功率是指一个重复周期Tr内发射机输出功率的平均值,用Pav表示。它们的关系为 P tτ=P av T r()脉冲压缩(PC)雷达体制在雷达脉冲峰值受限的情况下,通过发射宽脉冲而获得高的发能量,以保证足够的最大作用距离,而在接收时则采用相应的脉冲压缩法获得窄脉冲,以提高距离分辨力,因而能较好地解决作用距离与分辨能力之间的矛盾。 在脉冲压缩系统中,发射波形往往在相位上或频域上进行调制,接收时将回波信号加以压缩,使其等效带宽B满足B=?f?1/τ。令τ0=1/B,则 δr=c 2τ0() ()式中,τ0表示经脉冲压缩后的有效脉宽。因此脉冲压缩雷达可用宽度τ的发射脉冲来获得相当于发射有效宽度为τ0的简单脉冲系统的距离分辨力。发射脉冲宽度τ跟系统有效(经压缩的)脉冲宽度τ0的比值便成为脉冲压缩比,即 D=τ τ0 ()则

激光脉冲测距实验报告讲解

激光脉冲测距

1 目录 一工作原理 (3) (1)测距仪工作原理 (3) (2)激光脉冲测距仪光学原理结构 (3) (3)测距仪的大致结构组成 (4) (4)主要的工作过程 (4) (5)激光脉冲发射、接收电路板组成及工作原理 (5) 二激光脉冲测距的应用领域 (5) 三关键问题及解决方法 (6) (1)优点 (6) (2)问题及解决方案 (7) 2 一工作原理 (1)测距仪工作原理 现在就脉测距仪冲激光测距简要叙述其工作原理。简单地讲,脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间t,光速c 和往返时间t 的乘积的一半,就是测距仪和被测量物体之间的距离。一般一个典型的激光测距系统应具备以下四个模块:激光发射模块;激光接收模块;距离计算与显示模块;激光准直与聚焦模块,如图2-1 所示。系统工作时,由发射单元发出一束激光,到达待测目标物后漫

反射回来,经接收单元接收、放大、整形后到距离计算单元计算完毕后显示目标物距离。在测距点向被测目标发射一束强窄激光脉冲,光脉冲传输到目标上以后,其中一小部分激光反射回测距点被测距系统光功能接收器所接受。假定光脉冲在发射点与目标间来回一次所经历的时间间隔为t,那么被测目标的距离 D 为:式中:c 为激光在大气中的传播速度;D 为待测距离;t 为激光在待测距离上的往返时间。 R=C*T/2 (公式1) 图一脉冲激光测距系统原理框图激光脉冲测距仪光学原理结构2() 3

图二)测距仪的大致结构组成(3 时钟脉冲门控电路、脉冲激光测距仪主要由脉冲激光发射系统、光电接收系统、 振荡器以及计数显示电路组成4)主要的工作过程(其工作过程大致如下:首先接通电源,复原电路给出复原信号,使整机复原,准备进行测量;同时触发脉冲激光发生器,产生激光脉冲。该激光脉冲有一小部分能量由参考信号取样器直接送到接收系统,作为计时的起始点。大部分光脉冲能量射向待测目标,由目标反射回测距仪的光脉冲能量被接收系统接收,这就是回波信号。参考信号和回波信号先后由光电探测器转换成为电脉冲,并加以放大和整形。整形后的参考信号能触发器翻转,控制计数器开始对晶格振荡器发出的时钟脉冲进行计数。整形后的回波信号使触发器的输出翻转无效,从而使计数器停实验装置实止工作。这样,根据计数器的输出即可计算出待测目标的距离。三单片机开放板和激光脉冲发射、接收电路验装置包括“”“”。 4 (5)激光脉冲发射、接收电路板组成及工作原理 激光脉冲发射/接收电路板原理框图如图2.3所示。图中EPM3032为CPLD;MAX3656为激光驱动器;MAX3747为限幅放大器;T22为单端信号到差分信号转换芯片;T23为差分信号到单端信号转换芯片;LD为半导体激光器;PD为光电探测器。板子上端的EPM3032被编程为脉冲发生器,输出重复频率为1KHz,脉冲宽度为48ns的电脉冲信号。此信号经MAX3656放大后驱动LD发光。板子下端的EPM3032被编程为计数器,对125MHz晶振进行计数。其计数的开门信号来自上端的TX信号,关门信号来自PD的输出。计数器的计数结果采用12 位二进制数据输出,对应的时间范围为0~32.7?s。 二激光脉冲测距的应用领域 激光测距仪一般采用两种方式来测量距离:脉冲法和相位法.脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收.测距仪同时记录激光往返的时间.光速和往返时间的乘积的一半.就是测距仪和被测量物体之间的距离.脉冲法测量距离的精度是一般是在+/-1米左右.另外.此类测距仪的测量盲区一般是15米左右。 激光测距仪已经被广泛应用于以下领域:电力.水利.通讯.环境.建筑.地质.警务.消防.爆破.航海.铁路.反恐/军事.农业.林业.房地产.休闲/户外运动等。 由于激光在亮度、方向性、单色性以及相干性等方面都有不俗的特点,它一出现就吸引了众多科学工作者的目光,并被迅速地被应用在工业生产方面、国防军工方面、房地产业、各级科研机构、工程、防盗安全等各个行业各个领域:激光焊接、激光切割、激光打孔(包括斜孔、异孔、膏药打孔、水松纸打孔、钢板打孔、包装印刷打孔等)、激光淬火、激光热处理、激光打标、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗等。有关于激光的研究与生产制造也如火如荼地开展了起来。 5

