铸造法制备金属基复合材料的研究现状

铸造法制备金属基复合材料的研究现状
铸造法制备金属基复合材料的研究现状

收稿日期:2010212203; 修订日期:2011201216

作者简介:熊光耀(19622 ),江西南昌人,教授.研究方向:复合材料、表

面工程.

Em ail :xiongguangyao @https://www.360docs.net/doc/1710508055.html,

Vol.32No.4Apr.2011铸造技术

FOUNDR Y TECHNOLO GY

铸造法制备金属基复合材料的研究现状

熊光耀,郑美珠,赵龙志

(华东交通大学载运工具与装备省部共建教育部重点实验室,江西南昌330013)

摘要:综述铸造法制备金属基复合材料的各种工艺,如液态浸渗法、搅拌铸造法、离心铸造法、中间合金法、喷射分散法和铸渗法。指出其仍普遍存在的一些问题,并提出超声波在铸造法制备金属基复合材料中具有重要作用。随着研究的深入,这种超声复合法必将得到更广泛的应用。

关键词:金属基复合材料;铸造法;制备方法;增强体

中图分类号:TB331 文献标识码:A 文章编号:100028365(2011)0420563203

Re s e a r c h o n t he Me t al Ma t ri x Co mp os it e s Pr ep a r e d b y Ca s ti n g Pr o c e s s

XIONG G uang 2yao ,ZHENG Mei 2zhu ,ZHAO Long 2zhi

(K ey Laboratory of Ministry of Education for Conveyance and Equipment ,E ast China Jiaotong U niversity ,N an 2chang 330013,China)

Abs t rac t :All kinds of preparation technologie s of metal matrix compo site s by casting such as liquid

infiltration ,stirring casting ,centrifugal casting ,intermediate alloy ,jet 2spread and cast 2infiltration are reviewed.Some problems generally existing in casting are pointed out ,and ultrasonic in preparing metal matrix compo site s by casting plays an important role is put forward.With further re search ,the method of ultrasonic compound will be more widely applied.

Ke y w ords :Metal matrix compo site s ;Casting proce ss ;Preparation technology ;Reinforcement

金属基复合材料的性能、应用、成本等在很大程度上取决于材料的制备方法,因此,研究和发展有效地制备方法一直是金属基复合材料研究中的重要问题之一。由于铸造法制备金属基复合材料时温度高,熔融态的金属流动性好,便于一次形成复杂工件,所需设备也相对简单,成本较低,能适应规模生产,是近年来研究较多、发展较快的复合材料制备方法[1]。本文重点阐述铸造法制备金属基复合材料的工艺,并指出其存在的主要问题及今后的研究方向。1 铸造法制备金属基复合材料1.1 液态浸渗法

液态浸渗法是在一定条件下将液态金属浸渗到增强材料多孔预制件的孔隙中,凝固获得复合材料的制备方法。根据液态金属浸渗时有无外部压力,可分为无压浸渗、压力浸渗、真空浸渗和真空压力浸渍。1.1.1 无压浸渗法

无压浸渗法是金属熔体在无外界压力作用下,自发浸渗固体增强体颗粒多孔预制件,制备金属基复合

材料的方法[2]。其可直接获得近终形的制品。但需要在相对较高的温度下进行,且浸渗速率较低,工艺成本较高;同时还存在界面反应,降低了材料的性能。

为控制界面反应,改善金属与增强体界面润湿性和提高浸渗效率,常用的方法有:基体合金化、控制浸渗气氛、添加助渗剂,以及在增强相表面涂覆涂层等[3]。赵国田等[4]对SiC p 进行表面氧化改性后,采用化学镀层法镀镍,实验结果表明,SiC p 表面镀镍后明显地改善了铝合金对它的润湿性能,促使浸渗过程快速进行。并且复合材料中SiC p 颗粒在基体合金中分布均匀,与基体合金界面结合良好,无孔洞。1.1.2 压力浸渗法

压力浸渗法是将液态金属在一定的压力下浸渗到增强体预制件孔隙中,并在压力下凝固获得复合材料的方法[2]。其能有效克服增强体和金属不浸润的困难,且在压力下复合,两者结合牢固,力学性能较高;制品局部复合化容易实现;成本较低。但需要严格控制预制件预热温度、熔体温度、压力大小等工艺参数,并且要求模具和预制件具有足够的强度。1.1.3 真空浸渗法

真空浸渗法是通过抽真空将液态金属抽吸到预制件孔隙中,并凝固获得金属基复合材料的方法[2]。该

?

365?

 

FOUNDR Y TECHNOLO GY Vol.32No.4 Apr.2011

法仅适用于可重熔铸造的颗粒增强金属基复合材料的成型[5],且通常作为浇注手段与熔模精密铸造配合使用。

1.1.4 真空压力浸渍法

真空压力浸渍法是在真空和高压惰性气体共同作用下,将液态金属压入增强材料制成预制件孔隙中,制备金属基复合材料制品的方法[2]。其是为了获得更好的浸渗效果,将压力浸渗和真空浸渗融合在一起演变而来的,兼备了两者的优点。

真空压力浸渍的特点是:适合于形状复杂零件的铸造,且基本上无需进行后续加工;浸渍在真空中进行、压力下凝固,制品无气孔、疏松和缩孔等铸造缺陷,组织致密,材料性能好;工艺参数易于控制,可避免严重界面反应。但其设备较复杂,制备大尺寸零件要求大型设备,工艺周期长、效率较低[6]。

1.2 搅拌铸造法

搅拌铸造法是将增强颗粒直接加入到金属熔体中,通过一定方式的搅拌使颗粒均匀地分散在金属熔体中,使其形成颗粒增强金属基复合材料熔体,然后浇铸成锭坯、铸件等。根据金属熔体加热状态可分为全液态搅拌铸造法和半固态搅拌铸造法。

1.2.1 全液态搅拌铸造法

全液态搅拌铸造法是通过高速旋转的搅拌器使完全熔融的基体金属液产生旋涡,向旋涡中逐渐加入颗粒等增强物。由于旋涡的抽吸作用,颗粒被卷入熔液中,待均匀分散于金属熔体中,再用挤压铸造等适当的铸造方法成型[7]。

此方法工艺简单,设备投资少。但基体金属熔体温度较高,对搅拌器质量要求也高,只能制备较粗颗粒的复合材料。另外,若不是在真空或惰性气体保护下搅拌,在高速搅拌的旋涡中不可避免混入气体和杂质,易出现偏析和“结团”现象,影响复合材料性能[8]。袁广江等[9]采用真空搅拌铸造法制备了20vol%SiC颗粒增强A356基复合材料,结果表明,SiC颗粒均匀分布于基体中,复合材料具有优良的综合力学性能。1.2.2 半固态搅拌铸造法

