直流有刷电机

直流有刷电机
直流有刷电机

直流电机的基本知识

直流电机的基本知识 1 直流电机的工作原理 永磁式直流电机是应用很广泛的一种。只要在它上面加适当电压。电机就转动。图是这种电机的符号和简化等效电路[1]。 工作原理图: 图直流电机的符号和等效电路 这种电机由定子、转子、换向器(又称整流子)、电刷等组成,定子用作产生磁场。转于是在定子磁场作用下,得到转矩而旋转起来。换向器及时改变了电流方向,使转子能连续旋转下去。也就是说,直流电压加在电刷上,经换向器加到转子线圈,流过电流而产生磁场,这磁场与定子的固定磁场作用,转子被强迫转动起来。当它转动时,由于磁场的相互作用,也将产生反电动势,它的大小正比于转子的速度,方向和所加的直流电压相反。图给出了等效电路。Rw代表转子绕组的总电阻,E代表与速度相关的反电动势。 永磁式换流器电机的特点: 当电机负载固定时,电机转速正比于所加的电源电压。 当电机直流电源固定时,电机的工作电流正比于转予负载的大小。 加于电机的有效电压,等于外加直流电压减去反电动势。因此当用固定电压驱动电机时,电机的速度趋向于自稳定。因为负载增加时,转子有慢下来的倾向,于是反电动势减少,而使有效电压增加,反过来又将使转子有快起来的倾向,所以总的效果使速度稳定。 当转子静止时,反电动势为零,电机电流最大。其最大值等于V/Rw(这儿V是电源电压)。最大·电流出现在刚起动的条件。 转子转动的方向,可由电机上所加电压的极性来控制。 体积小、重量轻、起动转矩大。 由于具备上述的那些特点,所以在医疗器械、小型机床、电子仪器、计算机、气象探空仪、探矿测井、电动工具、家用电器及电子玩具等各个方面,都得到广泛的应用。 对这种永磁式电机的控制,主要有电机的起停控制、方向控制、可变速度控制和速度的稳定控制。

直流电动机相关知识

一、直流电机的结构 由直流电动机和发电机工作原理示意图可以看到,直流电机的结构应由定子和转子两大部分组成。直流电机运行时静止不动的部分称为定子,定子的主要作用是产生磁场,由机座、主磁极、换向极、端盖、轴承和电刷装置等组成。运行时转动的部分称为转子,其主要作用是产生电磁转矩和感应电动势,是直流电机进行能量转换的枢纽,所以通常又称为电枢,由转轴、电枢铁心、电枢绕组、换向器和风扇等组成。 1. 定子 (1)主磁极 主磁极的作用是产生气隙磁场。主磁极由主磁极铁心和励磁绕组两部分组成。铁心一般用0.5mm~1.5mm厚的硅钢板冲片叠压铆紧而成,分为极身和极靴两部分,上面套励磁绕组的部分称为极身,下面扩宽的部分称为极靴,极靴宽于极身,既可以调整气隙中磁场的分布,又便于固定励磁绕组。励磁绕组用绝缘铜线绕制而成,套在主磁极铁心上。整个主磁极用螺钉固定在机座上。 (2)换向极 换向极的作用是改善换向,减小电机运行时电刷与换向器之间可能产生的换向火花,一般装在两个相邻主磁极之间,由换向极铁心和换向极绕组组成。换向极绕组用绝缘导线绕制而成,套在换向极铁心上,换向极的数目与主磁极相等。 (3)机座 电机定子的外壳称为机座。机座的作用有两个:一是用来固定主磁极、换向极和端盖,并起整个电机的支撑和固定作用;二是机座本身也是磁路的一部分,借以构成磁极之间磁的通路,磁通通过的部分称为磁轭。为保证机座具有足够的机械强度和良好的导磁性能,一般为铸钢件或由钢板焊接而成。 (4)电刷装置 电刷装置是用来引入或引出直流电压和直流电流的。电刷装置由电刷、刷握、刷杆和刷杆座等组成。电刷放在刷握内,用弹簧压紧,使电刷与换向器之间有良好的滑动接触,刷握固定在刷杆上,刷杆装在圆环形的刷杆座上,相互之间必须绝缘。刷杆座装在端盖或轴承内盖上,圆周位置可以调整,调好以后加以固定。 2. 转子(电枢) (1)电枢铁心 电枢铁心是主磁路的主要部分,同时用以嵌放电枢绕组。一般电枢铁心采用由0.5mm 厚的硅钢片冲制而成的冲片叠压而成,以降低电机运行时电枢铁心中产生的涡流损耗和磁滞损耗。叠成的铁心固定在转轴或转子支架上。铁心的外圆开有电枢槽,槽内嵌放电枢绕组。 (2)电枢绕组 电枢绕组的作用是产生电磁转矩和感应电动势,是直流电机进行能量变换的关键部件,所以叫电枢。它是由许多线圈(以下称元件)按一定规律连接而成,线圈采用高强度漆包线或玻璃丝包扁铜线绕成,不同线圈的线圈边分上下两层嵌放在电枢槽中,线圈与铁心之间以及上、下两层线圈边之间都必须妥善绝缘。为防止离心力将线圈边甩出槽外,槽口用槽楔固定。线圈伸出槽外的端接部分用热固性无纬玻璃带进行绑扎。 (3)换向器 在直流电动机中,换向器配以电刷,能将外加直流电源转换为电枢线圈中的交变电流,使电磁转矩的方向恒定不变;在直流发电机中,换向器配以电刷,能将电枢线圈中感应产生的交变电动势转换为正、负电刷上引出的直流电动势。换向器是由许多换向片组成的圆柱体,换向片之间用云母片绝缘,换向电枢槽的结构片的紧固,换向片的下部做成鸽1—槽楔2