激光测距的方法及原理

激光测距的方法及原理 激光测距技术与一般光学测距技术相比具有操作方便、系统简单及白天和夜晚都可以工作的优点。与雷达测距相比,激光测距具有良好的抗干扰性和很高的精度,而且激光具有良好的抵抗电磁波干扰的能力。其在探测距离较长时,激光测距的优越性更为明显。光测距技术是指利用射向目标的激光脉冲或连续波激光束测量目标距离的距离测量技术。较常用的激光测距方法有三角法、脉冲法和相位法激光测距。 1.三角法激光测距 激光位移传感器的测量方法称为激光三角反射法,激光测距仪的精度是一定的,同样的测距仪测10米与100米的精度是一样的。而激光三角反射法测量精度是跟量程相关的,量程越大,精度越低。 采用激光三角原理和回波分析原理进行非接触位置、位移测量的精密传感器。广泛应用于位置、位移、厚度、半径、形状、振动、距离等几何量的工业测量。半导体激光器1被镜片2聚焦到被测物体6。反射光被镜片3收集,投射到CCD阵列4上;信号处理器5通过三角函数计算阵列4上的光点位置得到距物体的距离。 图1. 激光三角测量原理图 激光发射器通过镜头将可见红色激光射向物体表面,经物体反射的激光通过接受器镜头,被内部的CCD线性相机接受,根据不同的距离,CCD线性相机可以在不同的角度下“看见”这个光点。根据这个角度即知的激光和相机之间的距离,数字信号处理器就能计算出传感器和被测物之间的距离。 同时,光束在接收元件的位置通过模拟和数字电路处理,并通过微处理器分析,计算出相应的输出值,并在用户设定的模拟量窗口内,按比例输出标准数据信号。如果使用开关量输出,则在设定的窗口内导通,窗口之外截止。另外,模拟量与开关量输出可设置独立检测窗口。常用在铁轨、产品厚度、平整度、尺寸等方面。

连续波雷达测速测距原理.doc

连续波雷达测速测距原理 一.设计要求 1、当测速精度达到s,根据芯片指标和设计要求请设计三角调频 波的调制周期和信号采样率; 2、若调频信号带宽为50MHz,载频 24GHz,三个目标距离分别为 300,306,315(m),速度分别为 20,40, -35(m/s),请用 matlab 对算法进行仿真。 二.实验原理和内容 1.多普勒测速原理 x a (t) x(n) FFT P(k ) 峰值f d A/D 谱分析搜索 图频域测速原理 f d max max | f m f d | f s / 2N v r max f d max / 2 f s / 4N/ 4T 依据芯片参数,发射频率为24GHz,由上式可以得出,当测速精度达到 s 时,三角调频波的调制周期可以计算得,T= 信号的采样率,根据发射频率及采样定理可设fs=96GHz。2.连续波雷达测距基本原理 设天线发射的连续波信号为:①x T f0 (t ) cos(2 f0 t0 ) ] 则接收的信号为:② x R f0 (t ) cos[2 f 0 (t t r ) 0 若目标距离与时间关系为:③R ( t ) R 0 v r t

则延迟时间应满足以下关系 :④ t 2 v t) r ( R c r v r 将④代入②中得到 x R f 0 (t ) cos{ 2 f 0 [ t 2 (R 0 v r t )]0 } c v r cos[2 ( f 0 f d 0 )t 2 f 0 2R 0 ] c f d 0 2 v r f 其中 c 根据上图可以得到,当得到 t ,便可以实现测距,要想得到 t ,就必须测得 fd 。 已知三个目标距离分别为 300,306,315(m),速度分别为 20,40, -35( m/s),则可以通过 :③ R ( t ) R 0 v r t ④ t 2 v t ) r ( R c 0 r v r 分别计算出向三个目标发出去信号,由目标反射回来的信号相对 发射信号的延迟时间。

雷达测速与测距 ()

雷达测速与测距 GZH 2016/3/29 系统流程图 模块分析 1 脉冲压缩 1.1 原理分析 雷达的基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空 间位置。雷达分辨力是雷达的主要性能参数之一。所谓雷达分辨力是指在各 种目标环境下区分两个或两个以上的邻近目标的能力。一般说来目标距离不 同、方位角不同、高度不同以及速度不同等因素都可用来分辨目标,而与信 号波形紧密联系的则是距离分辨力和速度(径向)分辨力。两个目标在同一角 度但处在不同距离上,其最小可区分的距离称为距离分辨力,雷达的距离分 辨力取决于信号带宽。对于给定的雷达系统,可达到的距离分辨力为 (1.1) 其中c为光速,为发射波形带宽。 雷达的速度分辨率可用速度分辨常数表征,信号在时域上的持续宽度越大, 在频域上的分辨率能力就越好,即速度分辨率越好。 对于简单的脉冲雷达,,此处,为发射脉冲宽度。因此,对 于简单的脉冲雷达系统,将有 (1.2)在普通脉冲雷达中,由于信号的时宽带宽积为一常数(约为1),因此不 能兼顾距离分辨力和速度分辨力两项指标。 雷达对目标进行连续观测的空域叫做雷达的探测范围,也是雷达的重要 性能数,它决定于雷达的最小可测距离和最大作用距离,仰角和方位角的探 测范围。而发射功率的大小影响作用距离,功率大则作用距离大。发射功率 分脉冲功率和平均功率。雷达在发射脉冲信号期间 内所输出的功率称脉冲功 率,用Pt表示;平均功率是指一个重复周期Tr内发射机输出功率的平均值, 用Pav表示。它们的关系为 (1.3) 脉冲压缩(PC)雷达体制在雷达脉冲峰值受限的情况下,通过发射宽脉 冲而获得高的发能量,以保证足够的最大作用距离,而在接收时则采用相应