半固态搅拌铸造法,又称复合铸造法,是把基体金属加热到半固态时的适当温度进行搅拌,边搅拌边加入颗粒等增强物。这时,即使增强物与金属熔体不润湿或润湿不好,由于半固态熔体中固相粒子的夹带和包裹作用,增强物还是能得到较好的分散。然后再加热升温至浇铸温度进行浇铸,就可得到增强物分散均匀的金属基复合材料零件或坯件[7]。

复合铸造法可以用来制造颗粒细小、含量高的颗粒增强金属基复合材料,也可用来制造晶须、短纤维金属基复合材料。但由于金属熔体粘度大,不利于气体和杂质排出,所制得的复合材料力学性能并没有明显提高,有的还有些下降。此外,必须选择结晶温度区间较大的基体材料,且搅拌温度控制比较困难[10]。

1.3 离心铸造法

离心铸造法是指根据制品的要求,利用铸型旋转产生的离心力,使金属熔液中密度不同的增强体和基体合金分离至内层或外层,形成复合铸件的工艺方法。主要用于颗粒增强复合材料,通过改变转速、颗粒大小和密度,使增强介质呈梯度分布,并控制外层颗粒体积百分比,达到有选择性的强化[11]。

离心铸造法也是目前制备金属基功能梯度复合材料的一种有效的方法。其特点在于工艺相对简单,对设备要求不高,能以比较低的生产成本制备出具有一定形状的组分连续分布或骤变分布的梯度功能复合材料[12]。秦孝华等[13]利用熔融Al合金基体与颗粒增强相(SiC和Al2O3颗粒)在离心铸造条件下所受的离心力的不同,再通过调整其它工艺参数,利用水平式离心铸造机制备了三种具有不同强化部位:外层强化、内外层同时强化和内层强化的功能梯度复合材料。

离心铸造法因其特殊的装置决定了所制得的产品形状尺寸的特殊性,通常为筒状、盘状等具有对称结构的零件。此方法简单,具有铸件致密度高、成本低等优点,但是界面质量不容易控制,难形成连续长尺寸的复合材料[14]。

1.4 中间合金法

中间合金法是把颗粒等增强物和金属粉末以一定比例混合,压制成中间合金块,然后投入金属液中,很快金属粉末熔化,中间合金块溃散,增强物进入熔液,此时稍加搅拌,它就均匀分散,浇注凝固后就获得复合材料铸件(或铸锭)[15]。技术关键在于颗粒等通过中间合金团块引入金属液并分散后,液态金属必须迅速凝固,若停留时间过长,颗粒仍会偏析。它对解决那些两相不润湿、密度差大、颗粒加入困难等问题效果比较明显[16]。但常有中间合金块压入后长期不能溃散的问题。

1.5 喷射分散法

喷射分散法是用氩气等惰性气体作为载体,把增强颗粒喷射于浇注的金属液流上,随着液流的翻动而使颗粒得到分散,这种分散有增强颗粒的金属液进入金属铸型,冷却凝固后形成铸件。这种方法不仅适用于以铝、镁等有色金属为基体的复合材料,而且还可用于钢铁等高熔点合金为基体的复合材料。长古川正义采用喷射分散法成功制备了低合金钢基体的复合材料。另有采用喷射法生产Al2SiC颗粒复合材料,SiC

?

4

6

5

?

 

《铸造技术》4/2011

 

熊光耀等:铸造法制备金属基复合材料的研究现状

的含量可达到30%[17]。

1.6 铸渗法

铸渗法,又称涂覆铸造法,它是将要铸渗的合金粉末或陶瓷颗粒等预先固定在铸型的特定位置(需要改性的铸件表面对应的型腔内壁),在液态金属浇注过程中,其与液态金属作用,在铸件表面形成表面复合层的一种新技术[18]。

因铸渗与其他表面复合材料的制备方法相比,不需要专用的处理设备,具有操作简单、生产周期短、成本低、节约材料、工件不变形、可以热处理,能够制备较大厚度的复合材料等优点[19],因而受到国内外材料和铸造领域许多研究者的关注。主要对铸渗机理和制备工艺进行了研究和总结。但铸渗机理是一个很复杂的问题,单依靠扩散理论和毛细理论很难做出较好解释,到目前还没有形成一套完整的理论来准确地描述整个铸渗过程。刘建永[20]等,根据铸渗复合层在形成过程中有无化学反应,将铸渗机理分为无化学反应的铸渗机理和反应铸渗机理来总结研究。合金粉末或陶瓷颗粒与金属液相互作用的过程中还有可能出现颗粒溶解、重熔、再凝固等复杂情况,反应铸渗还会涉及到自蔓延燃烧理论和液相烧结理论。

2 存在的问题和展望

(1)金属基体与增强体的润湿性较差,易发生有害界面反应。

(2)所制得复合材料中常有气孔和夹杂存在,易出现偏析和“结团”现象。

(3)颗粒等增强相的加入易导致复合材料液态条件下的铸造流动性较差。

高强超声波发生器的出现和超声导入变幅杆材料的改进,使超声波逐渐在铸造领域获得应用[21]。研究发现,超声波在铸造法制备金属基复合材料中,对基体合金的净化、增强相的预处理、促进增强相的均匀分散、改善润湿性及界面结合,以及稳定复合材料的制备工艺均有重要作用[22]。随着研究的深入,这种超声复合法必将得到更广泛的应用。

参考文献

[1] 蒲泽林,褚景春,毛雪平.颗粒增强金属基复合材料的制

备方法综述[J].现代电力,2002,19(6):31237.

[2] 于化顺.金属基复合材料及其制备技术[M].北京:化学

工业出版社,2006.

[3] 张贺永,潘喜峰,汪 琦.无压浸渗工艺制备铝基复合材

料的研究现状和机理探讨[J].材料导报,2008,22:1492 152.[4] 赵国田,孙素杰,徐永东.无压浸渗法制备高体积含量的

铝基复合材料[J].兵器材料科学与工程,2006,29(2): 66269.

[5] 王春江,王 强,郝冀成.液态金属铸造法制备金属基复

合材料的研究现状[J].材料导报,2005,19(5):53257. [6] 郝元恺,肖加余.高性能复合材料学[M].北京:化学工

业出版社,2004.

[7] 王文明,潘复生,L U Yun,等.搅拌铸造制备SiCp/Al复

合材料的研究现状[J].轻合金加工技术,2004,32(4): 125.

[8] 谭 锐,唐 骥.铸造法制备SiCp/Al复合材料的研究现

状[J].铸造,2005,54(7):6422647.

[9] 袁广江,章文峰,王殿斌,等.SiCp增强铝基复合材料制备

及机加性能研究[J].复合材料学报,2000,17(2):382

41.

[10] 谢国宏.搅拌铸造法制备颗粒增强铝基复合材料的研究

与发展[J].材料工程,1994,(12):527.

