2020版高考数学大二轮复习4.2递推数列及数列求和的综合问题学案(理)

2020版高考数学大二轮复习4.2递推数列及数列求和的综合问题学案(理)
2020版高考数学大二轮复习4.2递推数列及数列求和的综合问题学案(理)

第2讲 递推数列及数列求和的综合问题

考点1 由递推关系式求通项公式

(1)累加法:形如a n +1=a n +f (n ),利用a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),求其通项公式.

(2)累积法:形如

a n +1a n =f (n )≠0,利用a n =a 1·a 2a 1·a 3a 2·…·a n

a n -1

,求其通项公式. (3)待定系数法:形如a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0),先用待定系数法把原递推公式转化为a n +1-t =p (a n -t ),其中t =q

1-p

,再转化为等比数列求解.

(4)构造法:形如a n +1=pa n +q n

(其中p ,q 均为常数,pq (p -1)≠0),先在原递推公式两边同除以q

n +1

,得

a n +1q n +1=p q ·a n q n +1q ,构造新数列{

b n }?

?

???其中b n =a n q n ,得b n +1=p q ·b n +1q ,接下来用待定系数法求解.

[例1] 根据下列条件,确定数列{a n }的通项公式: (1)a 1=2,a n +1=a n +n +1; (2)a 1=1,a n =

n -1

n

a n -1(n ≥2); (3)a 1=1,a n +1=3a n +2.

【解析】 (1)由题意得,当n ≥2时,

a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)

=2+(2+3+…+n )=2+(n -1)(2+n )2=n (n +1)

2+1.

又a 1=2=1×(1+1)

2+1,符合上式,

因此a n =

n (n +1)

2

+1.

(2)∵a n =n -1

n

a n -1(n ≥2), ∴a n -1=

n -2n -1a n -2,…,a 2=1

2

a 1. 以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1

n .

当n =1时,a 1=1,上式也成立.

∴a n =1n

.

(3)∵a n +1=3a n +2, ∴a n +1+1=3(a n +1),∴

a n +1+1

a n +1

=3, ∴数列{a n +1}为等比数列,公比q =3,

又a 1+1=2, ∴a n +1=2·3n -1

∴a n =2·3n -1

-1.

由数列递推式求通项公式的常用方法

『对接训练』

1.根据下列条件,确定数列{a n }的通项公式: (1)a 1=1,a n +1=a n +2n

; (2)a 1=1,a n +1=2n

a n ; (3)a 1=1,a n +1=

2a n

a n +2

. 解析:(1)a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1

+2

n -2

+…+2+1=

1-2

n

1-2

=2n

-1.

(2)∵

a n +1a n

=2n

∴a 2a 1

=21

,a 3a 2

=22

,…,

a n a n -1

=2n -1

, 将这n -1个等式叠乘,

得a n a 1

=2

1+2+…+(n -1)

=2

+12

n n (),

∴a n =2

-12

n n ().

(3)∵a n +1=2a n

a n +2, 取倒数得:1a n +1

a n +22a n =1a n +1

2

, ∴

1

a n +1-1a n =12

, ∵a 1=1,∴1

a 1

=1,

∴????

??1a n 是以1为首项,1

2为公差的等差数列,

∴1a n =1+(n -1)·12=n +1

2, ∴a n =2

n +1

.

考点2 错位相减法求和

错位相减法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.

[例2] [2019·天津卷]设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,

b 2=a 3,b 3=4a 2+3.

(1)求{a n }和{b n }的通项公式; (2)设数列{c n }满足c n =????

?

1,n 为奇数,b n

2

,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *

).

【解析】 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .

依题意,得?

????

3q =3+2d ,

3q 2

=15+4d ,解得?

??

??

d =3,

q =3,或?

??

??

d =-3,

q =-1,(舍)

故a n =3+3(n -1)=3n ,b n =3×3

n -1

=3n

.

所以{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n

. (2)a 1c 1+a 2c 2+…+a 2n c 2n

=(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n ) =?

???

??n ×3+

n (n -1)

2

×6+(6×31+12×32+18×33+…+6n ×3n )

=3n 2

+6(1×31

+2×32+…+n ×3n

). 记T n =1×31

+2×32

+…+n ×3n

,① 则3T n =1×32

+2×33

+…+n ×3

n +1

,②

②-①得,2T n =-3-32

-33

- (3)

+n ×3n +1

=-3(1-3n

)1-3+n ×3n +1

(2n -1)3n +1

+3

2

.

所以a 1c 1+a 2c 2+…+a 2n c 2n =3n 2

+6T n =3n 2

+3×

(2n -1)3

n +1

+3

2

(2n -1)3

n +2

+6n 2

+9

2

(n ∈N *

).

所谓“错位”,就是要找“同类项”相减.要注意的是相减后得到部分,求等比数列的和,此时一定要查清其项数.为保证结果正确,可对得到的和取n =1,2进行验证.

『对接训练』

2.[2019·山东青岛一模]已知公比为q 的等比数列{a n }满足2a 1+a 3=3a 2,且a 3+2是a 2,

a 4的等差中项.

(1)求q 的值;

(2)若b n =a n log 2a n ,求数列{b n }的前n 项和S n . 解析:(1)设等比数列{a n }的公比为q ,

依题意,有???

??