2019届中考物理知识点全突破系列专题117直流电动机的构造原理及其工作过程(含解析)

直流电动机的构造原理及其工作过程 1. 如图所示的甲、乙两图中的矩形线圈,现在给它们通电,则下列说法正确的是() A. 甲中线圈转动,乙中线圈不转动 B. 乙中线圈转动,甲中线圈不转动 C. 甲、乙中的线圈都会转 动 D. 甲、乙中的线圈都不会转动 2. 线圈abcd转动过程中经过图甲、乙位置时,导线ab所受磁场力的方向() A. 相同,是由于磁场方向、流过ab的电流方向都没改变 B. 相同,是由于磁场方向、流过ab的电流方向都改变了 C. 相反,是由于流过ab的电流方向相反了 D. 相反,是由于磁场方向相反了 3. 同学们在制作电动机模型时,把一段粗漆包线烧成约3cm×2cm的矩形线圈,漆包线在线圈的两端各伸出约3cm.然后,用小刀刮两端引线的漆皮.用硬金属丝做两个支架,固定在硬纸板上.两个支架分别与电池的两极相连.把线圈放在支架上,线圈下放一块强磁铁,如图所示.给线圈通电并用手轻推一下,线圈就会不停的转下去. (1)在漆包线两端用小刀刮去引线的漆皮,刮线的要求是(填选项“A”或“B”).A. 两端全刮掉 B. 一端全部刮掉,另一端只刮半周 (2)线圈在转动过程中________能转化为________能. (3)小华组装好实验装置,接通电源后,发现线圈不能转动,写出一条可能造成该现象的原因________.4. 学习了电动机后,小刚同学采取了下列办法自制了一个小型电动机,把漆包线绕成约1cm×2cm的矩形线圈,线的两端各留约5cm作为引线,从矩形短边引出(如图甲),然后用小刀刮去两条引线的漆皮,其中一端全部刮去,另一端刮去上半周或下半周(如图乙),这就是电动机的线圈。用钳子把粗铜丝或曲别针弄弯,做两个支架,固定在硬纸板上,永磁体放在线圈下,小型电动机就做成了(如图丙)。用手转一

直流永磁电机基本知识..

直流永磁电机基本知识 一.直流电机的工作原理 1.直流电机的工作原理 这是分析直流电机的物理模型图。 其中,固定部分有磁铁,这里称作主磁极;固定部分还有电刷。转动部分有环形铁心和绕在环形铁心上的绕组。(其中2个小圆圈是为了方便表示该位置上的导体电势或电流的方向而设置的) 上图表示一台最简单的两极直流电机模型,它的固定部分(定子)上,装设了一对直流励磁的静止的主磁极N和S,在旋转部分(转子)上装设电枢铁心。定子与转子之间有一气隙。在电枢铁心上放置了由A和X两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。换向片之间互相绝缘,由换向片构成的整体称为换向器。换向器固定在转轴上,换向片与转轴之间亦互相绝缘。在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。