[11] 汤佩剑.复合材料及其应用技术[M].重庆:重庆大学出

版社,1998.

[12] 高 鲲.离心铸造SiC颗粒增强铝基骤变梯度功能复合

材料筒状零件的组织及性能研究[D].重庆:重庆大学,

2009.

[13] 秦孝华,韩维新,范存淦,等.离心铸造法制备陶瓷颗

粒增强Al合金基功能梯度复合管[J].金属学报,2001,

37(10):111721120.

[14] 张志强.金属基复合材料制备技术及发展[J].机械工程

师,2006,(2):32235.

[15] 刘玉红.MA法制备Al2O3、SiC弥散强化Al基复合粉

末的研究[D].昆明:昆明理工大学,2010.

[16] 李 伟,陈美玲,陈玉喜.铸造金属基颗粒增强复合材料

的研究现状与展望[J].铸造,2002,51(4):2052208. [17] 樊 泉.原位合成熔铸法制备TiC颗粒增强2Cr13钢基

复合材料显微组织、性能及工艺研究[D].南京:东南大

学,2003.

[18] 李文虎.铸渗法制备金属表面涂层的研究现状与进展

[J].热加工工艺,2009,38(17):14217.

[19] 李 珍,陈 跃,上官宝.铸渗法制备金属基表面复合材

料的研究现状与进展[J].河南科技大学学报,2005,26

(1):14217.

[20] 刘建永,张元好,曾大新.铸渗技术制备金属基表面复合

材料的研究进展[J].湖北汽车工业学院学报,2003,17

(1):17221.

[21] 孙凤梅,宋长江,翟启杰.超声凝固细晶技术的研究与发

展[J].现代铸铁,2008,(6):21226.

[22] 刘春玲.超声波在铸造法制备金属基复合材料中的应用

[J].铸造技术,2004,25(6):4742476.

?

5

6

5

?

4金属基复合材料制备方法及应用

金属基复合材料制备方法及应用 摘要:金属基复合材料是以金属或合金为基体,并以纤维、晶须、颗粒等为增强体的复合材料。其特点在力学方面为横向及剪切强度较高,韧性及疲劳等综合力学性能较好,同时还具有导热、导电、耐磨、热膨胀系数小、阻尼性好、不吸湿、不老化和无污染等优点。按金属或合金基体的不同,金属基复合材料可分为铝基、镁基、铜基、钛基、高温合金基、金属间化合物基以及难熔金属基复合材料等。由于这类复合材料加工温度高、工艺复杂、界面反应控制困难、成本相对高,应用的成熟程度远不如树脂基复合材料,应用范围较小。但金属基复合材料除了和树脂基复合材料同样具有高强度、高模量外,它能耐高温,同时不燃、不吸潮、导热导电性好、抗辐射。是令人注目的复合材料。 关键字:金属基复合材料制备方法应用 1.复合材料的定义 复合材料的定义:复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。复合材料既可保持原材料的某些特点,又能发挥组合后的新特征,它可以根据需要进行设计,从而最合理地达到使用要求的性能。

2.金属基复合材料的基本特点 2.1优点:高比强度和高比模量,耐高温性好,导电导热,热膨胀系数小,尺寸稳定性好,耐磨性与阻尼性好,不吸湿、不老化、无放气污染。 2.2缺点:制造困难,难于形成理想的界面,加工困难,价格昂贵。 3.金属基复合材料的分类 金属基复合材料按组织形态可分为宏观组合型和微观强化型两类;根据复合材料的基体不同可以分为刚基、铁基、铝基、镁基复合材料等;按增强相形态的不同可分为颗粒增强复合材料、晶须或短纤维金属复合材料及连续纤维增强金属基复合材。 4.金属基复合材料制备工艺方法的分类 由于金属材料熔点较高,同时不少金属对增强体表面润湿性很差加上金属原子在高温状态下很活泼,易与多种增强体发生反应,所以金属基复合材料的复合工艺比较复杂和困难,这也是金属基复合材料的发展受到制约的主要原因。 4.1粉末冶金复合法 粉末冶金复合法基本原理与常规的粉末冶金法相同,包括烧结成形法,烧结制坯加塑法加成形法等适合于分散强化型复合材料(颗粒强化或纤维强化型复合材料)的制备与成型。该方法在铝基复台材料

金属基复合材料的研究进展

金属基复合材料的研究进展 姓名:@@@ 学号:@@@@ 学院:@@@@ 专业:@@@@

目录 1金属基复合材料发展史 (1) 2金属基复合材料的制造方法 (1) 2.1扩散法 (1) 2.1.1扩散粘结法 (1) 2.1.2无压力金属渗透法 (2) 2.1.3预制体压力浸渗法 (2) 2.2沉积法 (2) 2.2.1反应喷射沉积法(RAD) (2) 2.2.2溅射沉积法 (2) 2.2.3化学气象沉积法 (2) 2.3液相法 (2) 2.4熔体搅拌法 (3) 3金属基复合材料的应用概况 (3) 3.1金属基复合材料的范畴界定 (3) 3.2金属基复合材料全球市场概况 (3) 3.2.1MMCs在陆上运输领域的应用 (4) 3.2.2MMCs在电子/热控领域的应用 (4) 3.2.3MMCs在航空航天领域的应用 (5) 3.2.4MMCs在其它领域的应用 (5) 3.3中国的金属基复合材料研究现状 (7) 4金属基复合材料研究的前沿趋势 (7) 4.1金属基复合材料结构的优化 (7) 4.1.1多元/多尺度MMCs (8) 4.1.2微结构韧化MMCs (8) 4.1.3层状MMCs (8) 4.1.4泡沫MMCs (8) 4.1.5双连续/互穿网络MMCs (8) 4.2结构-功能一体化 (8) 4.2.1高效热管理MMCs (8) 4.2.2低膨胀MMCs (9) 4.2.3高阻尼MMCs (9) 4.3碳纳米管增强金属基纳米复合材料 (9) 5总结与展望 (9) 参考文献 (10)