2a 1+a 3=3a 2,a 2+a 4=2(a 3+2),

即?????

a 1(2+q 2

)=3a 1q ①,

a 1(q +q 3)=2a 1q 2

+4 ②,

由①得q 2-3q +2=0,解得q =2或q =1. 代入②知q =1不成立,故舍去,所以q =2. (2)由(1)知a 1=2,所以a n =2n

b n =a n log 2a n =2n log 22n =n ·2n ,

所以S n =2+2×22+3×23+…+n ×2n

所以2S n =22

+2×23

+3×24

+…+(n -1)×2n +n ×2n +1

两式相减得-S n =2+22

+…+2n -n ·2n +1

=(1-n )2

n +1

-2,

所以S n =(n -1)2n +1

+2.

考点3 裂项相消法求和

裂项相消法是指把数列和式中的各项分别裂开后,某些项可以相互抵消从而求和的方法,主要适用于??

??

??1a n a n +1或????

??

1a n a n +2(其中{a n }为等差数列)等形式的数列求和.

[例3] [2019·湖南省湘东六校联考]已知数列{a n }的前n 项和S n 满足S n =S n -1+1(n ≥2,n ∈N *

),且a 1=1.

(1)求数列{a n }的通项公式a n ; (2)记b n =

1a n ·a n +1,T n 为{b n }的前n 项和,求使T n ≥2

n

成立的n 的最小值.

【解析】 (1)由已知有S n -S n -1=1(n ≥2,n ∈N *

),∴数列{S n }为等差数列,又S 1=

a 1=1,∴S n =n ,即S n =n 2.

当n ≥2时,a n =S n -S n -1=n 2

-(n -1)2

=2n -1. 又a 1=1也满足上式,∴a n =2n -1.

(2)由(1)知,b n =1(2n -1)(2n +1)=12? ??

??1

2n -1-12n +1,

∴T n =12? ????1-13+13-15+…+12n -1-12n +1=12? ????1-12n +1=n 2n +1. 由T n ≥2n

得n 2≥4n +2,即(n -2)2

≥6,∴n ≥5,

∴n 的最小值为5.

利用裂项相消法求和的注意事项

(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项; (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则

1

a n a n +1=1d ? ????1a n -1a n +1,1a n a n +2=12d ? ????1

a n -1a n +2.

『对接训练』

3.[2019·安徽池州期末]已知数列{a n }的前n 项和为S n ,a n =23S n +13(n ∈N *

).

(1)求数列{a n }的通项公式; (2)设b n =

1

log 3a n +1+log 3a n +2

,求数列{b n }的前n 项和T n .

解析:(1)由a n =23S n +13,可得S n =32a n -1

2,

当n ≥2时,S n -1=32a n -1-1

2

,则

a n =S n -S n -1=? ????3

2a n -12-? ????32a n -1-12=32a n -32a n -1,整理得a n =3a n -1(n ≥2),而a 1=S 1=32a 1

-1

2

,即a 1=1, 所以数列{a n }是首项为1,公比为3的等比数列,则a n =1×3n -1

=3

n -1

.故数列{a n }的通项

公式为a n =3

n -1

.

(2)由(1)得b n =1

log 3a n +1+log 3a n +2

1

log 33n -1+1+log 33n -1

+2=1

n +n +1

=n +1-n ,

所以T n =b 1+b 2+b 3+…+b n =(2-1)+(3-2)+(4-3)+…+(n +1-n )=

n +1-1.

考点4 分组转化求和

分组求和法

一个数列既不是等差数列,也不是等比数列,若将这个数列适当拆开,重新组合,就会变成几个可以求和的部分即能分别求和,然后再合并.

[例4] [2019·天津南开附中期中]已知数列{a n }是等比数列,满足a 1=3,a 4=24,数列{b n }是等差数列,满足b 2=4,b 4=a 3.

(1)求数列{a n }和{b n }的通项公式. (2)设c n =a n -b n ,求数列{c n }的前n 项和. 【解析】 (1)设等比数列{a n }的公比为q ,

由题意,得q 3

=a 4a 1=243

=8,解得q =2,

∴{a n }的通项公式为a n =a 1q n -1

=3×2

n -1

∴a 3=12.

设等差数列{b n }的公差为d , ∵b 2=4,b 4=a 3=12,b 4=b 2+2d , ∴12=4+2d ,解得d =4.

∴b n =b 2+(n -2)d =4+(n -2)×4=4n -4. 故{b n }的通项公式为b n =4n -4. (2)由(1)知a n =3×2n -1

,b n =4n -4,

∴c n =a n -b n =3×2

n -1

-(4n -4).

从而数列{c n }的前n 项和S n =3×20

+3×21

+…+3×2

n -1

-[0+4+8+…+(4n -4)]=

3×1-2n

1-2-n (4n -4)2

=3×2n -3-n (2n -2)=3×2n -2n 2+2n -3.

1.若一个数列由若干个等差数列或等比数列组成,则求和时可用分组转化法分别求和再相加减.

形如a n =(-1)n

f (n )类型,可采用相邻两项并项(分组)后,再分组求和. 2.分组求和中的分组策略 (1)根据等差、等比数列分组; (2)根据正号、负号分组.

『对接训练』

4.[2016·高考全国卷Ⅱ]S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.

(1)求b 1,b 11,b 101;

(2)求数列{b n }的前1 000项和. 解析:(1)设{a n }的公差为d , 据已知有7+21d =28,解得d =1. 所以{a n }的通项公式为a n =n .

b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.

(2)因为b n

=?????