激光雷达测距原理与其应用

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1雷达与激光雷达系统 (2) 2激光雷达测距方程研究 (3) 2.1测距方程公式 (3) 2.2发射器特性 (4) 2.3大气传输 (5) 2.4激光目标截面 (5) 2.5接收器特性 (6) 2.6噪声中信号探测 (6) 3伪随机m序列在激光测距雷达中的应用 (7) 3.1测距原理 (7) 3.2 m序列相关积累增益 (8) 3.3 m序列测距精度 (8) 4脉冲激光测距机测距误差的理论分析 (9) 4.1脉冲激光测距机原理 (9) 4.2 测距误差简要分析 (10) 5激光雷达在移动机器人等其它方面中的应用 (10) 6结束语 (11) 致谢 (12) 参考文献 (12)

激光雷达测距原理与其应用 摘要:本文简单介绍激光雷达系统组成,激光雷达系统与普通雷达系统性能的对比,着重阐述激光雷达测距方程的研究。针对激光远程测距中的微弱信号检测,介绍一种基于m序列的激光测距方法,给出了基于高速数字信号处理器的激光测距雷达数字信号处理系统的实现方案,并理论分析了脉冲激光测距机的测距误差。了解并学习激光雷达在移动机器人等其它方面中的应用。 关键词:激光雷达;发射器和接收器特性; 伪随机序列; 脉冲激光;测距误差 Applications and Principles of laser radar ranging Student majoring in Optical Information Science and Technology Ren xiaonan Tutor Shang lianju Abstract:This paper briefly describes the composition of laser radar systems, laser radar system and radar system performance comparison of normal, focusing on the laser radar range equation. Laser Ranging for remote signal detection, presents a introduction of a sequence based on laser ranging method m, gives the high-speed digital signal processor-based laser ranging radar digital signal processing system implementations, and theoretical analysis of the pulse Laser rangefinder range error.We understand and learn application of Laser radar in the mobile robot and other aspects. Key words:Laser radar; Transmitter and receiver characteristics;Pseudo-random sequence;Pulsed laser;Ranging error. 引言:激光雷达是传统雷达技术与现代激光技术相结合的产物,激光具有亮度 高、单色性好、射束窄等优点,成为光雷达的理想光源,因而它是目前激光应用主要的研究领域之一。激光雷达是一项正在迅速发展的高新技术,激光雷达技术从最简单的激光测距技术开始,逐步发展了激光跟踪、激光测速、激光扫描成像、激光多普勒成像等技术,使激光雷达成为一类具有多种功能的系统。利用激光作为遥感设备可追溯到30多年以前,从20世纪60年代到70年代,人们进行了多项试验,结果都显示了利用激光进行遥感的巨大潜力,其中包括激光测月和卫星激光测距。激光雷达测量技术是一门新兴技术,在地球科学和行星科学领域有着广泛的应用.LiDAR(LightLaser Detection and Ranging)是激光探测及测距系统的简称,通常指机载对地激光测距技术,对地激光测距的主要目标是获取地质、地形、地貌以及土地利用状况等地表信息。相对于其他遥感技术,LIDAR的相关研究是一个非常新的领域,不论是在提高LIDAR数据精度及质量方面还是在丰富LIDAR数据应用技术方面的研究都相当活跃。随着LIDAR传感器的不断进步,地表采点密度的逐步提高,单束激光可收回波数目的增多,LIDAR数据将提供更为丰富的地表和地物信息。激光测距可分为星载(卫星搭载)、机载(飞机搭载)、车载(汽车搭载)以及定位(定点测量)四大类,目前激光测距仪已投入使用,激光雷达正处在试验阶段,某些激光雷达已付诸实用.本文对激光雷达的测距原理、发射器和接收器特性、束宽、大气传输以及目标截面、外差效率进行分析, 提出基于伪随机序列的激光测距技术 ,可将激光

雷达测距、测角、测速基本原理

雷达测距、测角、测速基本原理 目标在空间的位置可以用多种坐标系表示。最常见的是直角坐标系,空间任一点目标P 的位段可用x,y,z三个坐标值来确定。在雷达应用中,测定目标坐标常采用极(球)坐标系统. 目标的斜距R为雷达到目标的直线距离OP;方位角a为目标的斜距R在水平面上的投影OB与某一起始方向(一般是正北方向)在水平面上的夹角;仰角B为斜距R与它在水平面上的投影OB在沿垂直面上的夹角,有时也称为倾角或者高低角。 如果需要知道目标的高度和水平距离,那么利用圆柱坐标系就比较方便。在这种坐标系中.目标的位由三个坐标来确定:水平距离D;方位角。;高度H, 球坐标系与圆柱坐标系之间的关系如下: D=RcosB H=RsinB a=a 上述这些关系仅在目标的距离不太远时是正确的;当距离较远时,由于地面的弯曲,必须作适当的修正。 现以典型的脉冲雷达为例来说明雷达测量的基本工作原理。它由发射机、发射天线、接收机和接收天线组成。发射电磁波中一部分能量照射到雷达目标上,在各个方向上产生二次散射。雷达接收天线收集散射回来的能量,并送至接收机对回波信号进行处理,从而发现目标,提取目标位置、速度等信息。实际脉冲雷达的发射和接收通常共用一个天线,以简化结构.减小体积和重量。 脉冲雷达采用的发射波形通常是高频脉冲串.它是由窄脉冲调制正弦载波产生的,调制脉冲的形状一般为矩形,也可采用其他形状。目标与雷达的斜距由电磁波往返于目标与雷达之间的时间来确定;目标的角位置由二次散射波前的方向来确定;当目标与雷达有相对运动时,雷达所接收到的二次散射波的载波频率会发生偏移,测量载频偏移就可以求出目标的相对速度,并且可以从固定目标中区别出运动目标来。

