课题家蚕分子抗病育种技术-家蚕基因组生物学国家重点室

课题家蚕分子抗病育种技术-家蚕基因组生物学国家重点室
课题家蚕分子抗病育种技术-家蚕基因组生物学国家重点室

家蚕基因组生物学国家重点实验室2012年开放课题申请指南

2011年12月20日

家蚕基因组生物学国家重点实验室

2012年开放课题申请指南

国家重点实验室的主要任务是针对学科发展前沿训国民经济、社会发展及国家安全的重要科技领域和方向,开发创新性研究,取得具有国际影响的系统性原创成果,实现相关重要基础原理的创新、关键技术突破。根据国家要求和重点实验室开放课题管理办法规定,提出重点实验室2012年开放课题申请指南,诚挚欢迎申请者踊跃申报。

1、家蚕重要突变基因及突变机理研究

以克隆家蚕重要突变基因,分析其功能,阐明家蚕重要突变体的突变机理为目标,开展家蚕突变基因的定位克隆;阐明其突变机理,开发突变基因的利用价值。

2、家蚕重要经济性状关键基因克隆和功能研究

以鉴定并克隆家蚕关键品质性状相关基因,阐明其决定性状形成的分子机理为目标,针对蚕丝产量与质量等关键性状,重点鉴定和克隆与蚕丝蛋白合成、变态发育、免疫与抗性等相关的重要功能基因,对候选基因进行功能研究和调控分析,揭示其在性状形成中的分子机理。

3、蚕丝理化性能基础及新蚕丝素材研究

以阐明家蚕丝纤维的理化性能基础、揭示蚕丝纤维形成的机理、开发

新型蚕丝素材为目标,开展家蚕丝纤维的理化性能多尺度、多层次的研究,通过结构解析和化学分析,阐释家蚕丝纤维从液态丝蛋白形成固态丝纤维的分子机理,重点开发高强度、高性能的新型蚕丝纤维素材和基于蚕丝蛋白的生物材料。

4、家蚕实用新型遗传素材和品种创新研究

以创制实用新型遗传素材,培育优质和特色品种为目标,综合集成家蚕基因组和功能基因组研究成果,围绕家蚕关键品质性状,研究确立可供人为遗传操作的关键分子靶标,并利用其创制高产量、高品质、强健性或特殊用途家蚕遗传素材,为培育可资推广利用的新型实用品种提供基础素材。

5、鳞翅目昆虫比较基因组学研究

以家蚕基因组为参照,研究鳞翅目昆虫特异性基因家族,重要和特异生理和生化过程,化学信息传导、农药抗性机制,为寻找害虫防治新的靶标提供依据。

6、家蚕分子抗病育种技术

围绕家蚕分子抗性育种技术的构建,以寻找病原与家蚕相互作用的关键基因、病原增殖的关键基因以及病原的诱导型启动子等研究为基础,通

过家蚕转基因技术,获得高效的家蚕分子抗病育种材料。

7、微环境在肿瘤干细胞形成中的功能研究

以解析肿瘤发生过程中微环境对肿瘤干细胞的作用为目标,应用对肿瘤干细胞特异性标志物的筛选,建立有效的鉴定分离肿瘤干细胞技术平台;通过体内和体外实验探讨微环境对肿瘤干细胞的自我更新和多向分化能力的影响;建立肿瘤干细胞及肿瘤细胞代谢的评价体系。

8、家蚕神经干细胞的在家蚕体内的定位及功能分析

围绕神经干细胞在家蚕不同发育时期的定位,利用家蚕全基因组平台筛选家蚕神经干细胞的标记物,通过免疫组化、RNAi等相关的实验技术确定神经干细胞在家蚕不同发育时期的位置以及相关基因在神经干细胞发育期间的功能。

9、桑树代谢基因组学能研究

以分离克隆桑树重要次生物质合成、代谢关键基因的功能验证为目标,重点研究寻找桑树重要次生物质合成、代谢途径关键基因,利用基因超量表达、RNAi、真核表达等技术,研究桑树重要次生物质合成、代谢关键基因的功能。

10、桑树抗性形成的分子机理研究

围绕桑树生态功能的分子机理的解析,重点研究探明桑树抗旱、抗冻、

耐涝、耐贫瘠、耐盐碱等非生物抗性以及生物抗性的分子机理,或阐明桑树保持水土、防风固沙的形成机理。

11、家蚕病原微生物侵染宿主的机制研究

围绕家蚕病原微生物的致病机理,重点开展宿主免疫识别及免疫应答、病原微生物与宿主的互作、病原毒力因子对于宿主细胞的调控等研究,为构建蚕病现代生物防控体系奠定基础。

12、家蚕微粒子病诊断新技术研究

围绕建立微粒子病现代检测技术体系的构建,进行探测靶标的分析鉴定以及靶标库的构建,并利用现代免疫生物传感器、医学成像(包括扫描、射线)或其它新技术,建立蚕类微粒子病的快速、特异、简便诊断新方法。

项目遴选及资助方式

1.课题申请

每年重点实验室通过网站面向社会发布申请时间及申请条件。

2.课题遴选

对于符合条件的申请项目,重点实验室通过组织通过评审和专家会评等方式,确定当年获批准项目。

3.课题资助额度及年限

一般课题10-20万元,课题年限2年

重点课题30-50万元,课题年限2年

4.课题管理

对于获批准项目,重点实验室将采取一定方式的中期检查及结题评估验收。

(完整版)分子生物学实验技术考试题(卷)库

一、名词解释 1.分配常数:又称分配系数,是指一种分析物在两种不相混合溶剂中的平衡常数。 2.多肽链的末端分析:确定多肽链的两末端可作为整条多肽链一级结构测定的标志,分为氨基端分析和羧基端分析。 3.连接酶:指能将双链DNA中一条单链上相邻两核苷酸连接成一条完整的分子的酶。 4.预杂交:在分子杂交实验之前对杂交膜上非样品区域进行封闭,用以降低探针在膜上的非特异性结合。 5.反转录PCR:是将反转录RNA与PCR结合起来建立的一种PCR技术。首先进行反转录产生cDNA,然后进行常规的PCR反应。 6.稳定表达:外源基因转染真核细胞并整合入基因组后的表达。 7.基因敲除:是指对一个结构已知但功能未知或未完全知道的基因,从分子水平上设计实验,将该基因从动物的原基因组中去除,或用其它无功能的DNA片断取代,然后从整体观察实验动物表型,推测相应基因的功能。 8.物理图谱:人类基因组的物理图是指以已知核苷酸序列的DNA片段为“路标”,以碱基对(bp,kb,Mb)作为基本测量单位(图距)的基因组图。 9.质谱图:不同质荷比的离子经质量分析器分开后,到检测器被检测并记录下来,经计算机处理后所表示出的图形。 10.侧向散射光:激光束照射细胞时,光以90度角散射的讯号,用于检测细胞内部结构属性。