0,1≤n <10,

1,10≤n <100,

2,100≤n <1 000,

3,n =1 000,

所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.

课时作业10 递推数列及数列求和的综合问题

1.[2019·湖北华中师大一附中期中]已知数列{a n }满足a 1=2,n (a n +1-n -1)=(n +1)(a n

+n )(n ∈N *

).

(1)求证:数列??????

a n n 是等差数列,并求其通项公式;

(2)设b n =2a n -15,求数列{b n }的前n 项和S n .

解析:(1)证明:∵n (a n +1-n -1)=(n +1)(a n +n )(n ∈N *

), ∴na n +1-(n +1)a n =2n (n +1),∴

a n +1n +1-a n

n

=2, ∴数列????

??a n n 是等差数列,其公差为2,首项为2, ∴a n n

=2+2(n -1)=2n .

(2)由(1)知a n =2n 2

,∴b n =2a n -15=2n -15, 则数列{b n }的前n 项和S n =

n (-13+2n -15)

2

=n 2

-14n .

2.[2019·重庆市七校联合考试]已知等差数列{a n }的公差为d ,且关于x 的不等式a 1x 2

-dx -3<0的解集为(-1,3).

(1)求数列{a n }的通项公式; (2)若b n =2

a n +1

2

+a n ,求数列{b n }的前n 项和S n .

解析:(1)由题意知,方程a 1x 2

-dx -3=0的两个根分别为-1和3.

则?????

d a 1

=2-3

a 1

=-3

,解得???

??

d =2

a 1=1

.

故数列{a n }的通项公式为a n =a 1+(n -1)d =1+(n -1)×2=2n -1. (2)由(1)知a n =2n -1,所以b n =2

a n +1

2

+a n =2n

+(2n -1),

所以S n =(2+22

+23

+ (2)

)+(1+3+5+…+2n -1)=2n +1

+n 2

-2.

3.[2019·江西七校第一次联考]设数列{a n }满足:a 1=1,3a 2-a 1=1,且2a n =

a n -1+a n +1

a n -1a n +1

(n ≥2).

(1)求数列{a n }的通项公式;

(2)设数列{b n }的前n 项和为T n ,且b 1=1

2,4b n =a n -1a n (n ≥2),求T n .

解析:(1)∵2a n =a n -1+a n +1a n -1a n +1(n ≥2),∴2a n =1a n -1+1

a n +1

(n ≥2).

又a 1=1,3a 2-a 1=1, ∴1a 1=1,1a 2=32, ∴1a 2-1a 1=12

, ∴????

??1a n 是首项为1,公差为1

2的等差数列.

∴1a n =1+12(n -1)=1

2(n +1), 即a n =

2

n +1

. (2)∵4b n =a n -1a n (n ≥2), ∴b n =

1n (n +1)=1n -1

n +1

(n ≥2),

∴T n =b 1+b 2+…+b n =12+? ????12-13+…+? ??

??1

n -1n +1=1-1n +1 4.[2019·昆明市诊断测试]已知数列{a n }是等比数列,公比q <1,前n 项和为S n ,若a 2

=2,S 3=7.

(1)求{a n }的通项公式;

(2)设m ∈Z ,若S n

解析:(1)由a 2=2,S 3=7得?

????

a 1q =2

a 1+a 1q +a 1q 2

=7

解得????

?

a 1=4q =1

2

或?

??

??

a 1=1

q =2(舍去).

所以a n =4·? ????12n -1=? ??

??12n -3

.

(2)由(1)可知,S n =a 1(1-q n

)1-q =4? ??

?

?1-12n 1-1

2

=8? ??

??1-12n <8. 因为a n >0,所以S n 单调递增.

又S 3=7,所以当n ≥4时,S n ∈(7,8). 又S n

5.[2019·浙江诸暨中学期中]设数列{a n }满足a 1+3a 2+32

a 3+…+3n -1

a n =n

3

,n ∈N *.

(1)求数列{a n }的通项公式;

(2)设b n =????

?

n ,n 为奇数,1

a n

,n 为偶数,求数列{b n }的前n 项和S n .

解析:(1)a 1+3a 2+32

a 3+…+3

n -1

a n =n

3

①,

当n ≥2时,a 1+3a 2+32

a 3+…+3n -2

a n -1=n -13

②,

①-②,得3

n -1

·a n =13(n ≥2),即a n =1

3

n ;

当n =1时,a 1=1

3,符合上式.

所以数列{a n }的通项公式为a n =1

3

n .

(2)由(1)知b n =????

?

n ,n 为奇数,3n

,n 为偶数,

①当n 为奇数时,S n =1+32+3+34+…+3

n -1

+n =(1+n )2·(1+n )

2

9?

?

1-9n -1

2

)

1-9

n 2+2n +14

+9

8

(3n -1

-1).

②当n 为偶数时,S n =1+32+3+34+…+(n -1)+3n

=[1+(n -1)]2·n 2+9(1-9n

2)1-9=n 2

4+

98(3n

-1).

所以数列{b n

}的前n 项和S n

=?????

n 2+2n +14+9

8(3n -1

-1),n 为奇数,

n 2

4+9

8(3n

-1),n 为偶数.

6.[2019·安徽合肥模拟]已知等差数列{a n }的前n 项和为S n ,公差d >0,且a 2a 3=40,a 1

+a 4=13,在公比为q (0

??

160,132,120,18,12.