金属基复合材料的研究进展 摘要:在过去的三十年里,金属基复合材料凭借其结构轻量化和优异的耐磨、热学和电学性能,逐渐在陆上运输(汽车和火车)、热管理、民航、工业和体育休闲产业等诸多领域实现商业化的应用,确立了作为新材料和新技术的地位。本文概述了金属基复合材料的发展历史和制造方法。并且在综述金属基复合材料的研究与应用现状的基础上,对其研究的前沿趋势进行了展望。 关键词:金属基复合材料;制造方法;性能;应用;前沿展望 金属基复合材料(MMCs),是在各金属材料基体内用多种不同复合工艺,加进增强体,以改进特定所需的机械物理性能。金属基复合材料在比强度、比钢度、导电性、耐磨性、减震性、热膨胀等多种机械物理性能方面比同性材料优异得多。因此,金属基复合材料在新兴高科技领域,宇航、航空、能源及民用机电工业、汽车、电机、电刷、仪器仪表中日益广泛应用。 1金属基复合材料发展史 近代金属基复合材料的研究始于1924年Schmit[1]关于铝/氧化铝粉末烧结的研究工作。在30年代,又出现了沉淀强化理论[2,3],并在以后的几十年中得到了很快地发展。到了60年代,金属基复合材料已经发展成为复合材料的一个新的分支。到了80年代,日本丰田公司首次将陶瓷纤维增强铝基复合材料用于制造柴油发动机活塞,从此金属基复合材料的研制与开发工作得到了飞快地发展。土耳其的S.Eroglu等用离子喷涂技术制得了NiCr-Al/MgO-ZrO2功能梯度涂层。目前,金属基复合材料已经引起有关部门的高度重视,特别是航空航天部门推进系统使用的材料,其性能已经接近了极限。因此,研制工作温度更高、比钢度、比强度大幅度增加的金属基复合材料,已经成为发展高性能材料的一个重要方向。1990年美国在航天推进系统中形成了3 250万美元的高级复合材料(主要为MMC)市场,年平均增长率为16%,远远高于高性能合金的年增长率[4]。到2000年,金属基复合材料的市场价值达到了1.5亿美元,国防/航空用金属基复合材料已占市场份额的80%[5]。预计到2005年市场对金属基复合材料的需求量将达161 t,平均年增长率为4.4%。 2金属基复合材料的制造方法 金属基复合材料的种类繁多,制造方法多样,但总体上可以归纳为4种生产方法。2.1扩散法 扩散法是将作为基本的金属粉末与裸露或有包覆层的纤维在一起压型和烧结,或在基体金属的薄箔之间置入增强剂进行冷压或热压制成金属基复合材料的方法[6]。 2.1.1扩散粘结法 这种方法常用于粉末冶金工业。对于颗粒、晶须等增强体可以采用成熟的粉末冶金法,即把增强体与金属粉末混合后冷压或热压烧结,也可以用热等压工艺。对于连续增强体比较复杂,需先将纤维进行表面涂层以改善它与金属的润湿性并起到阻碍与金属反应的作用,再浸入液态金属中制成复合丝,最后把复合丝排列并夹入金属薄片后热压烧结,对于难熔金属

金属基复合材料蠕变性能的研究现状和展望

金属基复合材料蠕变性能的研究现状和展望3 田 君1,2,李文芳1,韩立发2,彭继华1 (1华南理工大学材料科学与工程学院,广州510640;2东莞理工学院机械工程学院,东莞523808) 摘要 综述了国内外金属基复合材料的抗高温蠕变性能的研究进展。重点分析了蠕变理论研究中的3种理论模型的特点,指出理论研究的核心问题是位错越过第二相的机制以及门槛应力的来源。详述了目前蠕变实验研究的各种实验方法与特点。讨论了利用计算机有限元分析来进行蠕变研究的优点。针对目前我国金属基复合材料的抗高温蠕变性能的研究方法提出了一些看法和展望。 关键词 金属基复合材料 位错 门槛应力 蠕变 R esearch and Development Creep of Metal Matrix Composites TIAN J un 1,2,L I Wenfang 1,HAN Lifa 2,PEN G Jihua 1 (1 College of Materials Science and Engineering ,South China University of Technology ,Guangzhou 510640;2 College of Mechanical Engineering ,Dongguan University of Technology ,Dongguan 523808) Abstract Research development on high temperature creep of metal matrix composites at home and abroad are summarized.The three theoretical models of the creep theory studies are focused on analyzing ,and the core issue of theoretical studies is a mechanism of the dislocation over the second phase and the threshold stress sources.Characte 2ristics of various experimental methods of the current creep experimental studies are recounted.Advantages of the computer finite element analysis in creep studies are discussed.The research trends and development on high tempera 2ture creep of metal matrix composites in China are presented. K ey w ords metal matrix composites ,dislocation ,threshold stress ,creep  3东莞市高等院校科技计划项目(2008108101028);广东省金属新材料成型制备重点实验室开放基金资助项目(2008001)  田君:1968年生,副教授,博士研究生 E 2mail :841608534@https://www.360docs.net/doc/1710508055.html, 李文芳:通讯作者,1964年生,教授,博导 E 2mail :mewfli @ https://www.360docs.net/doc/1710508055.html, 在能源、石油化工和航空航天等工业装置中,很多构件需在高温下工作。如火力发电的蒸汽温度可达到570℃,飞机涡轮叶片的工作温度高达1000℃以上,制氢转化和乙烯裂解温度分别达到950℃和1050℃。对这类装置材料最重要的性能要求是高温强度[1],然而常规材料无法满足高温强度性能,只有新型的高温结构材料才能胜任,如金属间化合物、陶瓷、聚合物、复合材料等。在这些高温结构材料中,只有金属基复合材料(MMC )才具有比强度和比刚度高、导热导电性好、阻尼减振、电磁屏蔽、易于加工成形和容易回收等优点,在汽车、电子通信、航空航天和国防军事等领域具有极其重要的应用价值和广阔的应用前景,被誉为“21世纪绿色工 程材料”[2]。 MMC 的高温强度性能是指材料对高温变形与断裂的抗力。它们长期在高温并受一定载荷的环境下工作,会发生缓慢的塑性变形,也就是我们常说的蠕变。研究其蠕变性能是设计MMC 材料高温环境工作的关键。MMC 的蠕变性能与下列因素相关:基体的蠕变性能,增强体的弹性和断裂特性, 增强体的尺寸参数、分布以及增强体与基体界面性能等[3-6]。也就是需要了解MMC 材料的宏观性能与其细观结构和组成之间的关系,因此需要建立这两者关系模型。从这一实际 出发,近年来,国内外学者对MMC 的宏观性能与细观结构性能进行了大量研究,并取得了相当丰富的研究成果。从蠕变研究方法上讲,按其发展过程大体可分为3类:第一类是理论研究,建立理论模型;第二类是蠕变试验研究;第三类是结合试验数据建立有限元计算模型,进行计算机模拟。 1 理论研究 MMC 蠕变一般有以下共同特征: (1)蠕变速度比相同条件下没有强化的基体合金小得 多,第二相强化显著地提高蠕变抗力,且第二相体积分数、尺寸、在基体中的分布以及结合界面等都会影响强化作用。 (2)蠕变速率与应力关系仍可用 ε∝σn 表示,而应力指数 n 一般为7~8,甚至达到10~40。 (3)蠕变激活能远大于基体的自扩散激活能。 (4)存在门槛应力,外加应力低于门槛应力时MMC 不 发生蠕变。门槛应力值一般是Orowan 应力的1/2左右。至今还没有一种蠕变理论对上述所有的蠕变特征给出满意的解释。迄今研究的核心问题是位错越过第二相的机制以及门槛应力的来源。由于MMC 强化有粒子强化、晶须强化及纤维强化,为便于说明,不妨以粒子强化为例,围绕核