激光传感器的工作原理及其应用

激光传感器的工作原理 及其应用 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

激光传感器由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。激光传感器工作时,先由激光发射二极管对准目标发射激光脉冲。经目标反射后激光向各方向散射。部分散射光返回到传感器接收器,被光学系统接收后成像到雪崩光电二极管上。雪崩光电二极管是一种内部具有放大功能的光学传感器,因此它能检测极其微弱的光信号,并将其转化为相应的电信号。常见的是激光测距传感器,它通过记录并处理从光脉冲发出到返回被接收所经历的时间,即可测定目标距离。激光传感器的应用 利用激光的高方向性、高单色性和高亮度等特点可实现无接触远距离测量。激光传感器常用于长度、距离、振动、速度、方位等物理量的测量,还可用于探伤和大气污染物的监测等。 激光测长 精密测量长度是精密机械制造工业和光学加工工业的关键技术之一。现代长度计量多是利用光波的干涉现象来进行的,其精度主要取决于光的单色性的好坏。激光是最理想的光源,它比以往最好的单色光源(氪-86灯)还纯10万倍。因此激光测长的量程大、精度高。 激光测距 它的原理与无线电雷达相同,将激光对准目标发射出去后,测量它的往返时间,再乘以光速即得到往返距离。由于激光具有高方向性、高单色性和高功率等优点,这些对于测远距离、判定目标方位、提高接收系统的信噪比、保证测量精度等都是很关键的,因此激光测距仪日益受到重视。在激光测距仪基础上发展起来的激光雷达不仅能测距,而且还可以测目标方位、运运速度和加速度等,已成功地用于人造卫星的测距和跟踪。 激光测振 它基于多普勒原理测量物体的振动速度。多普勒原理是指:若波源或接收波的观察者相对

激光测速与雷达测速的原理比较

激光测速与雷达测速的原理与比较 多谱勒效应和雷达测速 你一定有这样的经验,当你站在马路旁边,即使没有去注视路面上车辆的行驶的情况,单凭耳朵的听觉判断,你能感到一辆汽车正在驶过来,或者离你而去. 这里面当然依靠汽车行驶的声音是渐强还是渐弱,但细细想想,主要还是根据汽车行驶的车轮声或喇叭声调的变化. 原来,车辆驶近时,声音要变尖,也就是说,音调要高些;开过以后,远离的时候,声音会越来越低. 为什么会这样呢?原来,声音的形成,首先是由于发声体的振动,然后在它周围的空气中形成了一会疏一会密的声波,传到耳朵里,使耳膜随着它同样地振动起来,人们就听到了声音. 耳膜每秒钟振动的次数多,人就感到音调高;反之,耳膜每秒钟振动的次数少,人就感到音调低. 照这样说,声源发出什么声,我们听到的就是什么调. 问题的关键在于汽车在怎样的运动. 汽车匀速驶来,轮胎与地面摩擦产生的声波传来时“疏”、“密”、“疏”、“密”是按一定规律,一定距离排列的,可当汽车向你开来时,它把空气中声波的“疏”和“密”压得更紧了,“疏”、“密”的距离更近了,人们听到的音调也就高了. 反之,当汽车离你远去时,它把空气中的疏密拉开了,听到的声音频率就小了,音调也就低了. 汽车的速度越大,音调的变化也越大. 在科学上,我们把这种听到音调与发声体音调不同的现象,称为“多谱勒效应”. 有趣的是,雷达测速计也正是根据多谱勒效应的原理研制出来的. 我们知道,小汽车可以开得很快,可是为了保证安全,在某些路段上,交通警察要对车速进行限制. 那么,在汽车快速行进时,交通警察是怎样知道它们行驶的速度呢?最常用的测速仪器叫雷达测速计,它的外形很像一支大型信号枪,它也有枪筒,手柄、板机等部件,在枪的后面有一排数码管. 把枪口对准行驶的车辆,一扣板机,一束微波就射向行驶中的车辆. 微波是波长很短的无线电波,微波的方向性很好,速度等于光速. 微波遇到车辆立即被反射回来,再被雷达测速计接收. 这样一来一回,不过几十万分之一秒的时间,数码管上就会显示出所测车辆的车速. 它所依据的原理依然是“多谱勒效应”. 雷达测速计发出一个频率为1000 MHz的脉冲微波,如果微波射在静止不动的车辆上,被反射回来,它的反射波频率不会改变,仍然是1000 MHz. 反之,如果车辆在行驶,而且速度大,那么,根据多谱勒效应,反射波频率与发射波的频率就不相同. 通过对这种微波频率微细变化的精确测定,求出频率的差异,通过电脑就可以换算出汽车的速度了. 当然,这一切都是自动进行的. 雷达测速计的测速范围大约在每小时24 km到199 km之间,测速范围比较大,精确度也相当高,车速在每小时100 km/h,误差不会超过1 km/h. 测速雷达朝向公路,可以测量车速,如果指向天空,就可以测云层的高度,测云层的速度. 当然,要测几十千米外,甚至上百千米外的飞机,也是这个原理,只不过要向它扫描的空间连续发射微波束,这些微波束遇到飞机再反射回来,已经极其微弱了,要想把它接收到,分辨清并计算出来,就很困难了,这就需要一个庞大的灵敏的雷达. 雷达测速与激光测速的比较