直流电机的原理图 对上上图所示的直流电机,如果去掉原动机,并给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷 A 流入,经过线圈abcd,从电刷 B 流出,根据电磁力定律,载流导体ab和cd收到电磁力的作用,其方向可由左手定则判定,两段导体受到的力形成了一个转矩,使得转子逆时针转动。如果转子转到如上图(b)所示的位置,电刷 A 和换向片2接触,电刷 B 和换向片1接触,直流电流从电刷 A 流入,在线圈中的流动方向是dcba,从电刷 B 流出。 此时载流导体ab和cd受到电磁力的作用方向同样可由左手定则判定,它们产生的转矩仍然使得转子逆时针转动。这就是直流电机的工作原理。外加的电源是直流的,但由于电刷和换向片的作用,在线圈中流过的电流是交流的,其产生的转矩的方向却是不变的。 实用中的直流电机转子上的绕组也不是由一个线圈构成,同样是由多个线圈连接而成,以减少电动机电磁转矩的波动,绕组形式同发电机。 将直流电机的工作原理归结如下 A.将直流电源通过电刷接通电枢绕组,使电枢导体有电流流过。 B.电机内部有磁场存在。 C.载流的转子(即电枢)导体将受到电磁力 f 的作用 f=Bli a(左手定则) D.所有导体产生的电磁力作用于转子,使转子以n(转/分)旋转,以便拖动机械负载。 2. 归纳 A. 所有的直流电机的电枢绕组总是自成闭路。 B. 电枢绕组的支路数(2a)永远是成对出现,这是由于磁极数(2p)是一个偶数. 注:a-支路对数 p-极对数

直流电机的基础知识 (2)

直流电机的基础知识(第2部分) ——晶闸管直流调速装置的电路原理分析与调试 (电子管)二极管的出现,使人们找到了控制电流方向的“钥匙”,(电子管)三极管的出现,使人们掌握了控制电流大小的奥妙,人类文明由此进入了电子时代的新纪元。做为“弱电”的电子元件,从来都希望并且也有能力在“强电领域”占有一席之地,晶闸管在工业控制领域得以广泛的应用,即是一个有力的证明。 电子器件的发展,经历了电子管、晶体管、(小、中、大规模)集成电路的三个阶段。其中电子管除在高频高压电路,得到极少数应用外,常规电路中已难见到它们的踪影。但晶体管电路的“阵地”随集成电路的“强势出击”虽有所缩小,但并示全盘“退却”,像上文所述的滑差电机调速盒,仍以由晶体管分立元件构成的电路为主流。 正在应用中的直流电机调速器,仍有部分由晶体管分立元件构成的整机电路,分析其原理和给出检修指导,仍具有实际意义,并且为进一步掌握由集成电路(或单片机)构成的直流调速电路,也相当于一个基础和原理性的铺垫。 N 图1 单相晶闸管直流电机调速器(整机电路) 该电路用于小功率他励直流电机的调速与起停控制。