金属基复合材料的制备方法

金属基复合材料的制备技术 摘要:现代科学技术的发展和工业生产对材料的要求日益提高,使普通的单一材料越来越难以满足实际需要。复合材料是多种材料的统计优化,集优点于一身,具有高强度、高模量和轻比重等一系列特点。尤其是金属基复合材料(MMCs)具有较高工作温度和层间剪切强度,且有导电、导热、耐磨损、不吸湿、不放气、尺寸稳定、不老化等一系列的金属特性,是一种优良的结构材料。 Abstract: The development of modern science and technology and industrial production of materials requirements increasing, the ordinary single material is more and more difficult to meet the actual needs. Composite material is a variety of statistical optimization, set merit in a body, has the advantages of high strength, high modulus and light specific gravity and a series of characteristics. Especially the metal matrix composite ( MMCs ) has the high working temperature and interlaminar shear strength, and a conductive, thermal conductivity, wear resistance, moisture, do not bleed, dimensional stability, aging and a series of metal properties, is a kind of structural material. 关键词:复合材料(Composite material)、发展概况(Development situation)、金属基复合材料(Metal base composite materia l)、发展前景(Development prospect) 正文: 一:复合材料简介 复合材料是由两种或两种以上不同物理、化学性质的物质以微观或宏观的形式复合而成的多相材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。②夹层复合材料。③细粒复合材料。④混杂复合材料。[1] 二:金属基复合材料简介 (1)定义:金属基复合材料是以金属或合金为基体,以高性能的第二相为增强体的复合材料。它是一类以金属或合金为基体, 以金属或非金属线、丝、纤维、晶须或颗粒状组分为增强相的非均质混合物, 其共同点是具有连续的金属基体。 (2)分类:按增强体类型分为:1.颗粒增强复合材料;2.层状复合材料;3.纤维增强复合材料 按基体类型分为:1.铝基复合材料;2.镍基复合材料;3.钛基复合材料;4.镁基复合材料 按用途分为:1.结构复合材料;2.功能复合材料 (3)性能特征:金属基复合材料的性能取决于所选用金属或合金基体和增强物的特性、含量、分布等。综合归纳金属基复合材料有以下性能特点。 A.高比强度、比模量 B. 良好的导热、导电性能 C.热膨胀系数小、尺寸稳定性好 D.良好的高温性能和耐磨性

先进金属基复合材料制备科学基础

项目名称:先进金属基复合材料制备科学基础首席科学家:张荻上海交通大学 起止年限:2012.1-2016.8 依托部门:上海市科委

一、关键科学问题及研究内容 针对国家空天技术、电子通讯和交通运输领域等对先进金属基复合材料的共性重大需求和先进金属基复合材料的国内外发展趋势,本项目以克服制约国内先进金属复合材料制备科学的瓶颈问题为出发点,针对下列三个关键科学问题开展先进金属基复合材料制备科学基础研究: (1). 先进金属基复合材料复合界面形成及作用机制 界面是是增强相和基体相连接的“纽带”,也是力学及其他功能,如导热、导电、阻尼等特性传递的桥梁,其构造及其形成规律将直接影响复合材料的最终的组织结构和综合性能。因此,界面结构、界面结合及界面微区的调控是调控金属复合材料性能的最为关键的一环。揭示基体成分、添加元素、增强体特性复合工艺对复合过程中的界面的形成、加工变形、服役过程中的界面结构、特征的演变规律和效应,以及在多场下的组织演变规律和对复合材料的性能变化极为关键。复合效应的物理基础正是源于金属基体与增强体的性质差异,而在金属基复合材料复合制备过程中,二者的差异无疑会直接或间接地影响最终的复合组织和界面结构。因此,要想建立行之有效的金属基复合材料组分设计准则和有效调控先进金属基复合材料的结构与性能,就必须从理论上认识先进金属基复合材料的复合界面形成及作用机制。 (2). 先进金属基复合材料复合制备、加工成型中组织形成机制及演化规律 金属基复合材料的性能取决于其材料组分和复合结构,二者的形成不仅依赖于复合制备过程,还依赖于包括塑性变形、连接、热处理等后续加工和处理过程。只有在掌握金属基复合材料的组织结构演变规律的基础上,才有可能通过优化工艺参数精确调控微观组织,进而调控复合材料的性能。 (3). 使役条件下复合材料界面、组织与性能耦合响应机制 先进金属基复合材料中,由于增强体与金属基体的物理和力学性能之间存在巨大差异,造成在界面点阵分布不均匀,同时近界面基体中由于热错配,残余应力等导致晶体学缺陷含量较高。因此,在使役过程中,先进金属基复合材料的力学性能不仅取决于其材料组分,更加取决于增强体在基体中的空间分布模式、界面结合状态和组织与性能之间的耦合响应机制。只有揭示使役条件下复合材料界面、组织与性能耦合响应机制,才能真正体现先进金属基复合材料中增强体与基体的优势互补,充分利用其巨大潜力,也才可能优化复合和界面结构设计。

金属基复合材料界面

华东理工大学2012-2013学年第二学期 《金属基复合材料》课程论文2013.6班级复材101 学号10103638 温乐斐开课学院材料学院任课教师麒成绩

浅谈金属基复合材料界面特点、形成原理及控制方法 摘要 金属基复合材料都要在基体合金熔点附近的高温下制备,在制备过程中纤维、晶须、颗粒等增强体与基体将发生程度不同的相互作用和界面反应,形成各种结构的界面。界面结构和性能对金属基复合材料的性能起着决定性作用。深入研究和掌握界面反应和界面影响性能的规律,有效地控制界面的结构和性能,是获得高性能金属基复合材料的关键。本文简单讨论一下金属基复合材料的界面反应、界面对性能的影响以及控制界面反应和优化界面结构的有效途径等问题。 前言 由高性能纤维、晶须、颗粒与金属组成的金属基复合材料具有高比强度、高比模量、低热膨胀、耐热耐磨、导电导热等优异的综合性能有广阔的应用前景,是一类正在发展的重要高技术新材料。 随着金属基复合材料要求的使用性能和制备技术的发展,界面问题仍然是金属基复合材料研究发展中的重要研究方向。特别是界面精细结构及性质、界面优化设计、界面反应的控制以及界面对性能的影响规律等,尚需结合材料类型、使用性能要求深入研究。金属基复合材料的基体一般是金属、合金和金属间化合物,其既含有不同化学性质的组成元素和不同的相,同时又具有较高的熔化温度。因此,此种复合材料的制备需在接近或超过金属基体熔点的高温下进行。金属基体与增强体在高温复合时易发生不同程度的界面反应;金属基体在冷凝、凝固、热处理过程中还会发生元素偏聚、扩散、固溶、相变等。这些均使金属基复合材料界面区的结构十分复杂,界面区的结构及组成明显不同于基体和增强体,其受到金属基体成分、增强体类型、复合上艺参数等多种因素的影