11.离子交换层析:是以离子交换剂为固定相,液体为流动相的系统中进行的层析。 12.Edman降解:从多肽链游离的N末端测定氨基酸残基的序列的过程。 13.又称为限制性核酸内切酶(restriction endonuclease):是能够特异识别双链DNA序列并进行切割的一类酶。 14.电转移:用电泳技术将凝胶中的蛋白质,DNA或RNA条带按原位转移到固体支持物,形成印迹。 15.多重PCR:是在一次反应中加入多对引物,同时扩增一份模板样品中不同序列的PCR 过程。 16.融合表达: 在表达载体的多克隆位点上连有一段融合表达标签(Tag),表达产物为融合蛋白(有分N端或者C端融合表达),方便后继的纯化步骤或者检测。 17.同源重组:发生在DNA同源序列之间,有相同或近似碱基序列的DNA分子之间的遗传交换。 18.遗传图谱又称连锁图谱(linkage map),它是以具有遗传多态性的遗传标记为“路标”,以遗传学距离为图距的基因组图。 19.碎片离子:广义的碎片离子为由分子离子裂解产生的所有离子。 20.前向散射光:激光束照射细胞时,光以相对轴较小角度向前方散射的讯号用于检测细胞等离子的表面属性,信号强弱与细胞体积大小成正比。 21.亲和层析:利用共价连接有特异配体的层析介质分离蛋白质混合物中能特异结合配体的目的蛋白或其他分子的一种层析法。(利用分子与其配体间特殊的、可逆性的亲和结合

细胞生物学常用研究方法

Southern杂交: 是体外分析特异DNA序列的方法,操作时先用限制性内切酶将核DNA或线粒体DNA切成DNA片段,经凝胶电泳分离后,转移到醋酸纤维薄膜上,再用探针杂交,通过放射自显影,即可辨认出与探针互补的特殊核苷序列。 将RNA转移到薄膜上,用探针杂交,则称为Northern杂交。 RNAi技术: 是指在进化过程中高度保守的、由双链RNA(double-stranded RNA,dsRNA)诱发的、同源mRNA高效特异性降解的现象。由于使用RNAi技术可以特异性剔除或关闭特定基因的表达,所以该技术已被广泛用于探索基因功能和传染性疾病及恶性肿瘤的基因治疗领域。可以利用siRNA或siRNA表达载体快速、经济、简便的以序列特异方式剔除目的基因表达,所以现在已经成为探索基因功能的重要研究手段。 Southern杂交一般利用琼脂糖凝胶电泳分离经限制性内切酶消化的DNA片段,将胶上的DNA变性并在原位将单链DNA片段转移至尼龙膜或其他固相支持物上,经干烤或者紫外线照射固定,再与相对应结构的标记探针进行杂交,用放射自显影或酶反应显色,从而检测特定DNA分子的含量]。 扫描电镜技术:是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与样品表面结构有关,次级电子由探测器收集,信号经放大用来调制荧光屏上电子束的强度,显示出与电子束同步的扫描图像。 细胞显微分光光度计:用来描述薄膜、涂层厚度超过1微米的物件的光学性能的显微技术。 免疫荧光技术:将免疫学方法(抗原抗体特异结合)与荧光标记技术结合起来研究特异蛋白抗原在细胞内分布的方法。由于荧光素所发的荧光可在荧光显微镜下检出,从而可对抗原进行细胞定位。 电镜超薄切片技术:超薄切片是为电镜观察提供极薄的切片样品的专门技术。用当代较好的超薄切片机,大多数生物材料,如果固定、包埋处理得合适,可以切成50-100微米的超薄切片。 Northern印迹杂交(Northern blot)。这是一种将RNA从琼脂糖凝胶中转印到硝酸纤维素膜上的方法。 放射自显影技术:放射自显影技术是利用放射性同位素的电离辐射对乳胶(含AgBr或AgCl)的感光作用,对细胞内生物大分子进行定性、定位与半定量研究的一种细胞化学技术。放射自显影技术(radioautography;autoradiography)用于研究标记化合物在机体、组织和细胞中的分布、定位、排出以及合成、更新、作用机理、作用部位等等。其原理是将放射性同位素(如14C和3H)标记的化合物导入生物体内,经过一段时间后,将标本制成切片或涂片,涂上卤化银乳胶,经一定时间的放射性曝光,组织中的放射性即可使乳胶感光。 核磁共振技术:可以直接研究溶液和活细胞中相对分子质量较小(20,000 道尔顿以下)的蛋白质、核酸以及其它分子的结构,而不损伤细胞。 DNA序列分析:在获得一个基因序列后,需要对其进行生物信息学分析,从中尽量发掘信

课题家蚕分子抗病育种技术-家蚕基因组生物学国家重点室

家蚕基因组生物学国家重点实验室2012年开放课题申请指南 2011年12月20日 家蚕基因组生物学国家重点实验室

2012年开放课题申请指南 国家重点实验室的主要任务是针对学科发展前沿训国民经济、社会发展及国家安全的重要科技领域和方向,开发创新性研究,取得具有国际影响的系统性原创成果,实现相关重要基础原理的创新、关键技术突破。根据国家要求和重点实验室开放课题管理办法规定,提出重点实验室2012年开放课题申请指南,诚挚欢迎申请者踊跃申报。 1、家蚕重要突变基因及突变机理研究 以克隆家蚕重要突变基因,分析其功能,阐明家蚕重要突变体的突变机理为目标,开展家蚕突变基因的定位克隆;阐明其突变机理,开发突变基因的利用价值。 2、家蚕重要经济性状关键基因克隆和功能研究 以鉴定并克隆家蚕关键品质性状相关基因,阐明其决定性状形成的分子机理为目标,针对蚕丝产量与质量等关键性状,重点鉴定和克隆与蚕丝蛋白合成、变态发育、免疫与抗性等相关的重要功能基因,对候选基因进行功能研究和调控分析,揭示其在性状形成中的分子机理。 3、蚕丝理化性能基础及新蚕丝素材研究 以阐明家蚕丝纤维的理化性能基础、揭示蚕丝纤维形成的机理、开发