(1)求数列{a n },{b n }的通项公式;

(2)若数列{c n }满足c n =a n b n ,求数列{c n }的前n 项和T n .

解析:(1)因为{a n }为等差数列,所以a 1+a 4=a 2+a 3=13,又a 2a 3=40,所以a 2,a 3是方程x 2

-13x +40=0的两个实数根.又公差d >0,所以a 2

所以???

?

?

a 1+d =5,a 1+2d =8,

解得???

??

a 1=2,d =3,

所以a n =3n -1,

因为在公比为q (0

??160,132,120,18,12,

所以易知b 1=12,b 3=18,b 5=1

32

.

此时公比q 2

=b 3b 1=14,所以q =12,所以b n =? ??

??12n .

(2)由(1)知a n =3n -1,b n =? ????12n ,所以c n =(3n -1)·? ??

??12n ,

所以T n =2×? ????121+5×? ????122+8×? ????123+…+(3n -1)×? ??

??12n

12T n =2×? ????122+5×? ????123+…+(3n -4)×? ????12n +(3n -1)×? ??

??12n +1,

两式相减,得12T n =2×? ????121+3? ????122+? ????123+…+? ????12n -(3n -1)×? ??

?

?12n +1=1+3×12??????1-? ????12n -1-(3n -1)×? ??

??12n +1=52-? ????12n ×3n +52.

故{c n }的前n 项和T n =5-(3n +5)×? ??

??12n

.

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

求数列通项公式及求和的基本方法

求数列通项公式及求和的基本方法 1.公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有 1n n n a S S -=-(2)n ≥,等差数列或等比数列的通项公式。 例一 已知无穷数列{}n a 的前n 项和为n S ,并且* 1()n n a S n N +=∈,求{}n a 的通项 公式 12n n a ?? = ??? . 反思:利用相关数列{}n a 与{}n S 的关系:11a S =,1n n n a S S -=-(2)n ≥与提设条件,建立递推关系,是本题求解的关键. 2.累加法:利用1211()()n n n a a a a a a -=+-+???-求通项公式的方法称为累加法。累加法是求型如1()n n a a f n +=+的递推数列通项公式的基本方法(()f n 可求前n 项和). 已知112a =,112n n n a a +??=+ ??? * ()n N ∈,求数列{}n a 通项公式. 3. 累乘法:利用恒等式3 21 121 (0,2)n n n n a a a a a a n a a a -=???≠≥求通项公式的方法称为累乘法,累乘法是求型如: 1()n n a g n a +=的递推数列通项公式的基本方法(数列()g n 可求前n 项积). 已知11a =,1()n n n a n a a +=-* ()n N ∈,求数列{}n a 通项公式. n a n =.

反思: 用累乘法求通项公式的关键是将递推公式变形为1()n n a g n a +=. 4.构造新数列: 类型1 )(1 n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1:已知数列{}n a 满足211=a ,n n a a n n ++ =+2 11 ,求n a 1131122n a n n =+-=- 解: 类型2 n n a n f a )(1 =+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例2:已知数列{}n a 满足321=a ,n n a n n a 11+= +,求n a 。23n a n = 解: 变式:(全国I,)已知数列{a n },满足a 1=1,1321)1(32--+???+++=n n a n a a a a (n ≥2),则{a n } 的通项1 ___n a ?=? ? 12 n n =≥ 2 ! n a n = )2(≥n

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

高考数学题型全归纳:数列求和的若干常用方法含答案

数列求和的若干常用方法 数列求和是数列的重要内容之一,也是高考数学的重点考查对象。除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.如某些特殊数列的求和可采用分部求和法转化为等差数列或等比数列的和或用裂项求和法、错位相减法、逆序相加法、组合化归法,递推法等。本文就此总结如下,供参考。 一、分组求和法 所谓分组法求和就是:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。 例1.数列{a n }的前n 项和12-=n n a S ,数列{b n }满)(,311* +∈+==N n b a b b n n n .(Ⅰ)证明数列{a n }为等比数列;(Ⅱ)求数列{b n }的前n 项和T n。 解析:(Ⅰ)由12,,1211-=∴∈-=++*n n n n a S N n a S , 两式相减得:,2211n n n a a a -=++01.,211≠=∈=∴*+n n n a a N n a a 知同, ,21=∴+n n a a 同定义知}{n a 是首项为1,公比为2的等比数列.(Ⅱ),22,211111-+-+-=-+==n n n n n n n n b b b b a ,2,2,2234123012=-=-=-b b b b b b ,221--=-n n n b b 等式左、右两边分别相加得: ,222 121322211 2101+=--+=++++=---n n n n b b n T n n n 2)2222()22()22()22()22(12101210+++++=++++++++=∴-- =.12222 121-+=+--n n n n 例2.已知等差数列{}n a 的首项为1,前10项的和为145,求:. 242n a a a +++ 解析:首先由31452 91010110=?=??+=d d a S 则:6223221)21(232)222(32 2323)1(1224221--?=---=-+++=+++∴-?=?-=-+=+n n n a a a a n d n a a n n n n n n n 二、裂项求和法