雷达测速测距原理简介

雷达测速测距原理简介 一、FMCW模式下测速测距 1、FMCW模式下传输波特征 调频连续波雷达系统通过天线向外发射一列线性调频连续波,并接收目标的反射信号。发射波的频率随时间按调制电压的规律变化。 2、FMCW模式下基本工作原理 一般调制信号为三角波信号,发射信号与接收信号的频率变化如图所示。 反射波与发射波的形状相同。只是在时间上有一个延迟,t与目标距离R的关系为: Δt=2R/c公式1 其中 Δt:发射波与反射波的时间延迟 R:目标距离 c:光速c=3×108m/s 发射信号与反射信号的频率差为混频输出中频信号频率f如图所示:

根据三角关系,得: ΔtT2= ΔfB公式2 其中: Δf:发射信号与反射信号的频率差为|f1-f0| T:调制信号周期——1.5ms B:调制带宽——700MHz 由以上公式1和公式2得出目标距离R为: R=cTΔf 4B公式3 3、FMCW模式下测距原理 由公式3可以得出,目标距离R与雷达前端输出的中频频率f成正比 4、FMCW模式下测速原理 当目标与雷达并不是相对静止时,也就是有相对运动时,反射信号中包含一个由目标的相对运动所引起的多普勒频移fd,如图所示: 此时发射信号与接收信号的频率差如图所示:

在三角波的上升沿和下降沿分别可得到一个差频,用公式表示为: f+= f-fd 公式4 f-= f+fd 公式5 其中 f为目标相对静止时的中频频率 f+代表前半周期正向调频的差频 f-代表后半周期负向调频所得的差频 fd为针对有相对运动的目标的多普勒频移 根据多普勒效应得: fd=2fc 公式6 其中: 为目标和雷达的径向速度 f0为发射波的中心频率 由公式4、5、6可得: f+f f=+2 公式7 c|f-f|v=2f02 公式8 速度v的符号与相对运动方向有关系,当目标物相对雷达靠近时v为正值。当目标相对雷达离开时v为负值。 由公式3和公式7进一步得出: cTf+fR=4B2 公式9

车载激光雷达测距测速原理

车载激光雷达测距测速原理 陈雷1,岳迎春2,郑义3,陈丽丽3 1黑龙江大学物理科学与技术学院,哈尔滨 (150080) 2湖南农业大学国家油料作物改良中心,长沙 (410128) 3黑龙江大学后勤服务集团,哈尔滨(150080) E-mail:lei_chen86@https://www.360docs.net/doc/167461426.html, 摘要:本文在分析了激光雷达测距、测速原理的基础上,推导了连续激光脉冲数字测距、多普勒频移测速的方法,给出车载激光雷达基本原理图,为车载激光雷达系统测距测速提供了基本方法。 关键词:激光雷达,测距,测速 1.引言 “激光雷达”(Light Detection and Range,Lidar)是一种利用电磁波探测目标的位置的电子设备。其功能包含搜索和发现目标;测量其距离、速度、位置等运动参数;测量目标反射率,散射截面和形状等特征参数。激光雷达同传统的雷达一样,都由发射、接收和后置信号处理三部分和使此三部分协调工作的机构组成。但传统的雷达是以微波和毫米波段的电磁波作为载波的雷达。激光雷达以激光作为载波,激光是光波波段电磁辐射,波长比微波和毫米波短得多。具有以下优点[1]: (1)全天候工作,不受白天和黑夜的光照条件的限制。 (2)激光束发散角小,能量集中,有更好的分辨率和灵敏度。 (3)可以获得幅度、频率和相位等信息,且多普勒频移大,可以探测从低速到高速的目标。 (4)抗干扰能力强,隐蔽性好;激光不受无线电波干扰,能穿透等离子鞘,低仰角工作时,对地面的多路径效应不敏感。 (5)激光雷达的波长短,可以在分子量级上对目标探测且探测系统的结构尺寸可做的很小。当然激光雷达也有如下缺点: (1)激光受大气及气象影响大。 (2)激光束窄,难以搜索和捕获目标。 激光雷达以自己独特的优点,已经被广泛的应用于大气、海洋、陆地和其它目标的遥感探测中[14,15]。汽车激光雷达防撞系统就是基于激光雷达的优点,同时利用先进的数字技术克服其缺点而设计的。下面将简单介绍激光雷达测距、测速的原理,并在此基础上研究讨论汽车激光防撞雷达测距、测速的方法。 2. 目标距离的测量原理 汽车激光雷达防撞系统中发射机发射的是一串重复周期一定的激光窄脉冲,是典型的非相干测距雷达,对它的要求是测距精度高,测距精度与测程的远近无关;系统体积小、重量轻,测量迅速,可以数字显示;操作简单,培训容易,有通讯接口,可以连成测量网络,或与其他设备连机进行数字信息处理和传输。 2.1测距原理 激光雷达工作时,发射机向空间发射一串重复周期一定的高频窄脉冲。如果在电磁波传播的