新型蚕丝素材为目标,开展家蚕丝纤维的理化性能多尺度、多层次的研究,通过结构解析和化学分析,阐释家蚕丝纤维从液态丝蛋白形成固态丝纤维的分子机理,重点开发高强度、高性能的新型蚕丝纤维素材和基于蚕丝蛋白的生物材料。 4、家蚕实用新型遗传素材和品种创新研究 以创制实用新型遗传素材,培育优质和特色品种为目标,综合集成家蚕基因组和功能基因组研究成果,围绕家蚕关键品质性状,研究确立可供人为遗传操作的关键分子靶标,并利用其创制高产量、高品质、强健性或特殊用途家蚕遗传素材,为培育可资推广利用的新型实用品种提供基础素材。 5、鳞翅目昆虫比较基因组学研究 以家蚕基因组为参照,研究鳞翅目昆虫特异性基因家族,重要和特异生理和生化过程,化学信息传导、农药抗性机制,为寻找害虫防治新的靶标提供依据。 6、家蚕分子抗病育种技术 围绕家蚕分子抗性育种技术的构建,以寻找病原与家蚕相互作用的关键基因、病原增殖的关键基因以及病原的诱导型启动子等研究为基础,通

(完整版)第三章细胞生物学研究方法总结

第三章 细胞生物学研究方法 第一节细胞形态结构的观察方法 分辨率: 肉眼0.2mm 光镜0.2μm 电镜0.2nm 一、光学显微镜技术 (light microscopy ) (一)普通复式光学显微镜技术 a . 光学放大系统:目镜和物镜 光镜 照明系统:光源、折光镜和聚光镜,有时另加各种滤光片 组成 机械和支架系统 b .分辨率D :分开两个质点间的最小距离。 0.61 λ 其中: λ为光源波长 D = α为物镜镜口张角 N ·sinα/2 N 为介质折射率 c.普通光镜样品制备: 固定(如甲醛)、包埋(如石蜡)、切片(约5μm)、染色 (二)荧光显微镜技术(fluorescence microscopy 光镜水平对特异蛋白定性定位) 1.FM 包括免疫荧光技术和荧光素直接标记技术 2.不同荧光素的激发光波长范围不同,所以同一样品可以同时用两种以上荧光 素标记。荧光显微镜中只有激发荧光可以成像。 (三)激光共焦点扫描显微镜技术(laser scanning confocal microscopy ) 1.特点:瞬间只用很小一部分光照明,保证只有来自焦平面的光成像,成像清晰 分辨率比普通荧光显微镜提高1.4-1.7倍。 通过改变焦平面位置可以观察较厚样品的内部构造,进行三维重构。 2. 共焦点是指物镜和聚光镜同时聚焦到同一小点。 (四)相差和微分干涉显微镜技术 1.相差显微镜(phase-contrast microscopy ) 光线通过不同密度物质产生相位差,相差显微镜将其变成振幅差。它与普通光镜 的不同是其物镜后有一块“相差板”,夸大了不同密度造成的相位差。 2.微分干涉显微镜(differential -interference microscopy )——用的是平面偏振光 光经棱镜折射成两束,通过样品相邻部位,再经棱镜汇合,使样品厚度上的微 小 差别转化为明暗区别,使样品产生很强的立体感。 二、电子显微镜技术(electron microscope ) (一)电子显微镜基本知识 1.与光镜的基本区别:电子束作光源、电磁透镜聚焦、镜筒高真空、荧光屏等成像 2.分辨本领与有效放大倍数: 分辨率0.2nm ,比肉眼放大有效放大倍 数 分辨本领指电镜处于最佳状态下的分辨率。 实际情况中,分辨率受样品限制。 3.电子显微镜 电子束照明系统:电子枪、聚光镜 基本构造 成像系统:物镜、中间镜、投影镜等 真空系统:用两级真空泵不断抽气 记录系统:荧光屏或感光胶片成像 (二)主要电镜制样技术介绍

学院logo设计

家蚕基因组生物学国家重点实验室LOGO有奖征集通知 2011-11-17 15:36:12 来源: 作者: 【大中小】浏览:4995次评论:0条核心提示:为了更好推进家蚕基因组生物学国家重点实验室(State Key Laboratory of Silkworm Genome Biology,SKLSGB)建设,突出国家重点实验室的功能与任务,方便交流与宣传,实验室决定公开有奖征集实验室LOGO设计方案,欢迎全校师生参与设计,踊跃投稿。有关家蚕基因组生.. 为了更好推进家蚕基因组生物学国家重点实验室(State Key Laboratory of Silkworm Genome Biology,SKLSGB)建设,突出国家重点实验室的功能与任务,方便交流与宣传,实验室决定公开有奖征集实验室LOGO设计方案,欢迎全校师生参与设计,踊跃投稿。有关家蚕基因组生物学国家重点实验室的信息请参阅附件。 一、设计内容:家蚕基因组生物学国家重点实验室LOGO 二、作品要求 1、作品内涵深刻,设计简约,创意新颖、有强烈的视觉冲击力和直观的整体美感[力避图案繁复或过度抽象,蚕基因组生物学国家重点实验室(State Key Laboratory of Silkworm Genome Biology,SKLSGB)的中英文标志可同时出现]。应能突出实验室“团结协作、潜心钻研、自主创新”的精神风貌,能高度概括学科的特色并具有现代气息和国际视野; 2、作品设计请参照其他国家重点实验室的Logo设计,设计的Logo风格不但应与其他所有国家重点实验室大致风格相协调,但也要体现个性,避免混淆; 3、Logo色调推荐以蓝色为主,最多不超过两种颜色; 4、参选作品须提交设计的电子稿件,包括:彩色标准图(标明色标)、黑白标准图、制作比例图,图片格式可为:JPG、TIF或PSD,图片分辨率在600×600以上,要求高清晰,易分辨,并附设计创意说明; 5、作品应便于放大缩小及制作,可应用于各种印刷品、办公用品、网站、建筑物外观等平面设计使用,并具强烈的可辨性; 6、所有投稿作品必须保证作品的原创性,不得侵犯他人著作权。一经发现,将取消其参加本次活动资格,已发奖金将全额追回,所有法律责任由投稿者本人承担; 7、来稿一律不退,请作者自行留底。 三、作品提交方式 1、征集时间从2011年11月19日起至2011年12月10日截止; 2、参选作品可直接交到家蚕基因组生物学国家重点实验室办公室[西南大学蚕学宫3楼行政办公室(38教旁)]或发送邮件至:yylweii@https://www.360docs.net/doc/1715190761.html,,来稿请在邮件主题中注明“SKLSGB-Logo征集活动”; 3、投稿者请使用真实姓名、详细注明单位及联系地址和电话。 四、作品评选与奖励 对所有应征作品将进行初评,入围作品将通过进一步评选,以确定家蚕基因组生物学国家重点实验室(筹)的室徽标志。入选作品以及初评入围作品将给予奖励。 1、入围奖9名,分别颁发奖金人民币500元和荣誉证书; 2、优秀奖一名(入围奖中产生),颁发奖金人民币5000元和荣誉证书。 五、相关说明 1、在logo设计方案最终修订阶段,优秀奖获得者有义务根据实验室要求对作品进行修改完善; 2、参选作品一经入选获奖并被采用后,作品的所有权、使用权和附属权利归属家蚕基