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

数列的通项公式与求和的常见方法

数列的通项公式与求和 的常见方法 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

常见数列通项公式的求法 类型一:公式法1(或定义法) 例1. 已知数列{}n a 满足11a =, 12n n a a +-=*()n N ∈,求数列{}n a 的通项公式。 例2.已知数列{}n a 满足12a =,13n n a a += *()n N ∈,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足12a =, 110n n a a +-+=*()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 满足16a =-, 13n n a a +=+*()n N ∈,求数列{}n a 的通项公式。 3. 已知数列{}n a 满足11a =,2 1 2=a , 11112n n n a a a -++=(2)n ≥,求数列{}n a 的通项公式。 4.已知数列{}n a 满足11a =,13n n a a +=*()n N ∈,求数列{}n a 的通项公式。 类型二:(累加法))(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解 例:已知数列{}n a 满足121n n a a n +=++*()n N ∈, 11a =,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足21 1=a ,n a a n n 21+=+, * ()n N ∈求数列{}n a 的通项公式。 2.已知数列{}n a 满足11a =,11 (1) n n a a n n -=+-, (2)n ≥,求数列{}n a 的通项公式。 3.已知数列{}n a 满足1231n n n a a +=+?+, * ()n N ∈,13a =,求数列{}n a 的通项公式。 4.已知数列{}n a 中,12a =,11 ln(1)n n a a n +=++, 求数列{}n a 的通项公式。 类型三:(叠乘法)n n a n f a )(1=+ 解法:把原递推公式转化为)(1 n f a a n n =+,利用累乘法(逐商相乘法)求解 例:在数列{}n a 中,已知11a =,1(1)n n na n a -=+, (2)n ≥,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足321= a ,n n a n n a 1 1+=+,* ()n N ∈,求数列{}n a 的通项公式。 2.已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求数列{}n a 的通项公式。 3.已知数列 {}n a 满足125n n n a a +=?* ()n N ∈, 13a =,求数列{}n a 的通项公式。 类型四:递推公式为n S 与n a 的关系式()n n S f a = 解法:这种类型一般利用 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例. 已知数列{}n a 的前n 项和为n S ,12a =且 12n n S a +=(2)n ≥.求数列{}n a 的通项公式。 1. 已知数列{}n a 的前n 项和为n S ,42n n S a =+, 求数列{}n a 的通项公式。 2.已知数列{}n a 的前n 项和为n S ,251n S n n =+- 求数列{}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,23n n S =+, 求数列{}n a 的通项公式。 类型五:待定系数法 q pa a n n +=+1(其中p ,q 均为常数, )0)1((≠-p pq ) 解法:构造新数列{}n b ; p a a n n =+++λ λ 1解出λ,可 得数列λ+=n n a b 为等比数列 例:已知数列{}n a 中,11=a ,121+=+n n a a ,求数列{}n a 的通项公式。 变式练习: 1. 已知数列{}n a 满足13a =,121n n a a +=- *()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 中,11=a ,6431+=+n n a a ,求数列{}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,且 232n n S a n =-*()n N ∈.求数列{}n a 的通项公式。 类型六:交叉项问题 解法:一般采用求倒数或除以交叉项得到一个新 的等差数列。 例:已知数列{}n a 满足11a =, 122 n n n a a a +=+*()n N ∈,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足11a =, 1(1)n n na n a +=++(1)n n +, *()n N ∈,求数列{} n a 的通项公式。 2. 已知首项都为1的两个数列{}n a 、{}n b (0n b ≠*n N ∈),满足 11120n n n n n n a b a b b b +++-+=,令n n n a c b = 求数列{}n c 的通项公式。 类型七:(公式法2) (n n n p pa a ?+=+λ1)p>0; 解法:将其变形为p p a p a n n n n λ =-++11,即数列?? ????n n p a 为以 p λ 为公差的等差数列; 例. 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足1155+++=n n n a a ,11=a ,求数列{}n a 的通项公式 2.已知数列{}n a 满足n n n a a 3431?+=+,11=a ,求数列{}n a 的通项公式。 数列求和的常用方法 类型一:公式法 例 .已知3 log 1log 23=x ,求32x x x ++???++???+n x 的前n 项和. 变式练习 1.数列}{n a 中,12+=n a n ,求n S . 2.等比数列}{n a 的前n 项和12-=n n S ,求 2 232221n a a a a ++++ . 类型二:分组求和法 例. 求数列的前n 项和: 2321 ,,721,421,1112-+???+++-n n ,… 变式练习 1.已知数列}{n a 中,n n n a 32+=,求n S . 2.已知数列}{n a 中,n n n a 21 )12(++=,求n S . 类型三:倒序相加法 例.求 88sin 3sin 2sin 1sin 2 222+???+++ 89sin 2 +的值. 1.已知x x f += 11 )(,求)3()2()1(f f f ++ 类型四:错位相减法: 例.数列}{n a 中,12)12(-?-n n n a ,求n S . 变式练习 1.求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 2.数列}{n a 的前n 项和为2 2n S n =,}{n b 为等比数列, 且.)(,112211b a a b b a =-= (1)求数列}{n a 和}{n b 的通项公式;