激光测距应用

激光测距应用 应用领域: 电力、水利、通讯、环境、建筑、地质、警务、消防、爆破、航海、铁路、农业、林业、房地产、休闲/户外、反恐/军事 主要应用方向: 在钢铁厂和轧钢厂用于过程监控 料位、液位的测量 行车定位系统、装卸处理设备的定位系统 对人力所不能到达部位的测量,如罐装物、管道、集装箱等 车辆、船舶的定位监控系统 起重安装设备位置控制 不宜接近的物体测量 距离、位置、液位、料位、生产线料坯传送定位 行吊XY定位 电梯运行测量 大型工件装配定位 运动物体位置监控 大型货架库存管理 超大物体几何计量 靶距自动控制 电气化铁路接触网测量 铁路建筑物限界测量以及江河湖海等的水位测量。 测距发展路线: 民用,手持式 工业用,高可靠性 市场开拓方式: 大客户 代理商,借助代理商的客户群

具体应用示例: 1. 汽车防撞探测器 一般来说,大多数现有汽车碰撞预防系统的激光测距传感器使用激光光束以不接触方式用于识别汽车在前或者在后形势的目标汽车之间的距离,当汽车间距小于预定安全距离时,汽车防碰撞系统对汽车进行紧急刹车,或者对司机发出报警,或者综合目标汽车速度、车距、汽车制动距离、响应时间等对汽车行驶进行即时的判断和响应,可以大量的减少行车事故。在高速公路上使用,其优点更加明显。 2. 车流量监控及车轮廓描画 这种使用方式一般固定到高速或者重要路口的龙门架上,激光发射和接收垂直地面向下,对准一条车道的中间位置,当有车辆通行时,激光测距传感器能实时输出所测得的距离值的改变,进而描绘出所测车的轮廓。这种测量方式一般使用的激光束发散角度较小,测距范围一般小于30米即可,且要求激光测距速率比较高,一般要求达到几百赫兹就可以了。这对于在重要路段监控可以达到很好的效果,能够区分各种车型,对车身扫描的采样率可以达到10厘米一个点,且对车流限高,限长等都能实时输出结果。如图3。

激光测距仪原理

激光测距仪激光测距基本原理 激光测距是光波测距中的一种测距方式,如果光以速度c在空气中传播在A、B两点间往返一次所需时间为t,则A、B两点间距离D可用下列表示。 D=ct/2 式中:D——测站点A、B两点间距离;c——光在大气中传播的速度;t——光往返A、B 一次所需的时间。 由上式可知,要测量A、B距离实际上是要测量光传播的时间t,根据测量时间方法的不同,激光测距仪通常可分为脉冲式和相位式两种测量形式。 相位式激光测距仪 相位式激光测距仪是用无线电波段的频率,对激光束进行幅度调制并测定调制光往返测线一次所产生的相位延迟,再根据调制光的波长,换算此相位延迟所代表的距离。即用间接方法测定出光经往返测线所需的时间。 相位式激光测距仪一般应用在精密测距中。由于其精度高,一般为毫米级,为了有效的反射信号,并使测定的目标限制在与仪器精度相称的某一特定点上,对这种测距仪都配置了被称为合作目标的反射镜。 若调制光角频率为ω,在待测量距离D上往返一次产生的相位延迟为φ,则对应时间t 可表示为: t=φ/ω 将此关系代入(3-6)式距离D可表示为 D=1/2 ct=1/2 c·φ/ω=c/(4πf) (Nπ+Δφ) =c/4f (N+ΔN)=U(N+) 式中:φ——信号往返测线一次产生的总的相位延迟。 ω——调制信号的角频率,ω=2πf。 U——单位长度,数值等于1/4调制波长 N——测线所包含调制半波长个数。 Δφ——信号往返测线一次产生相位延迟不足π部分。 ΔN——测线所包含调制波不足半波长的小数部分。 ΔN=φ/ω

在给定调制和标准大气条件下,频率c/(4πf)是一个常数,此时距离的测量变成了测线所包含半波长个数的测量和不足半波长的小数部分的测量即测N或φ,由于近代精密机械加工技术和无线电测相技术的发展,已使φ的测量达到很高的精度。 为了测得不足π的相角φ,可以通过不同的方法来进行测量,通常应用最多的是延迟测相和数字测相,目前短程激光测距仪均采用数字测相原理来求得φ。 由上所述一般情况下相位式激光测距仪使用连续发射带调制信号的激光束,为了获得测距高精度还需配置合作目标,而目前推出的手持式激光测距仪是脉冲式激光测距仪中又一新型测距仪,它不仅体积小、重量轻,还采用数字测相脉冲展宽细分技术,无需合作目标即可达到毫米级精度,测程已经超过100m,且能快速准确地直接显示距离。是短程精度精密工程测量、房屋建筑面积测量中最新型的长度计量标准器具。