常用分子生物学和细胞生物学实验技术介绍

常用分子生物学和细胞生物学实验技术介绍 (2011-04-23 11:01:29)转载▼ 标签:分子生物学细胞生物学常用实用技术基本实验室技术生物学实验教育 常用的分子生物学基本技术 核酸分子杂交技术 由于核酸分子杂交的高度特异性及检测方法的灵敏性,它已成为分子生物学中最常用的基本技术,被广泛应用于基因克隆的筛选,酶切图谱的制作,基因序列的定量和定性分析及基因突变的检测等。其基本原理是具有一定同源性的原条核酸单链在一定的条件下(适宜的温室度及离子强度等)可按碱基互补原成双链。杂交的双方是待测核酸序列及探针(probe),待测核酸序列可以是克隆的基因征段,也可以是未克隆化的基因组DNA和细胞总RNA。核酸探针是指用放射性核素、生物素或其他活性物质标记的,能与特定的核酸序列发生特异性互补的已知DNA或RNA片段。根据其来源和性质可分为cDNA探针、基因组探针、寡核苷酸探针、RNA探针等。 固相杂交 固相杂交(solid-phase hybridization)是将变性的DNA固定于固体基质(硝酸纤维素膜或尼龙滤膜)上,再与探针进行杂交,故也称为膜上印迹杂交。 斑步杂交(dot hybridization) 是道先将被测的DNA或RNA变性后固定在滤膜上然后加入过量的标记好的DNA或RNA探针进行杂交。该法的特点是操作简单,事先不用限制性内切酶消化或凝胶电永分离核酸样品,可在同一张膜上同时进行多个样品的检测;根据斑点杂并的结果,可以推算出杂交阳性的拷贝数。该法的缺点是不能鉴定所测基因的相对分子质量,而且特异性较差,有一定比例的假阳性。 印迹杂交(blotting hybridization) Southern印迹杂交:凝胶电离经限制性内切酶消化的DNA片段,将凝胶上的DNA 变性并在原位将单链DNA片段转移至硝基纤维素膜或其他固相支持物上,经干烤固定,再与相对应结构的已标记的探针进行那时交反应,用放射性自显影或酶反应显

家蚕MLP基因的克隆及其结构分析

HEREDITAS (Beijing) 2007年9月,29(9): 1097―1102 ISSN 0253-9772 https://www.360docs.net/doc/1715190761.html, 研究报告 收稿日期: 2007?02?09; 修回日期: 2007?03?13 基金项目: 国家自然科学基金项目(编号:30371087)和国家高技术研究发展计划(863计划)项目资助(编号:2006AA10A119) [Supported by the National Natural Science Foundation of China (No. 30371087) and the National Hi-Tech Research and Development Program (863) of China (No. 2006AA10A119)] 作者简介: 刘岩(1976?), 女, 河南温县人, 助研, 博士, 研究方向:昆虫分子生物学。E-mail: mayanly@https://www.360docs.net/doc/1715190761.html, 通讯作者: 孟智启(1953?), 男, 浙江杭州人, 研究员, 研究方向:昆虫分子生物学。E-mail: mengzq2001@https://www.360docs.net/doc/1715190761.html, DOI: 10.1360/yc-007-1097 家蚕MLP 基因的克隆及其结构分析 刘岩, 牛宝龙, 翁宏飚, 沈卫锋, 何丽华, 齐晓朋, 孟智启 浙江省农业科学院蚕桑研究所, 杭州 310021 摘要: 利用生物信息学的方法快速获得家蚕MLP (Muscle LIM protein, MLP)基因cDNA 电子序列, 经RT-PCR 生物验证正确, 登录GenBank (No. DQ311195)。MLP 基因cDNA 长2 327 bp, ORF 全长1 485 bp, 编码产生494个氨基酸。该MLP 基因组DNA 含有11个外显子, 10个内含子, 所有内含子/外显子边界都符合典型的GT/AG 剪切模式。MLP 基因编码的蛋白富含Gly (14.4%), 分子量约为53.03 kDa, 等电点(PI )为8.29。通过BLAST 分析发现该基因编码的家蚕肌肉LIM 蛋白, 含有5个保守的LIM 结构域, 家蚕的另一种LIM 蛋白(AAR23823)含一个LIM 结构域, 两者可能是通过可变剪切产生; 后者可能通过竞争作用调节前者在肌细胞中的功能。MLP 的克隆为进一步研究其体内功能奠定了基础。 关键词: 家蚕; MLP ; 表达序列标签(EST); LIM 结构域 Cloning and structural analysis of MLP in the silkworm, Bombyx mori LIU Yan, NIU Bao-Long, WENG Hong-Biao, SHEN Wei-Feng, HE Li-Hua, QI Xiao-Peng, MENG Zhi-Qi Sericulture Research Institute , Zhejiang Academy of Agricultural Sciences , Hangzhou 310021, China Abstract : The LIM domain is found in a wide variety of eukaryotic proteins that regulate gene expression and cell differ-entiation during development. Muscle LIM protein (MLP ) gene in Bombyx mori has been cloned by blasting its EST data-base and PCR test in present report. The resulting sequence covers 2 327 bp of cDNA (GenBank accession No. DQ311195). It has a complete open reading fragment and encodes a 494 amino acid protein. Genomic DNA sequence contains 11 exons and 10 introns, with intron splicing following the GT-AG rule. M.W. and PI of the predicted MLP in Bombyx mori are 53.03 kDa and 8.29 respectively. A single LIM domain linked to a glyscine-rich region is found in a previously deposited LIM protein (AAR23823) in Bombyx mori . MLP identified in this report encodes a protein with five tandem LIM-glycine modules. The two LIM proteins could be produced by alternative splicing and both are probably involved in muscle cell differentiation. This work provides foundation for further research on the in vivo function of MLP. Keywords: Bombyx mori ; MLP ; expression sequence tag (EST); LIM domain LIM 是3种转录因子线虫Lin-11、鼠Isl-1和线虫Mec-3名称首字母的缩写[1,2]。LIM 家族蛋白都含有一个或多个保守的LIM 结构域。LIM 结构域是由一段 富含半胱氨酸的(CX2CX16-23HX2CX2CX2C- X16-23CX2-3(C/H/D))序列组成[3,4], 其中保守的半胱氨酸、组氨酸及天冬氨酸残基形成具有Zn 2+结合