〔主电路〕由单相半控整流桥、滤波电抗器L0构成,桥式整流电路的左侧由两只晶闸管串联而成,右则的两只串联二极管(2CZ50A)与两只晶闸管呈并联关系,两只二极管身兼双职,即可作为整流元件,又并接于电枢绕组两端,提供电枢绕组的反电势通路,起到为电枢绕组的“续流作用”,因而该电路省去了并接于电枢电源两端的续流二极管。电抗器L0可抑制整流后脉动成分,改善电机的换向并降低电机损耗和温升,同时起到提高电网侧功率因数的作用,减弱晶闸管与二极管非线性整流造成的谐波影响。 〔励磁电路〕由桥式整流器组成,电机励磁线圈并串有电流继电器LJ,当励磁电流消失时,主电路晶闸管的触发信号同时消失,电枢绕组同时断电,避免了电机超速(或飞车)运行。他励和和复励直流电机的调速控制电路,都设有励磁电流检测回路,以实现“失磁”时的停机保护。 〔移相触发电路〕由DW0、DW1、DW2、晶体管BG1~BG5、脉冲变压器B2等元件组成。电阻R1、稳压器WG1对70V绕组整流电压进行削波处理成梯形波电压,做为触冲功放级BG5、BG3的供电和电网过零同步信号,控制BG5在电网电压过零时处于截止状态;该梯形波直流电压又经D1隔离、C4滤波成平滑和稳定直流电压,用作移相电路的前级信号处理电路——BG1放大器的供电,以提高电路工作的稳定性。 R16、WG3对另一70V绕组整流电压,削波生成梯形波直流电压,该电压作为同步采样信号,经DW0、DW1、DW2三只电位器调整后,经R7、BG1的发射结、射极电流负反馈电阻R6、DW3、DW4等元件形成了BG1的Ib回路(或称为基极偏压回路),形成了速度给定信号。DW0、DW2用于用于调速范围的设定,D2、D3、D4三只二极管,起到BG1的be结正反向电压的限幅保护作用,将BG1的最大Ic(即BG2的最大Ib)限制于1.4V(两二极管串联压降)-0.7V(BG1发射结电压)/24kΩ=0.029Ma,从而限制了BG2的最小等效导通Rce电阻,限制了单结晶体管BG3形成直通而停振。串入DW3、DW4、DW5支路的目的,是引入电流、电压反馈信号,形成速度闭环控制及电流保护作用(见下文所述)。 当DW2活动臂上行时→BG1的Ub(Ib)上升→BG2的Ib/Ic上升→BG1的Rce(等效导通电阻)变小→C1上充电电压到达BG3基极峰点电压的时刻提前→BG3的导通提前→(在触发脉冲作用下)两只主电路晶闸管的导通时刻提前→半控桥整流电压升高→直流电机转速升高。 移相信号形成电路的主体为单结晶体管BG3、R3(包括BG2导通时的等效Rce)C1的定时电路所组成的张驰振荡器。BG5为脉冲功率放大电路,将输入移相触冲进行功率放大后,驱动脉冲变压器B2。而BG1、BG2两级放大器,组成了可控的变阻电路(BG2的等效导通Rce电阻),使之对C1的充电是可控的(可以调节RC时间常数),进而控制了张驰振荡器第一个脉冲出现的时刻。 注意:稳压二极管WG1两端形成的梯形波电压,为桥式整流所得的100个波头的削波电压,相邻两个波即对应电网电压的正负两个波,两只晶闸管的栅-阴极得到的实际为100Hz的

直流电机基本知识与控制方法

专业资料 电机简要学习手册 2015-2-3

一、直流电机原理与控制方法 1直流电机简介 直流电机(DM)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能 (直流发电机)的旋转电机。 它是能实现直流电能和机械 能互相转换的电机。当它作电 动机运行时是直流电动机,将 电能转换为机械能;作发电机 运行时是直流发电机,将机械能转换为电能。 直流电机由转子(电枢)、定子(励磁绕组或者永磁体)、换向器、电刷等部分构成,以其良好的调速性能以至于在矢量控制出现以前基本占据了电机控制领域的整座江山。但随着交流电机控制技术的发展,直流电机的弊端也逐渐显现,在很多领域都逐渐被交流电机所取代。但如今直流电机仍然占据着不可忽视的地位,广泛用于对调速要求较高的生产机械上,如轧钢机、电力牵引、挖掘机械、纺织机械,龙门刨床等等,所以对直流电机的了解和研究仍然意义重大。

2 直流电动机基本结构与工作原理 2.1 直流电机结构 如下图,是直流电机结构图,电枢绕组通过换向器流过直流电流与定子绕组磁场发生作用,产生转矩。定子按照励磁可分为直励,他励,复励。电枢产生的磁场会叠加在定子磁场上使得气隙主磁通产生一个偏角,称为电枢反应,通常加补偿绕组使磁通畸变得以修正。 2.2 直流电机工作原理 如图所示给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷A 流入,经过线圈abcd,从电刷B 流出,根据电磁力定律,载流导体ab和 cd收到电磁力的作用, 其方向可由左手定则判 定,两段导体受到的力 形成了一个转矩,使得 转子逆时针转动。如果

转子转到如上图(b)所示的位置,电刷A 和换向片2接触,电刷B 和换向片1接触,直流电流从电刷A 流入,在线圈中的流动方向是dcba,从电刷B 流出。 此时载流导体ab和cd受到电磁力的作用方向同样可由左手定则判定,它们产生的转矩仍然使得转子逆时针转动。这就是直流电动机的工作原理。外加的电源是直流的,但由于电刷和换向片的作用,在线圈中流过的电流是交流的,其产生的转矩的方向却是不变的。 发电机的原理则是电机的逆过程:原动机提供转矩,利用法拉第电磁感应产生直流电流。 如下图,比较清晰的说明了直流电动机的原理。 3直流电机重要特性 如下图,更加清晰的揭示了直流电机电流电压与转速转矩之间的关系。 我们可以得到直流电机的四个基本方程:

直流电机的基本常识

直流电机的基本常识 第一章直流电机的基本常识 直流电机是电能和机械能相互转换的旋转电机之一。将机械能转换为直流电能的是直流发电机;将直流电能转换为机械能的是直流电动机。与交流电机相比较,直流电机结构复杂、运行维护困难、成本高。但直流电机具有宽广的的调速范围,较强的过载能力和较大的起动转矩等突出优点,仍广泛应用于对起动和调速要求较高的生产机械中,如电力机车、内燃机车、工矿机车、城市电车、电梯、轧钢机等的拖动电机。由于电力电子技术的迅猛发展,作为直流电源的直流发电机已逐步被晶闸管整流装置所替代。本设计主要介绍电力机车上的大功率直流电机。 第一章第一节直流电机的基本结构直流电机由静止的定子和旋转的转子两大部分组成,在定子和转子之间有一定大小的间隙(称气隙)。 1.定子直流电机定子的作用是产生磁场和作为电动机的机械支撑。主要由机座、主磁极、换向极和电刷装置等组成。(1)机座兼起机械和导磁磁路两个作用。它既用来作为安装电机所有零件的外壳,又是联系各磁极的导磁铁。机座通常为铸钢件,也有采用钢板焊接而成的。对于换向要求较高的电机,也可采用叠片结构的机座。 (2)主磁极主磁极由铁芯和主极线圈两部分组成。主磁极铁芯一般用1~1.5mm厚的薄钢板冲片叠压后再用铆钉铆紧成一个整体。(3)换向极换向极又称附加极,它装在两个主极之间,用来改善直流电机的换向。换向极由换向极铁芯和换向极线圈构成。换向极铁芯大多用

整块钢加工而成。但在整流电源供电的功率较大的电机中,为了更好的改善电机换向,换向极铁芯也采用叠片结构。换向极线圈与主极线圈一样也是用圆铜线或扁铜线绕制而成,经绝缘处理后套在换向极铁芯上,最后用螺钉将换向极固定在机座内壁。(4)电刷装置电刷的作用是通过电刷与换向器表面的滑动接触,把转动的电枢绕组与外电路相连。电刷装置一般由电刷、刷握、刷杆、刷杆座等部分组成。电刷一般用石墨粉压制而成。 2.转子转子又称电枢,主要由转轴、电枢铁芯、电枢绕组和换向器等组成。(1)转轴转轴的作用是用来传递转矩,一般用合金钢锻压而成。(2)电枢铁芯电枢铁芯是电机磁路的一部分,也是承受电磁力作用的部件。当电枢在磁场中旋转时,在电枢铁芯中将产生涡流和磁滞损耗,为了减少这些损耗的影响,电枢铁芯通常用0.5mm厚的电工钢片叠压而成,电枢铁芯固定在转子支架或转轴上。(3)电枢绕组电枢绕组的作用是产生感应电动势和通过电流产生电磁转矩,实现电能量转换。它是直流电机的主要部分。(4)换向器换向器的作用是机械整流,即在直流电动机中它将外加的直流电流逆变成绕组内的交流电;在直流发电机中它将绕组内的交流电动势整流成电刷两端的直流电动势 第二节直流电机的基本工作原理直流电机是直流发电机和直流电动机的总称。直流电机具有可逆性,既可作直流发电机使用,也可作直流电动机使用,将机械能转换成直流电能输出;作直流电动机使用时,则将直流电能转换成机械能输出。

电机学知识点总汇(极力推荐)