(完整版)数列求和经典题型总结

三、数列求和 数列求和的方法. (1)公式法:①等差数列的前n 项求和公式 n S =__________________=_______________________. ② 等 比 数 列 的 前 n 项 和 求 和 公 式 ? ? ?≠===)1(___________________)1(__________q q S n (2)....++=n n n b a C ,数列{}n C 的通项公式能够分解成几部分,一般用“分组求和法”. (3)n n n C a b =?,数列{}n C 的通项公式能够分解成等差数列和等比数列的乘积,一般用“错 位相减法”. (4)1 n n n C a b = ?,数列{}n C 的通项公式是一个分式结构,一般采用“裂项相消法”. (5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和。适用于形如()()n f a n n 1-=的类型。举例如下: ()()() 5050 12979899100129798991002 22222=++???++++=-+???+-+-= n S 常见的裂项公式: (1) 111)1(1+-=+n n n n ;(2) =+-) 12)(12(1 n n ____________________;(3)1 1++n n =__________________ 题型一 数列求解通项公式 1. 若数列{a n }的前n 项的和1232 +-=n n S n ,则{a n }的通项公式是n a =_________________。 2. 数列}{n a 中,已知对任意的正整数n ,1321-=+???++n n a a a ,则22221n a a a +???++等 于_____________。 3. 数列中,如果数列是等差数列,则________________。 4. 已知数列{a n }中,a 1=1且 3 1 111+=+n n a a ,则=10a ____________。 5. 已知数列{a n }满足)2(1 1≥-= -n a n n a n n ,则n a =_____________.。 6. 已知数列{a n }满足)2(11≥++=-n n a a n n ,则n a =_____________.。 {}n a 352,1,a a ==1 { }1 n a +11a =

2019年高考数学高频考点专题43数列数列的求和4分组求和倒序相加法 文数(含解析)

专题43 数列 数列的求和4 ( 分组求和、倒序相加法) 【考点讲解】 一、具本目标:1.掌握等差、等比数列的求和方法; 2. 掌握等非差、等比数列求和的几种常见方法. 考纲解读:会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和,非等差、等比数列的求和是高考的热点,特别是错位相减法和裂项相消法求和. 二、知识概述: 求数列前n 项和的基本方法 (1)直接用等差、等比数列的求和公式求和; 等差:; 等比: 公比是字母时需要讨论. (理)无穷递缩等比数列时,q a S -= 11 (2)掌握一些常见的数列的前n 项和公式: ; ; ; ; (3)倒序相加法求和:如果一个数列 {}n a ,与首末两端等“距离”的两项的和相等或等于同一个常数, 那么求这个数列的前n 项和即可用倒序相加法. (4)错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么

这个数列的前n 项和即可用此法来求.q 倍错位相减法:若数列{}n c 的通项公式n n n c a b =?,其中{}n a 、 {}n b 中一个是等差数列,另一个是等比数列,求和时一般可在已知和式的两边都乘以组成这个数列的等比数列的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和.这种方法叫q 倍错位相减法. 温馨提示:1.两个特殊数列等差与等比的乘积或商的组合. 2.关注相减的项数及没有参与相减的项的保留. (5)分组求和:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,把数列的每一项分成若干项,使其转化为等差或等比数列,先分别求和,再合并.通项公式为a n = 的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和. 形如: n n b a +其中, (6)并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如类 型,可采用两项合并求解. 合并求和:如求 的和. (7)裂项相消法求和:把数列的通项拆成两项之差,正负相消剩下首尾若干项. 常见拆项: ; . 【真题分析】

数列求通项公式及求和9种方法

数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型一、 n S是数列{}n a的前n项的和 1 1 (1) (2) n n n S n a S S n - = ? =? -≥ ? 【方法】:“ 1 n n S S - -”代入消元消n a。 【注意】漏检验n的值(如1 n=的情况 【例1】.(1)已知正数数列{} n a的前n项的和为n S, 且对任意的正整数n满足1 n a =+,求数列{} n a的通项公式。 (2)数列{} n a中,1 1 a=对所有的正整数n都有 2 123n a a a a n ????= L,求数列{}n a的通项公式 【作业一】 1-1.数列{} n a满足 21* 123 333() 3 n n n a a a a n N - ++++=∈ L,求数列 {} n a的通项公式. (二).累加、累乘型如 1 () n n a a f n - -=, 1 () n n a f n a - =

导等差数列通项公式的方法) 【方法】 1()n n a a f n --=, 12(1)n n a a f n ---=-, ……, 21(2)a a f -=2n ≥, 从而1()(1)(2)n a a f n f n f -=+-++L ,检验1n =的情 况 ()f n =,用累乘法求通项公式(推导等比数列通项公式的方法) 【方法】2n ≥,12 121 ()(1)(2)n n n n a a a f n f n f a a a ---???=?-??L L 即1 ()(1)(2)n a f n f n f a =?-??L ,检验1n =的情 况 【小结】一般情况下,“累加法”(“累乘法”)里只有1n -个等式相加(相乘). 【例2】. (1) 已知21 1=a ,)2(1 1 21≥-+=-n n a a n n ,求 n a . (2)已知数列{}n a 满足1 2n n n a a n +=+,且3 21=a ,求n a .