第三章细胞生物学研究方法总结

第三章 细胞生物学研究方法 第一节 细胞形态结构的观察方法 分辨率: 肉眼0.2mm 光镜0.2μm 电镜0.2nm 一、光学显微镜技术 (light microscopy ) (一)普通复式光学显微镜技术 a . 光学放大系统:目镜和物镜 光镜 照明系统:光源、折光镜和聚光镜,有时另加各种滤光片 组成 机械和支架系统 b .分辨率D :分开两个质点间的最小距离。 0.61 λ 其中: λ为光源波长 D = α为物镜镜口张角 N ·sin α/2 N 为介质折射率 c.普通光镜样品制备: 固定(如甲醛)、包埋(如石蜡)、切片(约5μm )、染色 (二)荧光显微镜技术(fluorescence microscopy 光镜水平对特异蛋白定性定位) 1. FM 包括免疫荧光技术和荧光素直接标记技术 2. 不同荧光素的激发光波长范围不同,所以同一样品可以同时用两种以上荧光 素标记。荧光显微镜中只有激发荧光可以成像。 (三)激光共焦点扫描显微镜技术(laser scanning confocal microscopy ) 1.特点:瞬间只用很小一部分光照明,保证只有来自焦平面的光成像,成像清晰 分辨率比普通荧光显微镜提高1.4-1.7倍。 通过改变焦平面位置可以观察较厚样品的内部构造,进行三维重构。 2. 共焦点是指物镜和聚光镜同时聚焦到同一小点。 (四)相差和微分干涉显微镜技术 1.相差显微镜(phase-contrast microscopy ) 光线通过不同密度物质产生相位差,相差显微镜将其变成振幅差。它与普通光镜的不同是其物镜后有一块“相差板”,夸大了不同密度造成的相位差。 2.微分干涉显微镜(differential -interference microscopy )——用的是平面偏振光 光经棱镜折射成两束,通过样品相邻部位,再经棱镜汇合,使样品厚度上的微小 差别转化为明暗区别,使样品产生很强的立体感。 二、电子显微镜技术(electron microscope ) (一) 电子显微镜基本知识 1.与光镜的基本区别:电子束作光源、电磁透镜聚焦、镜筒高真空、荧光屏等成像 2.分辨本领与有效放大倍数: 分辨率0.2nm ,比肉眼放大 分辨本领指电镜处于最佳状态下的分辨率。 实际情况中,分辨率受样品限制。 3.电子显微镜 电子束照明系统:电子枪、聚光镜 基本构造 成像系统:物镜、中间镜、投影镜等 真空系统:用两级真空泵不断抽气 记录系统:荧光屏或感光胶片成像 (二) 主要电镜制样技术介绍 制样要求:①要求样品很薄(数十纳米) ②要求保持精细结构 1.超薄切片技术 ①固定:保持样品形态结构,甚至超微和分子水平上结构。 固定剂:常用饿酸(OsO 4)和戊二醛等,另外有物理方法如高频微波。

40个基因组完全重测序揭示蚕的驯化事件及其相关基因

编者按:我国家蚕基因组研究再获重大突破,研究成果再登《science 》杂志,影响广泛。本刊特设专栏刊发该论文中文译文以及相关评述,以满足广大读者的需求。 40个基因组完全重测序揭示蚕的驯化事件及其相关基因 3 夏庆友1,23,郭一然33,张泽1,23,李东1,33,玄兆伶33,李卓33,代方 银1,李英睿3,程道军1,李瑞强3,4,程廷才1,2,蒋涛3,赛琳?贝凯5+,徐 讯3,刘春1,查幸福1,樊伟3,林英1,沈以红1,蒋岚3,杰弗里?詹森5,伊 恩丝?黑尔曼5,唐思5,赵萍1,徐汉福1,余昶3,张国捷3,李俊3,曹建 军3,刘仕平1,何宁佳1,周妍3,刘慧3,赵静3,叶辰3,杜周和1,潘国庆1, 赵爱春1,邵浩靖3,曾巍3,吴平3,李春峰1,潘敏慧1,李晶晶3,殷旭阳3, 李大为3,王娟3,郑会松3,王文3,张秀清3,李松岗3,杨焕明3,鲁成1,瑞 斯摩?尼尔森4,5,周泽扬1,6,汪建3,向仲怀1!,王俊3,4! (1.农业部蚕桑学重点实验室,生物技术学院,西南大学,重庆 400715,中国;2.农学与生命科学研究院,重庆大学,重庆 400044,中国;3.深圳北京基因组研究 所,深圳 518083,中国;4.哥本哈根大学生物系,Universitetsparken 15,2100 Kbh ,丹麦;5.综合生物学与统计学系,伯克利加州大学,伯克利,CA 94720,美 国;6.重庆师范大学,重庆 400047,中国) 此论文报道了家蚕遗传变异图谱的构建,并由此推测出家蚕的单一驯化事件,鉴定了在家蚕驯化过程中起重要作用的基因。 利用40个家蚕品种和野蚕构建了单碱基分辨率家蚕遗传变异图谱,每一个品种的测序达到3倍覆盖度,覆盖基因组的99.88%。我们鉴定了约1600万个SN P ,及许多插入缺失和结构变异,发现家蚕与野蚕在遗传上具有显著差异,但其本身保留了很高水平的遗传变异,暗示着大量的个体参与了一个较短的驯养过程。我们也在354个候选基因中鉴定出了选择信号,这些候选基因可能在驯养过程中起着重要作用,其中一些基因在丝腺、中肠、精巢中高量表达。这些数据加深了我们对家蚕驯养过程的理解,并可能促进家蚕在害虫控制和生物反应器方面的应用。 家蚕具有一个中等大小的基因组,为432Mb ,是鳞翅目的代表,其超过5000年的驯养历史,有着重要的经济价值(如产丝和生物反应器)。由于人类的选择,家蚕进化成了完全依赖于人类的物种,并且在世界上保存了1000多个家蚕品种,考古和遗传学证据表明家蚕起源于中国野蚕,驯化最早出现在亚洲,亚洲是现代蚕丝文明和家蚕驯养的起源地。 家蚕的起源是一个长期争论的问题,以前有限的生物化学和分子生物研究并没有解决此争论。共有两种假设,都认为家蚕是一次驯养过程,但是在祖先品种上观点不一致。其中一种 1 第29卷 第3期2009年 9月 蚕 学 通 讯Newsletter of Sericult ural Science 3 这些作者为同等贡献作者。  +当前地址:人类遗传学研究所,加利福尼亚大学,旧金山,加利福尼亚94143-0794,美国。 !通讯作者,Email :wangj @https://www.360docs.net/doc/1715190761.html, (J.W.)和xbxzh @https://www.360docs.net/doc/1715190761.html, (Z.X.)。