一、电机学共同问题 1. 空载、负载磁场、漏磁场的产生: 直流电机、变压器、异步电机、同步电机空载时的主磁场各是由什么产生的? 直流电机、变压器、异步电机、同步电机负载时的合成磁场各是由什么产生的? 漏磁场是如何产生的?何时有?何时无? 2. 磁势平衡方程、电枢反应问题 变压器、异步电机中,磁势平衡方程说明了什么? 直流电机、同步电机中,电枢反应的物理意义是是什么? 磁势平衡和电枢反应有何联系? 3. 数学模型问题: I. 直流电机: u = E + I ×ra (+ 2?U b )(电动) E = u + I ×ra (+ 2?U b )(发电) E = C E Φ n C E = PN a /60/a T E = C M Φ I a C M = PN a /2π/a 其中N a 上总导体数 II. 变压器: 折算前1 1112222120121 022/m L U E I Z U E I Z I I k I E kE E I Z U I Z ?=-+? =-??+=?? =??-=??=? 折算后 1111 2222012121022'''''''''m L U E I Z U E I Z I I I E E E I Z U I Z ?=-+? =-??=+?? =??-=??=? III. 异步电机:f 折算后()1111 2222σ012121 m m //i e U E I Z E I R s jX I I I k E k E E I Z ?=-+? =+?? =+?? =??=-? w 折算后()1111 2222σ102 12 1 0m /j U E I Z E I R s X I I I E E E I Z ?=-+? ''''=+?? '=-?? '=??=-? 未折算时 ()1111 22222201212221 m m , , s s s s s e s U E I Z E I R jX X sX F F F E k E E sE E I Z σσσ?=-+? =+=?? =+?? ==??=-?

无刷直流电机结构设计的基本知识

A Knowledge Based Decision Support Architecture for Designing Brushless DC Motors Vahab Akbarzadeh Ryerson University 350 Victoria Street Toronto, Ontario M5B 2K3 vahab.akbarzadeh@ryerson.ca Alireza Sadeghian Ryerson University 350 Victoria Street Toronto, Ontario M5B 2K3 asadeghi@ryerson.ca Abstract This paper presents a know l edge based decision support system that can be used to design brushless DC motors. A hybrid approach, that inc l udes an object oriented paradigm using frames and procedura l attachments together with a rul e based mechanism, is used to bui d the proposed architecture. The design strategy is impl emented using a rul e-based successive iterative method, through which the expert designer approach is emul ated and embedded in a knowl edge-based system. The performance of the proposed system is compared with results from the literature. 1. Introduction Application of brushless DC (BLDC) motors has increased significantly over the past decades. This is mainly due to high reliability and efficiency of BLDC motors as well as their ability to reach very high speed. Brushless DC motors are rotational brushless permanent magnet motors which are driven by DC current and use electronic control systems instead of the brushes that are usually used in conventional DC motors. Compared to conventional commutator type DC motors, BLDC motors are more efficient, need less maintenance and have longer life span. On the other hand, the control system of BLDC motors needs a rotor positioning mechanism, and the magnets might gradually demagnetize [1], [8]. BLDC motors have been used in a wide variety of applications from industrial to household devices. Typical examples include industrial tools (pumps, compressors), power tools (drills, hammers), transportation (electric vehicles), and household devices (electric shavers, mixers) [4]. Small BLDC motors have also been extensively used in precision devices including medical equipment, computer drives, hard disks, and players. The conventional design process for BLDC motors consists of selection of the appropriate magnetic material and specification of the geometrical properties of the motor. First, based on the design specifications, the expert designer selects the set of materials to be used for motor construction, including material for the permanent magnet. Properties of the selected materials are then plugged into a set of equations which calculate the geometrical properties of the motor. Characteristics of the proposed design are then measured in terms of indicators such as efficiency, motor constant, weight, and cost. Magnetic modeling in the conventional method is usually simplified to use a magnetic circuit instead of finite element analysis. This simplification reduces the computation complexity of the design process [6]. Table 1 shows the types of knowledge involved in motor design, independent of the design process and the assumptions [7]: Tab l e 1. Types of know l edge to be incorporated in the know l edge base environment DATA TYPE DESCRIPTION Structural Physical data including material, core, wire gauge, etc. Graphical Charts and graphs, e.g., core loss rates of various magnetic materials versus frequency and flux density. Heuristic The empirical knowledge rules used by the experts as a design aid. Procedural The motor design process and the modification steps. Criteria The final performance requirements of the system. Analytical The design and performance equations. This paper presents a knowledge based architecture that provides an attractive setting for the BLDC motor design problem by providing a suitable framework whereby analytical data as well as empirical and heuristic data can be readily incorporated and assessed. By presenting a number of alternate designs that have satisfied the design specifications and vary in one or more key characteristics, the proposed system acts as a knowledge driven decision support system capable of providing assistance to expert designers. A contrasting 978-1-4244-2728-4/09/$25.00 ?2009 IEEE