数列求和方法及典型例题

数列求和方法及典型例题 1.基本数列的前n 项和 ⑴ 等差数列{}n a 的前n 项和:n S ???? ??????+?-++=n b n a d n n na a a n n 211)1(212)( ⑵ 等比数列{}n a 的前n 项和n S : ①当1=q 时,1na S n =;②当1≠q 时,q q a a q q a S n n n --=--=11)1(11; 2. 数列求和的常用方法:公式法;性质法;拆项分组法;裂项相消法;错位相减法;倒序相加法. 题型一 公式法、性质法求和 1.已知n S 为等比数列{}n a 的前n 项和,公比7,299==S q ,则=++++99963a a a a 2.等差数列{}n a 中,公差2 1= d ,且6099531=++++a a a a ,则=++++100321a a a a . [例1]求数列 ,,,,,)21(813412211n n +的前n 项和n S . 题型二 拆项分组法求和 [练2]在数列{} n a 中,已知a 1=2,a n+1=4a n -3n +1,n ∈*N . (1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为S n ,求S n 。 [练].求数列{}2)12(-n 的前n 项和n S . [例].求和:) 1(1431321211+++?+?+?n n . 题型三 裂项相消法求和 [例].求和: n n +++++++++11341231121 . [例]求和:n +++++++++++ 321132112111 [练4]已知数列{}n a 满足()*1112,1N n a a a n n ∈+==+

高考理科数学复习题解析 数列求和

高考数学复习 第四节 数列求和 [考纲传真] 1.掌握等差、等比数列的前n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法. 1.公式法 (1)等差数列的前n 项和公式: S n =n a 1+a n 2 =na 1+n n -12 d ; (2)等比数列的前n 项和公式: 2.分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. 3.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 4.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解. 5.倒序相加法 如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 6.并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002 -992 +982 -972 +…+22 -12 =(100+99)+(98+97)+…+(2+1)=5 050. [常用结论] 1.一些常见的数列前n 项和公式:

(1)1+2+3+4+…+n = n n +1 2 ; (2)1+3+5+7+…+2n -1=n 2 ; (3)2+4+6+8+…+2n =n 2 +n . 2.常用的裂项公式 (1) 1n n +k =1k ? ?? ??1 n -1n +k ; (2)1 4n 2-1=1 2n -1 2n +1=12? ?? ??1 2n -1-12n +1; (3) 1 n +n +1 =n +1-n ; (4)log a ? ?? ??1+1n =log a (n +1)-log a n . [基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2-1=12? ?? ??1 n -1-1n +1.( ) (3)求S n =a +2a 2 +3a 3 +…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( ) (4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 2 1°+sin 2 2°+sin 2 3°+…+sin 2 88°+sin 2 89°=44.5.( ) [答案] (1)√ (2)√ (3)× (4)√ 2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1 n n +1 ,则S 5等于( ) A .1 B.56 C.16 D. 1 30 B [∵a n = 1n n +1=1n -1 n +1 , ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=5 6.] 3.若S n =1-2+3-4+5-6+…+(-1) n -1 ·n ,则S 50=________. -25 [S 50=(1-2)+(3-4)+…+(49-50)=-25.] 4.数列112,314,518,7116,…,(2n -1)+1 2 n ,…的前n 项和S n 的值等于________.

备战高考技巧大全之高中数学黄金解题模板:专题26 数列求和方法答案解析

【高考地位】 数列是高中数学的重要内容,又是高中数学与高等数学的重要衔接点,其涉及的基础知识、数学思想与方法,在高等数学的学习中起着重要作用,因而成为历年高考久考不衰的热点题型,在历年的高考中都占有重要地位。数列求和的常用方法是我们在高中数学学习中必须掌握的基本方法,是高考的必考热点之一。此类问题中除了利用等差数列和等比数列求和公式外,大部分数列的求和都需要一定的技巧。下面,就近几年高考数学中的几个例子来谈谈数列求和的基本方法和技巧。 【方法点评】 方法一 公式法 解题模板:第一步 结合所求结论,寻找已知与未知的关系; 第二步 根据已知条件列方程求出未知量; 第三步 利用前n 项和公式求和结果 例1.设}{n a 为等差数列,n S 为数列}{n a 的前n 项和,已知77=S ,7515=S ,n T 为数列}{n S n 的前n 项和,求n T . 【评析】直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.常用的数列求和公式有:

等差数列前n 项和公式: 11()(1)22 n n n a a n n S na d +-==+. 等比数列前n 项和公式:111(1)(1)(1)11n n n na q S a q a a q q q q =??=--?=≠?--? . 自然数方幂和公式:1123(1)2 n n n +++???+=+ 22221123(1)(21)6 n n n n +++???+=++ 333321123[(1)]2 n n n +++???+=+ 【变式演练1】已知{a n }是等差数列,a 1+a 2=4,a 7+a 8=28,则该数列前10项和S 10等于( ) A.64 B.100 C.110 D.120 【答案】B 【解析】 试题分析:a 1+a 2=4,a 7+a 8=28,解方程组可得11,2a d == 101109101002 S a d ?∴=+ = 考点:等差数列通项公式及求和 方法二 分组法 解题模板:第一步 定通项公式:即根据已知条件求出数列的通项公式; 第二步 巧拆分:即根据通项公式特征,将其分解为几个可以直接求和的数列; 第三步 分别求和:即分别求出各个数列的和; 第四步 组合:即把拆分后每个数列的求和进行组合,可求得原数列的和. 例2. 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项 S n .