细胞生物学实验方法与技术

第二节细胞生物学实验方法与技术 细胞生物学是生命科学中的重要分支,它以生命基本单位细胞为研究对象,应用近代物理、化学和实验生物学方法,从显微、亚显微和分子水平来揭示细胞生命活动及规律,其中包括细胞的生长、发育、分裂、分化、遗传、变异(包括癌变)、兴奋、运动、代谢、衰老与死亡等基本生命现象,并且利用与调控细胞的行为活动,已达到为生产实践尤其为医药卫生事业服务。当前细胞生物学与医药保健事业联系的较为紧密的热点问题主要有以下几种:1)真核细胞基因结构及其表达调控;2)细胞膜、膜系、受体与信号传递研究;3)细胞生长、分化、衰老、癌变、死亡,尤其是程序性细胞死亡的研究;4) 细胞工程,包括基因工程及体细胞核移植的研究。 一、细胞培养常用方法 1、细胞原代培养(primay culture)又称初代培养,即直接从机体取下细胞、组织、或器官、让他们在体外维持与生长。原代细胞的特点是细胞或组织刚离开机体,他们的生物状态尚未发生很大的改变,一定程度上可反映他们在体内的状态,表现出来源组织或细胞的特性,因此用于药物实验尤其是药物对细胞活动、结构、代谢、有无毒性或杀伤作用等研究是极好工具。常用的原代培养方法有组织快培养法及消化培养法。前者方法简单,细胞也较易生长,尤其是培养心肌有时能观察到心肌组织块的搏动。细胞从组织块外长并铺满培养皿或培养瓶后即可进行传代。 2、细胞的传代培养当细胞生长至单层汇合时,便需要进行分离培养否则会因无繁殖空间、营养耗竭而影响生长,甚至整片细胞脱离基质悬浮起来直至死亡。为此当细胞达到一定密度时必须传代或再次培养,目的是借此繁殖更多的细胞,另一方面是防止细胞的退化死亡。 二、器官培养方法 器官培养(organ culture)是指用特殊的装置使器官、器官原基或它们的一部分在体外存活,幷保持其原有的结构和功能。器官培养可模拟体内的三维结构,用于观察组织间的相互反应、组织与细胞的分化以及外界因子包括药物对组织细胞的作用。 器官培养方法很多,最经典的方法即表玻皿器官培养法;一种最常用的方法是不锈钢金属网格法及Wolff培养法和扩散盒培养法,实验者可根据情况选择采用。 三、放射自显影术测定 放射自显影术(autoradiography)是利用放射性同位素电离辐射对核子乳胶的感光作用,显示标本或样品中放射物的分布、定量以及定位的方法。放射性同位素能在紧密接触的感光乳胶中记录下它存在的部位和强度,准确显示出形态与功能的定位关系。现已可将放射自显影术与电镜以及生物分子结合起来。不但可以研究放射性物质在组织和细胞内的分布代谢,而且可以揭示核酸合成及其损伤等改变,目前已在生命科学各领域被广泛应用。 四、染色体分析技术 染色质或染色体是遗传物质在细胞水平的形态特征。前者是指当细胞处于合成期时遗传物质经碱性染料着色后,呈现出细丝状弥漫结构;当细胞进入分裂期时,染色质细丝高度螺旋化凝聚为形态有特征的染色体。特别是在分裂中期,复制后的染色体达到最高程度的凝聚,称为中期染色,是进行染色体形态观察分析的最佳时期。染色体分析应用领域越来越广,主要用于以下几方面:1)为临床诊断提供新手段;2)研究不育和习惯性流产发生的遗传基础; 3) 通过检查胎儿的染色体,预防有染色体异常患儿出生(先天愚型);4)根据染色体的多肽性进行亲子和异型配子的起源研究;结合DNA重组技术可以将基因定位于染色体的具体

细胞生物学技术

第二章第三章第四章电镜 1.电镜、分辨率、透射电子、二次电子、电子束、超薄切片、免疫电镜技术 电镜:以电电子束为光源,电磁场为透镜,利用电子散射产生的信号进行显微成像的具有高分辨率和放大倍率的显微镜。电镜用于研究组织和细胞的超微结构 分辨率:用于表示人眼和光学仪器能够辨别的两点之间最小距离的标志。人0.2mm,光镜0.2um。分辨率是衡量电镜性能的重要指标。 透射电子:当样品厚度小于100nm时,部分电子可穿透样品,将穿透样品的电子叫做透射电子。(利用透射电子信息成像的称为透射电镜) 二次电子:在入射电子的轰击下,样品表面5-50 nm 深度激发出来的电子称为二次电子。(利用二次电子信息成像的称为扫描电镜) 电子束:又称电子射线,电子束带负电荷,具有光的波动性、可折射性。电镜利用电子束作为“光源”成像。 超薄切片:将环氧树脂包埋的组织块切成100nm以下的薄切片称为超薄切片,超薄切片经电子染色后在TEM下观察组织细胞内部的超微结构。 immune electron microscopy:免疫电镜技术是将免疫学方法与电子显微镜技术相结合,利用抗原与抗体特异结合的特性,在超微结构水平定位特异大分子的技术。 2.电镜在医学领域的应用 观察细胞器和组织器官的超微结构;观察病毒和细菌等;观察组织细胞超微病理结构;用于临床疾病的诊断;观察生物材料复合体及模式生物等 3. 从分辨率、放大倍率、成像信号、样品制备、图像特点和应用几方面对透射电镜和扫描电镜进行比较 TEM分辨率为0.1nm,放大倍率是100万倍,成像信号为透射电子信号成像,样品制备过程复杂,要制成50~100nm的超薄切片,图像特点为二维结构,平面图像,TEM用于观察组织细胞内部的超微结构。 SEM分辨率为0.6nm,放大倍率是80万倍,成像信号为二次电子信号成像,样品制备方法较简单,标本可大而厚,图像特点为三维结构图像,立体感较强,SEM 用于观察样品表面及其断面立体形貌。

细胞培养与细胞生物学常用技术

细胞培养与细胞生物学 常用技术

目录 实验一软琼脂克隆形成 (2) 实验二细胞划痕愈合 (4) 实验三细胞活力检测 (6) 实验四细胞免疫荧光 (8) 实验五细胞转染 (12) 实验六细胞总RNA提取 (15) 实验七逆转录反应 (18) 实验八Real Time PCR……………………………………………20