直流电机的基础知识-第一部分

直流电机的基础知识/第一部分 ——直流电机的结构和控制原理 4.1 直流电机的结构和控制原理 1、直流电机的工作原理概述: 在电力拖动领域,随着变频器的出现形成交流调速技术的日渐成熟和低成本化,在不断侵蚀着直流调速的“地盘”,但直到今天,直流调速仍固守着日渐缩小的“阵地”。 直流电机具有调速性能好、调速方便平滑,调速装置简单、调范围广等特点,能承受频繁冲击负载、过载能力强(由变频器和交流电机构成的交流调速系统,还有一定差距),能实现频繁速启、制动及逆向旋转,能满足各种机械负载的特性要求。直流电机的最大缺点,是因碳刷换向器的滑动电接触方式和整体结构交流电动机更为复杂等原因造成的维护工作量较大,需定期更换碳刷等。 图4-1 直流电动机的实物图 直流电机的结构比交流电动机复杂得多,主要由: 1)主磁极。由主磁极铁芯及套装在铁芯上的励磁线圈构成,作用是建立主磁场; 2)机座。为主磁路的一部分,同时构成电机的结构框架,由厚钢板或铸钢件构成; 3)电枢铁芯。为电枢绕组的支撑部件,也为主磁路的一部分,由硅钢片叠压而成;

4)电枢绕组。直流电机的电路部分,由绝缘的圆形或矩形截面的导线绕成; 5)换向器。由许多鸽形尾的换向片排列成一个圆筒、片间用V形云母绝缘,两端再用两个形环夹紧而构成。用作直流发电机时,称整流子,起整流作用;用于直流电动机时,用于(逆变)换向; 6)电刷装置。由电刷、刷盒、刷杆和连线等构成,是电枢电路的引出(或引入)装置。 7)换向极。由铁芯和绕组构成,起改善换向,气隙磁场匀称等作用。 直流电机是将电源电能转变为轴上输出的机械能的电磁转换装置。由定子绕组通入直流励磁电流,产生励磁磁场,主电路引入直流电源,经碳刷(电刷)传给换向器,再经换向器将此直流电转化为交流电,引入电枢绕组,产生电枢电流(电枢磁场),电枢磁场和励磁磁场合成气隙磁场,电枢绕组切割合成气隙磁场,产生电磁转矩。这是直流电机的基本工作原理。 图4-2 直流电机的(物理)结构模型 上图为简单的两极直流电机模型,由主磁极(励磁线圈)、电枢(电枢线圈)、电刷和换向片等组成。固定部分(定子)上,装设了一对直流励磁的静止的主磁级N、S,主磁级由励磁线圈的磁场产生;旋转部分(转子)上,装调电枢铁芯和电枢绕组。电枢电流由外供直流电源所产生。定子和转子之间有一气隙。电枢线圈的首、末端分别连接于两个圆弧型的换向片上,换向片之间互相绝缘,由换向片构成的整体称为换向器。换向片固定在转轴上,和转轴也是绝缘的。在换向片上放置着一对固定不动的电刷B1、B2,当电枢旋转时,电枢线圈通过换向片和电刷和外电路接触(引入外供直流电源)。 因为主磁极的磁场方向是固定不变的(由接入励磁电源极性所决定),要使电枢受到一个方向不变的电磁转矩,关键在于:当线圈边在不同极性的磁极下,如何将流过线圈中的电流方向极时地加以变换,即进行所谓“换向”,线圈中的电流所随所处磁极极性的改变同时改变其方向,以确保线圈在不同磁极下的电流

直流电动机基本理论知识

直流电动机的基本结构 直流电机的结构是多种多样的,但任何直流电机都包括定子部分和转子部分,这两部分间存在着一定大小的气隙,使电机中电路和磁场发生相对运动。直流电机定子部分主要由主磁极、电刷装置和换向极等组成,转子部分主要由电枢绕组、换向器和转轴等构成。结构图如图2-1。 图2-1直流电机结构图

1-电刷;2-磁轭;3-永久磁钢;4- 极靴;5-电枢绕组;6-内磁轭1.定子部分 (1)主磁极: 其作用是产生磁场。通常用厚1-1.5mm的低碳钢片叠装而成。在磁极铁心上绕有励磁绕组,整个磁极利用螺杆固定在磁轭上。(2)换向极: 其作用是改善换向,使电机运行时电刷下不产生有害的火花。换向极也是由铁心及绕组组成,换向极绕组与电枢绕组串联。 (3)机座: 机座分磁轭和底脚两部分。磁轭的作用是固定主磁极和换向极,是磁路的一部分。底脚起支撑和固定整台电机的作用。机座一般式用