金属模铸造

金属模铸造 金属型铸造工艺 1、概述 1.1铸造原理 金属铸造俗称硬模铸造,是用金属材料制造铸件,并在重力下将熔融金属浇入铸型获得铸件的工艺方法。由于一副金属型可以浇注几百次至几万次,故金属型铸造又称为永久型铸造。金属型铸造既适用于大批量生产形状复杂的铝合金、镁合金等非铁合金铸件,也适合于生产钢铁金属的铸件、铸锭等。 1.2工艺过程 1.3工艺特点 (1)优点 1)金属型的热导率和热容量大,冷却速度快,铸件组织致密,力学性能比砂型铸件高15%左右。 2)能获得较高尺寸精度和较低表面粗糙度值的铸件,并且质量稳定性好。 3)因不用和很少用砂芯,改善环境、减少粉尘和有害气体、降低劳动强度。 (2)缺点 1)金属型本身无透气性,必须采用一定的措施导出型腔中的空气和砂芯所产生的气体。2)金属型无退让性,铸件凝固时容易产生裂纹 3)金属型制造周期较长,成本较高。因此只有在大量成批生产时,才能显示出好的经济效果。 1.4金属型铸件的一般要求 金属型铸件最小壁厚(单位:mm) 铸件外廓尺寸 铸钢 件灰铸铁件 (含球墨铸铁) 可锻铁件 铝合金铸 件 镁合金铸 件 铜合金铸 件 <70×70 5 4 2.5-3.5 2-3 —— 3 70×70- 150×150 —— 5 —— 4 2.5 4-5 >150×150 10 6 —— 5 ——6-8

金属型铸件内孔的最小尺寸(单位:mm) 铸造合金孔的最小直径d 孔深 不通孔通孔 铸钢>12 >15 >20 铸铁>12 >15 >20 锌合金6~8 9~12 12~20 镁合金6~8 9~12 12~20 铝合金8~10 12~15 15~20 铜合金10~12 10~15 15~20 2.铸件工艺设计 2.1基准面的选择 基准面决定铸件各部分相对的尺寸位置。所以选择铸造基面时,必须和铸件机械加工的加工基准面统一,其选择原则为: 1)非全部加工的铸件,应尽量取非加工面作为基面。因为加工面在加工过程中,尺寸会因加工而变动,所以可能将造成相对尺寸位置的变动。而且铸件经过加工后,去掉的加工余面也不便检查。 2)采用非加工面作基面时,应该选尺寸变动最小、最可靠的面作基面。用活块形成的铸件表面最好不选为基面。 3)基面应尽可能平整和光洁,不应当有残余浇冒口、毛刺、飞翅等。 4)全部加工的零件,应取加工余量最小的面作为基面,以保证机械加工时不至因加工余量不够而造成废品。 5)为了检验尺寸方便,最好是选择较大的平面作为基面,尽量避免选取弯曲的面,或是有铸造斜度的面为基面。 2.2铸件在金属型中的位置 原则:①便于安放浇注系统,保证合金液平稳充满铸型 ②便于合金顺序凝固,保证补缩。 ③使型芯(或活块)数量最少、安装方便、稳固、取出容易。 ④力求铸件内部质量均匀一致,盖子类及碗状铸件可水平安放。 ⑤便于铸件取出,不致拉裂和变形。 2.3分型面的选择 原则:①简单铸件的分型面应尽量选在铸件的最大端面上 ②矮的盘形和筒形铸件的分型面应尽量不选在轴心上 ③分型面应尽可能地选在同一个平面上 ④应保证铸件分型方便,尽量用或不用活块 ⑤分型面的位置应尽量使铸件避免做铸造斜度,而且容易取出铸件 ⑥分型面应尽量不选在铸件的基准面上,也不要选在精度要求高的表面上 ⑦应便于安放浇冒口和便于气体从铸型中排出 2.4铸件工艺性设计 2.4.1铸件工艺性设计原则铸件工艺性设计应在尽量满足产品结构要求的前提下,通过调整

金属基复合材料综述

金属基复合材料综述 专业: 学号: 姓名: 时间:

金属基复合材料综述 摘要:新材料的研究、发展与应用一直是当代高新技术的重要内容之一。其中复合材料,特别是金属基复合材料在新材料技术领域中占有重要的地位。金属基复合材料对促进世界各国军用和民用领域的高科技现代化,起到了至关重要的作用,因此倍受人们重视。本文概述了金属基复合材料的发展历史及研究现状,对金属基复合材料的分类、性能、应用、制备方法、等进行了综述,提出了金属基复合材料研究中存在的问题,探讨了金属基复合材料的发展趋势。 关键词:金属基复合材料;分类;性能;应用;制备;发展趋势 Abstract: The research development and application of new composites are one of the important matters in modern high science and technology. This paper summarizes the met al matrix composites and the development history of the present situation and the classific ation of the metal matrix composites, performance, application and preparation methods, w as reviewed, and put forward the metal matrix composites the problems existing in the res earch, discusses the metal matrix composites trend of development. Keywords: Metal matrix composites; Classification; Performance; Application; Preparation; Development trend. 1.引言 复合材料是继天然材料,加工材料和合成材料之后发展起来的新一代材料。按通常的说法,复合材料是指两种或两种以上不同性质的单一材料,通过不同的复合方法所得到的宏观多相材料。随着现代科学技术的迅猛发展,对材料性能的要求日益提高。常希望复合材料即具有良好的综合性能,又具有某些特殊性能。金属基复合材料是近年来迅速发展起来的高性能材料之一,对促进世界各国军用和民用领域的高科技现代化,起到了至关重要的作用。相信随着科学技术的不断发展,新的制造方法的出现,高性能增强物价格的不断降低,金属基复合材料在各方面将有越来越广阔的应用前景。

金属铸造工艺论文

金属铸造工艺论文 摘要: 铸造是将通过熔炼的金属液体浇注入铸型内,经冷却凝固获得所需形状和性能的零件的制作过程。铸造是常用的制造方法,铸造是一种古老的制造方法,在我国可以追溯到6000年前。随着工业技术的发展,铸大型铸件的质量直接影响着产品的质量,因此,铸造在机械制造业中占有重要的地位。由零件的结构特点,提出多种浇注和分型方案,综合对比分析,选择最为理想的浇注位置及分型面。制定出详细的铸造工艺方案。 关键字: 铸造工艺性;铸造工艺方案;铸造工艺参数;补缩系统;浇注系统 铸造工艺种类: 铸造工艺可分为重力铸造、压力铸造、砂型铸造、压铸、熔模铸造和消失模铸造。铸造方法常用的是砂型铸造,其次是特种铸造方法,如:金属型铸造、熔模铸造、石膏型铸造等。各种特种铸造方法均有其突出的特点和一定的局限性,对铸件结构也各有各自的特殊要求。重力铸造 重力铸造是指金属液在地球重力作用下注入铸型的工艺,也称浇的重力铸造包括砂型浇铸、金属型浇铸、熔模铸造,泥模铸造等;窄义的重力铸造专指金属型浇铸。