实验一软琼脂克隆形成 【原理】 正常情况下,贴壁生长的细胞必须依附在固体基质上才能生长,将其悬浮于液体或半固体基质中培养则难以增殖,这种现象称为锚定依赖性生长(anchorage dependentgrowth)。而某些细胞在在被转化后,例如恶性肿瘤细胞,可以不依赖固体基质,在半固体(琼脂、甲基纤维素)培养基中也可增殖并形成细胞集落,这种现象称为锚定非依赖性生长(anchorage independentgrowth)。锚定非依赖性生长是肿瘤细胞的一种标识,也是检测恶性转化细胞较为准确的标志之一。软琼脂克隆形成技术,则是在体外水平检测肿瘤细胞和转化细胞系锚定非依赖性生长能力最常用的手段之一。该技术利用低熔点琼脂糖模拟体内细胞所处的半固体状态,并将细胞消化成单细胞,使细胞处于不贴壁及单细胞状态。经过三周左右的生长,通过比较克隆形成率,来比较不同细胞或同一种细胞在不同的处理之后的转化及锚定非依赖生长的能力。因此,软琼脂克隆形成实验是肿瘤研究领域一种重要的体外检测技术。 【材料】 1、仪器:CO2培养箱、倒置显微镜、超净工作台、酒精灯、高压灭菌锅、水浴锅; 2、试剂:DMEM培养基、胎牛血清、无水乙醇、75%乙醇、PBS 溶液、0.25%胰酶溶液、低熔点琼脂糖;

细胞生物学期末考试重点题库

1、细胞生物学:应用现代物理学、化学和生物学的方法与技术,以细胞作为研究对象,从显微、超微与分子水平不同层次上,研究细胞的结构、功能及其相互关系,以动态的观点探索细胞的基本生命活动规律的科学。 2、形态研究:显微结构、超微结构、分子结构三水平有机结合。细胞各部分的代谢规律、结构与功能的相关性(例:人的血红细胞)、整体与动态的思想模式。 3、显微结构:在0.2um分辨率的光镜下能够观察到的物质结构。例:细胞大小和形态、细胞核、核仁、染色体、高尔基体(高二集体复合体)。(记属于显微结构的例子) 4、超微结构:普通光学显微镜分辨率(0.2um)下无法观察到,只有在电镜下才能观察到的精细结构。例:核糖体、溶酶体(点)、染色体纤维、细胞骨架、(线)内质网、质膜、核膜(面)。(记属于超微结构的例子) 5、人的血红细胞:无细胞核、圆饼状、细胞骨架强大、穿梭于人的毛细血管壁。 6、药学细胞生物学:药学细胞生物学是研究与药学相关的细胞生物学理论和应用新模式的一门交叉学科,它采用先到细胞生物学的理论、技术和方法,应用于新药开发、药物质量监督以及药品临床应用等的一门基础与应用的学科。 7、细胞的基本共性:细胞膜、核糖体、核酸、一分为二的分列方式 (1)所有的细胞表面均有由磷脂双分子层与镶嵌蛋白质构成的生物膜,即细胞膜。 (2)所有的细胞都含有2种核酸,即DNA与RNA作为遗传信息复制与转录的载体。 (3)所有细胞的增值都是以一分为二的方式进行分裂。 (以上如果是简答题全答,如果是填空题(1)(2)(3)不答。)8、细胞体积守恒定律:动物器官的大小主要取决于细胞数量,与细胞数量成正比,而与细胞的大小无关。 9、原核细胞的基本特点:(1)遗传信息小:遗传信息载体仅由一个环状DNA构成。(2)细胞内没有分化为以膜为基础的、只有专门结构与功能的膜性细胞器和细胞核膜。 10、真核细胞的基本结构体系:(1)以脂质及蛋白质成分为基础的生物膜结构系统。(质膜、内膜系统)。(2)以核酸与蛋白质复合体形成的遗传信息储存和表达系统(染色质、核仁、核糖体)。(3)有特异蛋白质分子装配构成的细胞骨架系统(细胞质骨架、细胞核骨架、细胞膜骨架)。

常用的分子生物学基本技术

常用的分子生物学基本技术 核酸分子杂交技术 由于核酸分子杂交的高度特异性及检测方法的灵敏性,它已成为分子生物学中最常用的基本技术,被广泛应用于基因克隆的筛选,酶切图谱的制作,基因序列的定量和定性分析及基因突变的检测等。其基本原理是具有一定同源性的原条核酸单链在一定的条件下(适宜的温室度及离子强度等)可按碱基互补原成双链。杂交的双方是待测核酸序列及探针(probe),待测核酸序列可以是克隆的基因征段,也可以是未克隆化的基因组DNA和细胞总RNA。核酸探针是指用放射性核素、生物素或其他活性物质标记的,能与特定的核酸序列发生特异性互补的已知DNA或RNA片段。根据其来源和性质可分为cDNA探针、基因组探针、寡核苷酸探针、RNA探针等。 固相杂交 固相杂交(solid-phase hybridization)是将变性的DNA固定于固体基质(硝酸纤维素膜或尼龙滤膜)上,再与探针进行杂交,故也称为膜上印迹杂交。 斑步杂交(dot hybridization) 是道先将被测的DNA或RNA变性后固定在滤膜上然后加入过量的标记好的DNA或RNA探针进行杂交。该法的特点是操作简单,事先不用限制性内切酶消化或凝胶电永分离核酸样品,可在同一张膜上同时进行多个样品的检测;根据斑点杂并的结果,可以推算出杂交阳性的拷贝数。该法的缺点是不能鉴定所测基因的相对分子质量,而且特异性较差,有一定比例的假阳性。 印迹杂交(blotting hybridization) Southern印迹杂交:凝胶电离经限制性内切酶消化的DNA片段,将凝胶上的DNA变性并在原位将单链DNA片段转移至硝基纤维素膜或其他固相支持物上,经干烤固定,再与相对应结构的已标记的探针进行那时交反应,用放射性自显影或酶反应显色,检测特定大小分子的含量。可进行克隆基因的酶切图谱分析、基因组基因的定性及定量分析、基因突变分析及限制性长度多态性分析(RELP)等。 Northern印迹杂交:由Southerm印杂交法演变而来,其被测样品是RNA。经甲醛或聚乙二醛变性及电泳分离后,转移到固相支持物上,进行杂交反应,以鉴定基中特定mRNA分子的量与大小。该法是研究基因表达常用的方法,可推臬出癌基因的表达程度。 差异杂交(differential hybridization) 是将基因组文库的重组噬菌体DNA转移至硝酸纤维素膜上,用两种混合的不同cDNA探针(如:转移性和非转移性癌组织的mRNA逆转录后的cDNA)分别与滤膜上的DNA杂交,分析两张滤膜上对应位置杂交信息以分离差异表达的基因。适用于基因组不太复杂的真核生物(如酵母)表达基因的比较,假阳性率较低。但对基因组非常复杂的盐酸核生物(如人),则因工作量太大,表达的序列所占百分比较低(仅5%左右),价值不大。