铸钢铁制造或钢板焊接而成。 2.转子部分 (1)电枢铁心:电枢铁心是磁路的一部分,表面开槽以嵌放电枢绕组,为减少铁耗,采用0.35-0.5mm厚的涂有绝缘漆的硅钢片叠压而成,固定在转子支架或转轴上。 (2)电枢绕组:电枢绕组由许多按一定规则连接起来的线圈组成,是通过电流和产生电动势的关键性部件。线圈用带绝缘的圆形或矩形截面的导线绕成。嵌放在电枢铁心表面的槽内直流电机采用双层绕组,每槽内的线圈边分上、下两层,上下层之间及线圈于铁心之间都是要可靠绝缘。槽口

用槽契压紧,再用钢丝或玻璃丝带扎紧,大型电机中,绕组伸出槽外的端接部分应扎紧在支架上。 直流电动机的工作原理 电动机是一种把电能转变为机械能的机械。它的基本原理是利用带电导体和磁场间的相互作用而把电能变为机械能。电动机结构主要包括两部分:转子和定子。转子为电动机的旋转部分,由转轴座组成,导体绕组的排列方式决定电动机的类型及其特性。

直流电机的基本知识

直流电机的基本知识 1直流电机的工作原理 永磁式直流电机是应用很广泛的一种。只要在它上面加适当电压。电机就 转动。图是这种电机的符号和简化等效电路[1] 工作原理图: 加直《电压 图直流电机的符号和等效电路 这种电机由定子、转子、换向器(又称整流子)、电刷等组成,定子用作产生磁场。转于是在定子磁场作用下,得到转矩而旋转起来。换向器及时改变了电流方向,使转子能连续旋转下去。也就是说,直流电压加在电刷上,经换向器加到转子线圈,流过电流而产生磁场,这磁场与定子的固定磁场作用,转子被强迫转动起来。当它转动时,由于磁场的相互作用,也将产生反电动势,它 的大小正比于转子的速度,方向和所加的直流电压相反。图(b)给出了等效电路。 Rw代表转子绕组的总电阻, E代表与速度相关的反电动势。 永磁式换流器电机的特点: 当电机负载固定时,电机转速正比于所加的电源电压。 当电机直流电源固定时,电机的工作电流正比于转予负载的大小。 加于电机的有效电压,等于外加直流电压减去反电动势。因此当用固定电压驱动电机时,电机的速度趋向于自稳定。因为负载增加时,转子有慢下来的倾向, 于是反电动势减少,而使有效电压增加,反过来又将使转子有快起来的倾向, 所以总的效果使速度稳定。

当转子静止时,反电动势为零,电机电流最大。其最大值等于 V / Rw (这儿 V 是电源电压)。最大 电流出现在刚起动的条件。 转子转动的方向,可由电机上所加电压的极性来控制。 体积小、重量轻、起动转矩大。 由于具备上述的那些特点,所以在医疗器械、小型机床、电子仪器、计算 机、气象探空仪、探矿测井、电动工具、家用电器及电子玩具等各个方面,都 得到广泛的应用。 对这种永磁式电机的控制,主要有电机的起停控制、方向控制、可变速度 控制和速度的稳定控制。 2电机的起/停控制 电机的起/停控制,最简单最原始的方法是在电机与电源之间,加一机械 开关。或者用继电器的触点控制。 现在比较流行的方法,是用开关晶体管来代替机械开关,无触点、无火花 干扰,速度快。电路如图(a )所示。当输入端为低电平时,开关晶体管 Q1截止, 电机无电流而处于停止状态。如果输入端为高电平时, Q1饱和导通,电机中有 电流,因此电机起动运转。图中二极管 D1和D2是保护二极管,防止反电动势 损坏晶体管。电容 C1是消除射频干扰而外加的。R1基极限流电阻,限制 Q1 的基极电流。在6V 电源时,基极电流不超过 52mA 。在这种情况下,Q1提供 图用晶体管控制电机启停,(b )增强灵敏度 □1 IWK41 I-耐< ' Z £ ?忌f 电机的最大电流为1A 左右。 I I ■ ***歹 AT

相关主题
相关文档
最新文档