DSP多普勒雷达测速测距

DSP 实验课大作业设计 一 实验目的 在DSP 上实现线性调频信号的脉冲压缩、动目标显示(MTI )和动目标检测(MTD),并将结果与MATLAB 上的结果进行误差仿真。 二 实验内容 2.1 MATLAB 仿真 设定带宽、脉宽、采样率、脉冲重复频率,用MATLAB 产生16个脉冲的LFM ,每个脉冲有4个目标(静止,低速,高速),依次做 2.1.1 脉压 2.1.2 相邻2脉冲做MTI ,产生15个脉冲 2.1.3 16个脉冲到齐后,做MTD ,输出16个多普勒通道 2.2 DSP 实现 将MATLAB 产生的信号,在visual dsp 中做脉压,MTI 、MTD ,并将结果与MATLAB 作比较。 三 实验原理 3.1 脉冲压缩原理及线性调频信号 雷达中的显著矛盾是:雷达作用距离和距离分辨率之间的矛盾以及距离分辨率和速度分辨率之间的矛盾。雷达的距离分辨率取决于信号带宽。在普通脉冲雷达中,雷达信号的时宽带宽积为一常量(约为1),因此不能兼顾距离分辨率和速度分辨力两项指标。脉冲压缩(PC )采用宽脉冲发射以提高发射的平均功率,保证足够的最大作用距离,而在接收时则采用相应的脉冲压缩法获得窄脉冲,以提高距离分辨率,因而能较好地解决作用距离和分辨能力之间的矛盾。 一个理想的脉冲压缩系统,应该是一个匹配滤波系统。它要求发射信号具有非线性的相位谱,并使其包络接近矩形;要求压缩网络的频率特性(包括幅频特性和相频特性)与发射脉冲信号频谱(包括幅度谱和相位谱)实现完全的匹配。 脉冲压缩按信号的调制规律(调频或调相)分类,可分为以下四种: (1)线性调频脉冲压缩 (2)非线性调频脉冲压缩 (3)相位编码脉冲压缩 (4)时间频率编码脉冲压缩 本实验采用的是线性调频脉冲压缩。 线性调频信号是指频率随时间的变化而线性改变的信号。线性调频可以同时保留连续信号和脉冲的特性,并且可以获得较大的压缩比,有着良好的距离分辨率和径向速度分辨率,所以将线性调频信号作为雷达系统中一种常用的脉冲压缩信号。 接收机输入端的回波信号是经过调制的宽脉冲,所以在接收机中应该设置一个与发射信号频率匹配的滤波器,使回波信号变成窄脉冲,同时实现了宽脉冲的能量和窄脉冲的分辨能力。解决了雷达发射能量及分辨率之间的矛盾。 匹配滤波器是指输出信噪比最大准则下的最佳线性滤波器。根据匹配理论, 匹配滤波器的传输特性: 0)()(*t j e KS H ωωω-=

雷达测速仪有哪些特点

我国河流湖泊众多,水网密布,而要测量水流的流速,记录水文数据资料,就需要用到测速仪。雷达测速仪就是众多测速仪中的一种,雷达测流运用的原理是多普勒效应。多普勒效应是为纪念奥地利物理学家克里斯琴约翰.多普勒而命名的。在声学领域中,当声源与接收体(即探头和反射体)之间有相对运动时,回声的频率将有所变化,此种频率的变化称之为频移,即多普勒效应。如下图所示,当雷达流速仪与水体以相对速度V发生对运动时,雷达流速仪所收到的电磁波频率与雷达自身所发出的电磁波频率有所不同, 此频率差称为多普勒频移。通过解析频移与V的关系,得到流体表面流速。 雷达测速仪被广泛应用在河道、灌渠、防汛等水文测量;江河、水资源监测;环保排污、地下水道管网监测;城市防洪、山区暴雨性洪水监测;地质灾害预警监测等诸多领域。 今天我们主要来看看雷达测速仪的特点,主要有如下几个特点: 1、非接触、安全低损、少维护、不受泥沙影响; 2、能胜任洪水期高流速条件下的测量; 3、具有防反接、防雷保护功能; 4、系统功耗低,一般太阳能供电即可满足测流需要; 5、多种接口方式,既有数字接口又具有模拟接口,方便接入系统; 6、无线传输功能(可选),可将数据无线传输到3.5km以外;

7、测速范围宽,测量距离远达40m; 8、多种触发模式:周期、触发、查询、自动; 9、安装特别简单,土建量很少; 10、全防水设计,适合野外使用。 非接触雷达测流方式测速时设备不受污水腐蚀,不受泥沙影响,少受水毁影响,土建简单,便于维护,保障人员安全,特殊的天线设计使得功耗超低,大大降低了供电需求。不仅可用于平时流速监测,而且特别适合承担急难险重观测任务。 航征科技是目前国内具有自主知识产权的雷达方案提供商, 拥有多项专利和软件著作权。航征面向水文、水利、环境保护、城市排水管网等行业用户, 提供雷达流速流量在线监测解决方案。航征分别在上海、无锡建立了运营和研发测试中心,拥有完整的技术研发体系和阵容强大的科研队伍,与清华大学、国防科技大学、上海交通大学等知名院校达成长期战略合作,有多位业内专家作为公司的技术后盾,立志成为全球优秀的智能传感解决方案提供商。