数列常见题型总结经典(超级经典)

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )?? ?-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 2、若数列}{n a 的前n 项和32 3-= n n a S ,求该数列的通项公式。 3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3 ,1111≥+==--n a a a n n n ,证明2 13-=n n a

1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2() 1(11≥-+ =-n n n a a n n ,求此数列的通项公式. 3.形如 )(1n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111,1-+= =n n a n n a a )2(≥n ,求数列的通项公式。 1、在数列}{n a 中1111,1-+-= =n n a n n a a )2(≥n ,求n n S a 与。 2、求数列)2(1232,11 1≥+-==-n a n n a a n n 的通项公式。

2020届高考数学一轮复习通用版讲义数列求和

第四节数列求和 一、基础知识批注——理解深一点 1.公式法 (1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2 . 推导方法:倒序相加法. (2)等比数列{a n }的前n 项和S n =????? na 1 ,q =1,a 1(1-q n )1-q ,q ≠1. 推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n = n (n +1) 2 ; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法 (1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减. (2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和. (3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n (4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 二、基础小题强化——功底牢一点 (一)判一判(对的打“√”,错的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2 -1=12? ???1 n -1-1n +1.( ) (3)求S n =a +2a 2+3a 2+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )

高中数学数列求和专题复习知识点习题.doc

数列求和例题精讲 1. 公式法求和 (1)等差数列前 n 项和公式 S n n(a 1 a n ) n(a k 1 a n k ) n( n 1) d 2 2 na 1 2 (2)等比数列前 n 项和公式 q 1 时 S n na 1 q 1 时 S n a 1 (1 q n ) a 1 a n q 1 q 1 q (3)前 n 个正整数的和 1 2 3 n(n 1) n 2 前 n 个正整数的平方和 12 22 32 n 2 n(n 1)(2n 1) 6 前 n 个正整数的立方和 13 23 33 n 3 [ n(n 1) ] 2 ( 1)弄准求和项数 n 的值; 2 公式法求和注意事项 ( 2)等比数列公比 q 未知时,运用前 n 项和公式要分类。 例 1.求数列 1,4,7, ,3n 1 的所有项的和 例 2.求和 1 x x 2 x n 2 ( n 2, x 0 )

2.分组法求和 例 3.求数列 1, 1 2,1 2 3,,1 2 3 n 的所有项的和。 5n 1 (n为奇数 ) 例 4.已知数列a n中,a n ,求 S2m。 ( 2) n (n为偶数 ) 3.并项法求和 例 5.数列a n 中, a n ( 1) n 1 n2,求 S100。 例 6.数列a n中,,a n( 1) n 4n ,求 S20及 S35。 4.错位相减法求和 若a n 为等差数列,b n 为等比数列,求数列a n b n(差比数列)前n项 b n 的公比。 和,可由S n qS n求 S n,其中q 为

例 7.求和12x 3x 2nx n 1(x0 )。 5.裂项法求和 :把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。 例 8.求和 1 1 1 1 。 1 3 3 5 5 7 (2n 1)(2n 1) 例 9.求和 1 1 1 1 2 1 3 2 23 。 n 1n [练习] 1 1 1 1 1 2 3 2 3 n 1 2 1 a n S n 2 1 n 1

常见递推数列通项公式的求法典型例题及习题

.. . 常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -= ---n n a a n n ……

.. . 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- = (2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得: 1-= k a A ,2)1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-1 1)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n

数列求和方法及典型例题

数列求和方法及典型例题 1?基本数列的前n 项和 门佝 aQ 2 1 ⑴等差数列a n 的前n 项和:S n na n(n 1)d an bn ⑵等比数列a n 的前n 项和S n : ①当q 1时,S n na i ;②当q 1时,& a i (1 q n ) a 1 a .q ; ; 1 q 1 q 2.数列求和的常用方法: 公式法:性质法:拆项分组法:裂项相消法;错位相减法;倒序相加法 题型一公式法、性质法求和 a 99 ______________________ 2?等差数列 a n 中,公差d 2,且a1 a 3 a 5 a 99 60,贝V a 1 a ? a 3 a 100 111 [例1]求数列1 一,2 — ,3-, ,(n 右), 的前n 项和S n ? 题型二拆项分组法求和 (1)求数列a n 的通项公式;(2)设数列a n 的前n 项和为S n ,求S n 。 [练]?求数列(2n 1)2的前n 项和S n . [例]?求和: 1 n(n 1) 题型三裂项相消法求和 [例]?求和: 1 , 2 1 1 ■ 4 “3 [例]求和:1 [练4]已知数列a n 满足a 1 1,a n 1 2a n 1 nN 1?已知S n 为等比数列 a n 的前n 项和,公比q 2,S g9 7 ,贝V a 3 a 6 a 9 [练2]在数列 a n 中,已知 a 1=2, a n+1=4a n — 3n + 1, n € N

h 1 O h 1 1 nh 1 n (1)求数列a n的通项公式。⑵若数列b n满足41 4 2 4 3 4 n a n 1 ,求数列 2n 若c n,求数列c n的前n项和S n。 a n a n 1 题型四错位相减法求和 [例]?设数列a n为1 2,2 22,3 2 3,4 2 3 n 2n x 0求此数列前n项的和. [例]?设数列{a n}满足a1+ 3a2 + 32a3 + …+ 3n_ 1a n=£, n€ N*. (1)求数列{a n}的通项公式;⑵设b n= n,求数列{b n}的前n项和S n. [练1]已知数列{ a n}、{b n}满足a11 , a2 3, b n 1 2(n N*),b n a n 1 a n。 b n (1)求数列{b n}的通项公式; (2)数列{ C n}满足C n b n log 2( a n 1)(n * N ),求S n C1 C2 ........ C n。 [练4]等比数列a n中,已知对任意自然数n, a〔a? a3 a n 2n 1,求a;a;a3 2 A.2n 1 B.12n 1 C.4n 1 1 n . D.— 4 1 3 3 a;的值 b n的通项公式。(3)

相关文档
最新文档