压力铸造 压力铸造是指金属液在其他外力(不含重力)的作用下注入铸型的工艺。广义的压力铸造包括压铸机的压力铸造和真空铸造、低压铸造、离心铸造等;窄义的压力铸造专指压铸机的金属型压力铸造,简称压铸。这几种铸造工艺是目前有色金属铸造中最常用的、也是相对价格最低的。 砂型铸造 砂型铸造是一种以砂作为主要造型材料,制作铸型的传统铸造工艺。砂型一般采用重力铸造,有特殊要求时也可采用低压铸造、离心铸造等工艺。砂型铸造的适应性很广,小件、大件,简单件、复杂件,单件、大批量都可采用。砂型铸造用的模具,以前多用木材制作,通称木模。木模缺点是易变形、易损坏;除单件生产的砂型铸件外,可以使用尺寸精度较高,并且使用寿命较长的铝合金模具或树脂模具。虽然价格有所提高,但仍比金属型铸造用的模具便宜得多,在小批量及大件生产中,价格优势尤为突出。此外,砂型比金属型耐火度更高,因而如铜合金和黑色金属等熔点较高的材料也多采用这种工艺。但是,砂型铸造也有一些不足之处:因为每个砂质铸型只能浇注一次,获得铸件后铸型即损坏,必须重新造型,所以砂型铸造的生产效率较低;又因为砂的整体性质软而多孔,所以砂型铸造的铸件尺寸精度较低,表面也较粗糙。 压铸 压铸是在压铸机上进行的金属型压力铸造,是目前生产效率最高

金属基纳米复合材料

金属基纳米复合材料 摘要:本论文主要介绍了纳米复合材料的设计(包括结构设计和功能设计),讨论了金属基复合材料的制备方法以及对所制备的金属基纳米复合材料的性能进行了分析,最后对金属基纳米复合材料的发展进行了展望 。 关键词:纳米复合材料简介金属基复合材料特性金属基复合材料制备方法碳纳米管金属基纳米复合材料展望 引言:金属基纳米复合材料是以金属及合金为基体,与一种或几种金属或非金属纳米级增强相相结合的复合材料。金属基纳米复合材料具有力学性能好、剪切强度高、工作温度较高、耐磨损、导电导热好、耐湿性好、不吸气、尺寸稳定、不老化等优点,故以其优异的性能应用于自动化、航天、航空等高技术领域。各种复合新工艺,如压铸、半固态复合铸造,喷射沉积和直接氧化法、反应生成法等的应用,促进了纳米颗粒、纳米晶片、纳米晶须增强金属基复合材料的快速发展,使成本不断降低,从而使金属基纳米复合材料的应用由自动化、航空、航天工业扩展到汽车工业,而使其应用越来越广泛,进入到生产生活的各个方面。 纳米复合材料简介 纳米材料是由纳米量级(1—100nm)的纳米粒子组成的固体材料。纳米微粒有4个基本效应:小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应。因此,纳米材料表现出一些特殊性能,如高热膨胀系数、高比热容、低熔点、奇特的磁性、极强的吸波性能等。纳米微粒尺寸很小,纳米粒子的表面原子数与其总原子数的比值随着粒径尺寸的减小而急剧增大,所以纳米材料有高密度缺陷、高的过剩能、大的比表面积和界面过剩体积。纳米材料也因此具有许多特殊的性能,如高的弹性模量、较强的韧性、高强度、超强的耐磨性、自润滑性和超塑性等。由于纳米材料的特异性能,纳米材料有着广泛的应用。 根据纳米复合材料的功能特性和使用时的侧重点,可将其粗略地分为结构纳米复合材料和功能纳米复合材料两大类。前者主要用在产品或工程的结构部件上,着重在材料的结构强度、刚性、韧性、耐热性能等机械、物理、力学性质和耐化学腐蚀与耐恶劣环境能力上的赋予;后者侧重在利用材料的特殊光、电、声、热、磁敏感应、信息贮存与传输、能量贮存与释放等性能及效应来实现某种功能。根据纳米复合材料的复合途径可分为:纳米相—纳米相复合材料,纳米相—常规块体复合材料及复合纳米薄膜。根据复合材料组分的性质可分为无机—无机纳米、有机—有机纳米以及无机—有机纳米复合材料。 金属基纳米复合材料的特性 金属基纳米复合材料的力学性能主要具有如下的特点:高强度和高韧性,高比强度和高比模量,抗蠕变和抗疲劳性好,高温性能好,断裂安全性高等。 1.微观结构 研究人员用超声波气态原子化法和热挤压锻造制备纳米复合材料,研究其微观结构演化、热稳定性和ɑ-Al纳米相生长动力学,发现:原子化粉末的微观结构受基体中溶质过饱和度、隐含微应力、溶质大小、分布状态和沉积纳米相的体 (Ni,Fe)纳米相积分数等因素影响;在热的结晶过程中,ɑ-Al相的沉积和Al 3

金属型铸造

金属型铸造 将金属液浇注到金属铸型中,待其冷却后获得铸件的方法叫金属型铸造。由于金属型能反复使用很多次,又叫永久型铸造。 一、金属型的结构 一般的,金属型用铸铁和铸钢制成。铸件的内腔既可用金属芯、也可用砂芯。金属型的结构有多种,如水平分型、重直分型及复合分型。如图2.2所示。其中垂直分型便于开设内浇口和取出铸件;水平分型多用来生产薄壁轮状铸件;复合分型的上半型是由垂直分型的两半型采用铰链连结而成,下半型为固定不动的水平底板,主要应用于较复杂铸件的铸造。 二、金属型铸造型的工艺特点 金属型的导热速度快和无退让性,使铸件易产生浇不足、冷隔、裂纹及白口等缺陷。此外,金属型反复经受灼热金属液的冲刷,会降低使用寿命,为此应采用以下辅助工艺措施。 1.预热金属型 浇注前预热金属型,可减缓铸型的冷却能力,有利于金属液的充型及铸铁的石墨化过程。生产铸铁件,金属型预热至250~350℃;生产有色金属件预热至100~250℃。 2.刷涂料 为保护金属型和方便排气,通常在金属型表面喷刷耐火涂料层,以免金属型直接受金属液冲蚀和热作用。因为调整涂料层厚度可以改变铸件各部分的冷却速度,并有利于金属型中的气体排出。浇注不同的合金,应喷刷不同的涂料。如铸造铝合金件,应喷刷由氧化锌粉、滑石粉和水玻璃制成的涂料;对灰铸铁件则应采用由石墨粉、滑石粉、耐火粘土粉及桃胶和水组成的涂料。 3.浇注 金属型的导热性强,因此采用金属铸型时,合金的浇注温度应比采用砂型高出20~30℃。一般的,铝合金为680℃~740℃;铸铁为1300℃~1370℃;锡青铜为1100~1150℃。薄壁件取上限,厚壁件取下限。铸铁件的壁厚不小于15mm,以防白口组织。 4.开型 开型愈晚,铸件在金属型内收缩量愈大,取出采用困难,而且铸件易产生大的内应力和裂纹。通常铸铁件的出型温度700~950℃,开型时间为浇注后10~60秒。 三、金属型铸造的特点和应用范围 与砂型铸造相比,金属型铸造有如下优点:

Ti基复合材料及其制备技术研究进展评述

先进材料制备科学与技术课题报告 ——Ti基复合材料及其制备技术研究进展报告 学院:材料科学与工程学院 学号:SY1401210 姓名:刘正武 2014年12月24日

摘要 钛基复合材料(TMCS)以其高的比强度、比刚度和良好的抗高温、耐腐蚀性能,在航空航天、汽车等领域有着广阔的应用前景,引起了材料研究者的广泛兴趣。国外对钛基复合材料的研究已有近40年的历史,发展相当迅速,开发出来的原位合成工艺、纤维涂层等制备技术已经成功用于制备高性能钦基复合材料。国内TMCS研究起步较晚,虽取得了一定成绩,但与国外相 比还有一定差距。 本文主要从钛基复合材料的研究背景,强化原理,以及存在的主要问题方面做了总结,并对国内外的研究现状作了简要评述。钛合金本身具有较高的室温和高温比强度、低密度、高弹性模量。加入增强相,又进一步提高比弹性模量、比强度和抗蠕变能力。颗粒增强钛基复合材料(PTMCS)与纤维增强钛基复合材料(FTMCS)相比,具有制备工艺较简单,成本较低,无各向异性,可得到近净型零件等优点,是很有前途的复合材料。自生钛基复合材料基体将由纯钛基体向Ti6Al转化,并加入其它的合金元素,会得到实际应用。 关键词:钛基复合材料;性能;制备;研究进展

目录 第1章前言 ----------------------------------------------------------------------------------------------------------------------------- 4 1.1研究背景及原理-------------------------------------------------------------------------------------------------------------- 4 1.2 主要问题 ---------------------------------------------------------------------------------------------------------------------- 5 第2章国内外研究进展及评述 ---------------------------------------------------------------------------------------------------- 6 2.1 Ti基复合材料增强体的种类---------------------------------------------------------------------------------------------- 6 2.2陶瓷颗粒增强钛基复合材料 ---------------------------------------------------------------------------------------------- 7 2.2 自生钛基复合材料--------------------------------------------------------------------------------------------------------- 11 第3章结论 --------------------------------------------------------------------------------------------------------------------------- 13 参考文献 -------------------------------------------------------------------------------------------------------------------------------- 14

金属基复合材料的制备方法

金属基复合材料的制备方 法 Newly compiled on November 23, 2020

金属基复合材料的制备技术 摘要:现代科学技术的发展和工业生产对材料的要求日益提高,使普通的单一材料越来越难以满足实际需要。复合材料是多种材料的统计优化,集优点于一身,具有高强度、高模量和轻比重等一系列特点。尤其是金属基复合材料(MMCs)具有较高工作温度和层间剪切强度,且有导电、导热、耐磨损、不吸湿、不放气、尺寸稳定、不老化等一系列的金属特性,是一种优良的结构材料。 Abstract: The development of modern science and technology and industrial production of materials requirements increasing, the ordinary single material is more and more difficult to meet the actual needs. Composite material is a variety of statistical optimization, set merit in a body, has the advantages of high strength, high modulus and light specific gravity and a series of characteristics. Especially the metal matrix composite ( MMCs ) has the high working temperature and interlaminar shear strength, and a conductive, thermal conductivity, wear resistance, moisture, do not bleed, dimensional stability, aging and a series of metal properties, is a kind of structural material. 关键词:复合材料(Composite material)、发展概况(Development situation)、金属基复合材料(Metal base composite materia l)、发展前景(Development prospect) 正文: 一:复合材料简介 复合材料是由两种或两种以上不同物理、化学性质的物质以微观或宏观的形式复合而成的多相材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。②夹层复合材料。③细粒复合材料。④混杂复合材料。[1] 二:金属基复合材料简介

铸造工艺,特点及其应用

铸造(casting) 铸造是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件的工艺过程。铸造毛坯因近乎成形,而达到免机械加工或少量加工的目的降低了成本并在一定程度上减少了时间.铸造是现代制造工业的基础工艺之一。把金属材料做成所需制品的工艺方法很多,如铸造、锻造、挤压、轧制、拉延、冲压、切削、粉末冶金等等。其中,铸造是最基本、最常用的工艺。 铸造种类很多,按造型方法习惯上分为: ①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。 ②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。 铸造可按铸件的材料分为: 黑色金属铸造(包括铸铁、铸钢)和有色金属铸造(包括铝合金、铜合金、锌合金、镁合金等) 铸造有可按铸型的材料分为: 砂型铸造和金属型铸造。 按照金属液的浇注工艺可分为: 1、重力铸造:指金属液在地球重力作用下注入铸型的工艺,也称浇铸。广义的重力铸造包括砂型浇铸、金属型浇铸、熔模铸造、消失模铸造,泥模铸造等;窄义的重力铸造专指金属型浇铸。 2、压力铸造是指金属液在其他外力(不含重力)作用下注入铸型的工艺,按照压力的大小,又分为高压铸造(压铸)和低压铸造。

补充知识: 1、精密铸造是相对于传统的铸造工艺而言的一种铸造方法。它能获得相对准确地形状和较高的铸造精度。较普遍的做法是:首先做出所需毛坯(可 留余量非常小或者不留余量)的电极,然后用电极腐蚀模具体,形成空腔。再用浇铸的方法铸蜡,获得原始的蜡模。在蜡模上一层层刷上耐高温的液体砂料。待获得足够的厚度之后晾干,再加温,使内部的蜡模溶化掉,获得与所需毛坯一致的型腔。再在型腔里浇铸铁水,固化之后将外壳剥掉,就能获得精密制造的成品 2、选择铸造方式时应考虑:a.优先采用砂型铸造b.铸造方法应和生产批量相适 3、c.造型方法应适合工厂条件d.要兼顾铸件的精度要求和成 4、金属材料的力学性能主要指:强度、刚度、硬度、塑性、韧性等。

相关文档
最新文档