细胞生物学复习要点

<<细胞生物学>>复习要点 第一章绪论 1、了解细胞生物学的主要研究内容及其目前研究的一些重大的研究问题 2、简要概述细胞学说的主要内容 3、从细胞学发展简史中,你如何认识细胞学说建立的重要意义? 4、了解细胞生物学分支学科的主要研究内容 第二章细胞基本知识概要 1、如何理解细胞是生命活动的基本单位? 2、细胞的基本特征是什么? 3、试比较原核细胞与真核细胞的基本结构特征? 第三章细胞生物学的研究方法 1细胞形态的基本观察方法有那些其作用是什么? 2举出3-4种细胞生物学的研究方法及其它们的作用。 3细胞工程包括那些方面的技术? 4简述细胞(组织)培养方法的主要步骤及其应用。 5 名词:原代培养,原代细胞,细胞系,细胞株,克隆,组织培养,细胞拆合,细胞融合,非细胞体系 第四章细胞质膜 1、生物膜的结构特征是什么?这些特征与它的生理功能有什么联系? 2、生物膜的化学组成成分是什么,其中膜蛋白有几种类型? 3、什么是膜的不对称性?膜结构不对称性有何生生物学意义? 4、膜的流动性的生理意义何在? 5、以血红细胞为例谈谈膜骨架的基本结构和功能? 6、用什么方法分离膜蛋白,如何获得有功能活性的膜蛋白? 7、什么是荧光漂白技术及其作用 8、名词解释:细胞膜与生物膜、流动镶嵌模型、血影,脂质体,脂筏 第五章物质的跨膜运输 1、阐述小分子物质跨膜运动的三种方式:简单扩散、协助扩散、主动运输,比 较它们的特点及生物学意义。 2、生物细胞内外离子的浓度不同,生物体通过什么机制维持细胞内外的离子浓 度差的?请举例说明。 3、简述大分子物质的运输类型及特点? 4、简述膜转运蛋白的类型及其特点? 5、比较P-型离子泵,V-型质子泵,F-型质子泵, ABC超家族 6、简述肌细胞是怎样维持细胞质基质中较低的Ca离子浓度? 7、名称解释:ATP驱动泵、协同运输、反向协同运输、胞饮泡与吞噬泡 第七章真核细胞内膜系统,蛋白质分选与膜泡运输 1、什么是细胞质基质,试述它的结构组成、特点及其生理功能的关系? 2、比较粗面内质网和光面内质网的形态结构与功能。

分子生物学常用实验技术

分子生物学常用实验技术 第一章质粒DNA的分离、纯化和鉴定 第二章 DNA酶切及凝胶电泳 第三章大肠杆菌感受态细胞的制备和转化 第四章 RNA的提取和cDNA合成 第五章重组质粒的连接、转化及筛选 第六章基因组DNA的提取 第七章 RFLP和RAPD技术 第八章聚合酶链式反应(PCR)扩增和扩增产物克隆 第九章分子杂交技术 第十章测序技术 第一章质粒DNA的分离、纯化和鉴定 第一节概述 把一个有用的目的DNA片段通过重组DNA技术,送进受体细胞中去进行繁殖和表达的工具叫载体(Vector)。细菌质粒是重组DNA技术中常用的载体。 质粒(Plasmid)是一种染色体外的稳定遗传因子,大小从1-200kb不等,为双链、闭环的DNA分子,并以超螺旋状态存在于宿主细胞中。质粒主要发现于细菌、放线菌和真菌细胞中,它具有自主复制和转录能力,能在子代细胞中保持恒定的拷贝数,并表达所携带的遗传信息。质粒的复制和转录要依赖于宿主细胞编码的某些酶和蛋白质,如离开宿主细胞则不能存活,而宿主即使没有它们也可以正常存活。质粒的存在使宿主具有一些额外的特性,如对抗生素的抗性等。F质粒(又称F因子或性质粒)、R质粒(抗药性因子)和Col质粒(产大肠杆菌素因子)等都是常见的天然质粒。 质粒在细胞内的复制一般有两种类型:紧密控制型(Stringent control)和松驰控制型(Relaxed control)。前者只在细胞周期的一定阶段进行复制,当染色体不复制时,它也不能复制,通常每个细胞内只含有1个或几个质粒分子,如F因子。后者的质粒在整个细胞周期中随时可以复制,在每个细胞中有许多拷贝,一般在20个以上,如Col E1质粒。在使用蛋白质合成抑制剂-氯霉素时,细胞内蛋白质合成、染色体DNA复制和细胞分裂均受到抑制,紧密型质粒复制停止,而松驰型质粒继续复制,质粒拷贝数可由原来20多个扩增至1000-3000个,此时质粒DNA占总DNA的含量可由原来的2%增加至40-50%。 利用同一复制系统的不同质粒不能在同一宿主细胞中共同存在,当两种质粒同时导入同一细胞时,它们在复制及随后分配到子细胞的过程中彼此竞争,在一些细胞中,一种质粒占优势,而在另一些细胞中另一种质粒却占上风。当细胞生长几代后,占少数的质粒将会丢失,因而在细胞后代中只有两种质粒的一种,这种现象称质粒的不相容性(Incompatibility)。但利用不同复制系统的质粒则可以稳定地共存于同一宿主细胞中。 质粒通常含有编码某些酶的基因,其表型包括对抗生素的抗性,产生某些抗生素,降解复杂有机物,产生大肠杆菌素和肠毒素及某些限制性内切酶与修饰酶等。 质粒载体是在天然质粒的基础上为适应实验室操作而进行人工构建的。与天然质粒相比,质粒载体通常带有一个或一个以上的选择性标记基因(如抗生素抗性基因)和一个人工合成的含有多个限制性内切酶识别位点的多克隆位点序列,并去掉了大部分非必需序列,使分子量尽可能减少,以便于基因工程操作。大多质粒载体带有一些多用途的辅助序列,这些用途包括通过组织化学方法肉眼鉴定重组克隆、产生用于序列测定的单链DNA、体外转录外源DNA序列、鉴定片段的插入方向、外源基因的大量表达等。一个理想的克隆载体大致应有下列一些特性:(1)分子量小、多拷贝、松驰控制型;(2)具有多种常用的限制性内切酶的单切点;(3)能插入较大的外源DNA片段;(4)具有容易操作的检

相关文档
最新文档