激光雷达测距测速原理说课讲解

激光雷达测距测速原 理

精品文档 收集于网络,如有侵权请联系管理员删除 激光雷达测距测速原理 1. 激光雷达通用方程 激光雷达方程用来表示一定条件下,激光雷达回波信号的功率,其形式如下: r P 为回波信号功率,t P 为激光雷达发射功率,K 是发射光束的分布函数,12a a T T 分别是激光雷达发射系统到目标和目标到接收系统的大气透过率,t r ηη分别是发射系统和接收系统的透过率,t θ为发射激光的发散角,12R R 分别是发射系统到目标和目标到接收系统的距离,Γ为目标的雷达截面,r D 为接收孔径。 方程作用:激光雷达方程可以在研发激光雷达初期确定激光雷达的性能。其次,激光雷达方程提供了回波信号与被探测物的光学性质之间的函数关系,因此可以通过激光雷达探测的回波信号,通过求解激光雷达方程获得有关大气性质的信息。 2. 激光雷达测距基本原理 2.1 脉冲法 脉冲激光雷达测距的基本原理是,在测距点向被测目标发射一束短而强的激光脉冲,激光脉冲到达目标后会反射回一部分被光功能接收器接收。假设目标距离为L ,激光脉冲往返的时间间隔是t ,光速为c ,那么测距公式为L=tc/2。 时间间隔t 的确定是测距的关键,实际的脉冲激光雷达利用时钟晶体振荡器和脉冲计数器来确定时间t ,时钟晶体振荡器用于产生固定频率的电脉冲震荡 ?T=1/f ,脉冲计数器的作用就是对晶体振荡器产生的电脉冲计数N 。如图所示,信息脉冲为发射脉冲,整形脉冲为回波脉冲,从发射脉冲开始,晶振产生脉冲与计数器开始计数时间上是同步触发的。因此时间间隔t=N ?T 。由此可得出L=NC/2f 。 图1脉冲激光测距原理图 2.2 相位法

激光测距原理

激光测距原理 激光测距工作方式上可分为:脉冲激光测距和连续波激光测距。 (1) 脉冲激光测距 脉冲激光测距原理是,用脉冲激光器向目标发射一列很窄的光脉冲(脉冲宽度小于50ns),光达到目标表面后部分被反射,通过测量光脉冲从发射到返回接收机的时间,可算出测距机与目标之间的距离。 假设所测距离为h,光脉冲往返时间为t,光在空中的的传播速度为c,则: h=ct/2 脉冲激光测距机能发出很强的激光.测距能力较强,即使对非合作目标,最大测距也能达到30000m以上。其测距精度一般为5米,.最高的可达0.15m。脉冲激光测距机既可在军事上用于对各种非合作目标的测距,也可在气象上用于测定能见度和云层高度.以及应用在对人造卫星的精密距离测量等领域。 (2)连续波激光测距(相位式激光测距) 相位式激光测距仪是用无线电波段的频率,对激光束进行幅度调制并测定调制光往返测线一次所产生的相位延迟,再根据调制光的波长,换算此相位延迟所代表的距离。即用间接方法测定出光经往返测线所需的时间。 与脉冲激光测距机相比,连续波激光测距机发射的(平均)功率较低,因而测远距离能力相对较差。相位式激光测距仪一般应用在精密测距中。由于其精度高,一般为毫米级,为了有效的反射信号,并使测定的目标限制在与仪器精度相称的某一特定点上,对这种测距仪都配置了被称为合作目标的反射镜。对非合作目标,相位法测距的最大测程只有1~3km。 若调制光角频率为ω,在待测量距离D上往返一次产生的相位延迟为φ,则对应时间t 可表示为: t=φ/ω 将此关系代入式中距离D可表示为 D=1/2 ct=1/2 c·φ/ω=c/(4πf) (Nπ+Δφ) =c/4f (N+ΔN)=U(N+) 式中: φ——信号往返测线一次产生的总的相位延迟。 ω——调制信号的角频率,ω=2πf。

雷达测速的应用与基本原理

雷达测速的应用与基本原理 应用 在交通工程上,速度是计量与评估道路绩效和交通状况的基本重要数据之一。速度数据的搜集方法有许多种,包括人工测量固定距离行驶时间、压力皮管法、线圈法、影像处理法、雷达测速法与激光测速法等。其中后两者属于携带容易而且精确度高的方法,因此广受采用。 超速行车在交通违规中占有极大比例,此一现象可从高速公路过去四年间违规告发项目中,超速案件比例均在三分之二左右看出端倪,而超速行车一直被认为是肇事之重要因素之一;因此从交通执法观点而言,取缔超速系比较具体的维护交通安全之手段。国内取缔违规超速一向以雷达测速枪当工具,径行举发案件则辅以照相设备;只是近年来,雷达侦测器盛行,价格普及化之后,即使法规明令禁止使用,一般民众仍趋之若鹜,因为其价格只需逃避一至两次取缔的机会即可完全回收成本。以交通工程观点来看,驾驶人若装有雷达侦测器,则路边定点所测得的车速即会因驾驶人感知受测速,误以为警察人员执行取缔而有普遍减速现象;除造成数据失真外,并因而有引起事故之可能。 折叠编辑本段基本原理 雷达为利用无线电回波以探测目标方向和距离的一种装置。雷达为英文Radar一字之译音,该字系由Radio Detection And Ranging一语中诸字前缀缩写而成,为无线电探向与测距之意。全世界开始熟悉雷达是在1940年的不列颠空战中,七百架载有雷达的英国战斗机,击败两千架来袭的德国轰炸机,因而改写了历史。二次大战后,雷达开始有许多和平用途。在天气预测方面,它能用来侦测暴风雨;在飞机轮船航行安全方面,它可帮助领港人员及机场航管人员更有效地完成他们的任务。 雷达工作原理与声波之反射情形极类似,差别只在于其所使用之波为一频率极高之无线电波,而非声波。雷达之发射机相当于喊叫声之声带,发出类似喊叫声之电脉冲(Pulse),雷达之指向天线犹如喊话筒,使电脉冲之能量,能集中某一方向发射。接收机之作用则与人耳相仿,用以接收雷达发射机所发出电脉冲之回波。 镭射的英文为Laser,这个字是由Light Amplification by Stimulated Emission of Radiation的第

相关文档
最新文档