矩阵的秩

矩阵的秩
矩阵的秩

授课题目:第五节 矩阵的秩

教学目的:理解矩阵的秩的定义,掌握秩的求法,重点掌握线性方程组有解的充

要条件.

教学重点:掌握秩的求法和线性方程组有解的充要条件. 教学难点:线性方程组有解的充要条件. 课时安排:2学时.

授课方式:多媒体与板书结合. 教学基本内容:

2.5 矩阵的秩

1概念

定义1 在矩阵m n A ?中任取k 行k 列,位于这些行列交叉处的2

k 个元素按原次序组成的

k 阶行列式称为A 的k 阶子式.则A 中不为零的子式的最高阶数称为矩阵A 的秩,记为()R A ,并规定(0)0

R =.

注1) 若()R A r =,则A 中至少有一个r 阶子式不等于零;而若存在1r +阶子式,则所有的1r +阶子式全为0.

2)对m n A ?,有()m in (,)R A m n ≤. 3)()()T

R A R A =.

4) 对于n 阶方阵A ,()R A n =的充分必要条件是0A ≠,故也称0A ≠的A 为满秩矩阵.

5) 定义1 对给定的m n ?矩阵A ,称其非零子式的最高阶数为A 的秩,记作()R A ,并规定(0)0R =.一些教科书称这样定义的秩为矩阵的行列式秩. 在第4章建立向量组秩的概念后,分别定义矩阵的行秩与列秩,届时指出矩阵秩就是其列向量组的秩或行向量组的秩.

6) 若发现A 有一k 阶非零子式,则必成立()R A k ≥.

2 计算

直接按定义去计算矩阵的秩,需要求出矩阵最高阶的非零子式,在一般情形下这决非轻而易举的事情,但对形状特殊的行阶梯形矩阵而言,这却是极为简单的. 性质1 行阶梯形矩阵的秩等于其非零行的行数. 定理1 矩阵经行初等变换后,其秩不变. 推论1 矩阵经列初等变换后,其秩不变.

推论2 设A 为m n ?矩阵,B 为m 阶满秩方阵, C 为n 阶满秩方阵,则

()()()()r A r B A r A C r B A C ===.

推论3 若m n A ?有标准形分解式A P N Q =,其中??

?

?

??=000r E N ,则()R A r =.

定理2 任意m n A ?矩阵都可以仅用行初等变换化为行阶梯形矩阵. 3 计算矩阵A 的秩的方法:

用行初等变换将A 化成行阶梯形矩阵, 则行阶梯形矩阵中非零行的行数就是A 的秩. 例1 把下列矩阵化为行最简形矩阵:

(1) ???

?

? ?

?--34

31302

1201; (2)???

?

?

??----17

4

03430

1320

;(3) ????

??

? ??---------12

4

3

3

023221453334311

. 解 (1) ????

?

?

?--34

31302

12011

31

2)3()2(~r r r r -+-+????? ?

?---02

031001201 )2()1(32~-÷-÷r r ????? ??--010*********

23~r r -????? ??--3000310012013

3~÷r ???

?

?

?

?--1000310012

013

23~r r +????? ??-10

00010012013

12

1)2(~

r r r r +-+????

? ?

?100001000001

. (2) ????

? ?

?----17

4

03430

1320 1

31

2)2()3(2~

r r r r -+-+??????

?

?---310

031001320

21233~r r r r ++?????

??00

310010020

21~÷r ????

? ??00

0031005010

.

(3) ?

???

???

??---------12

4

3

3

23221453334311141312323~r

r r r r r ---????

???

??--------101050

663008840034311 )5()3()4(432~-÷-÷-÷r r r ?

???

???

??-----22

1

022100

2210034311

2

423

213~r

r r

r r r ---????

??

?

??---00

000002210032011. 练习1在秩是r 的矩阵中,有没有等于0的1r -阶子式?有没有等于0的r 阶子式?

解 在秩是r 的矩阵中,可能存在等于0的1r -阶子式,也可能存在等于0的r 阶子式.

例如,

???????

? ??=00

00000100

0010

0001α,()3R α=同时存在等于0的3阶子式和2阶子式.

练习2 从矩阵A 中划去一行得到矩阵B ,问B A ,的秩的关系怎样? 解 ()()R A R B ≥. 设r B R =)(,且B 的某个r 阶子式0

≠r

D .矩阵B 是由矩阵A

划去一行得到的,所以在A 中能找到与r D 相同的r 阶子式r D ,由于0r r D D =≠,故而

()()

R A R B ≥.

练习3 求作一个秩是4的方阵,它的两个行向量是)0,0,1,0,1(,)0,0,0,1,1(-. 解 设54321,,,,ααααα为五维向量,且1(1,0,1,0,0)α=,2(1,1,0,0,0)α=-,

则所求方阵可为12

3

45

A ααααα?? ?

?

?= ? ?

???

,秩为4,不妨设34455(0,0,0,,0)

(0,0,0,0,)(0,0,0,0,0)

x x ααα=??

=??=?,取451x x ==, 故满足条件的一个方阵为???????

? ??-00

1000001000

00011

00101.

练习4 求下列矩阵的秩,并求一个最高阶非零子式:

(1) ???

?? ?

?---443

11211

2013; (2) ????

?

??-------81

5073131213123

.

解 (1) ???

??

??---44

311211

2013

r r 2

1?~????

?

?

?---44

3120131211 322131311211

12

1046504650

4

6

500

~~r r r r r r ------??- ?-- ? ?-?

?

?? ???

秩为2,二阶子式41

113

-=-.

(2) ????? ?

?-------8150

731312

23123???

?

??---------1527

33

21

5911701

4431

27~122

113

r r r r r r

32

~

13441

30711950

0r r -----?? ???

秩为2.二阶子式7

1

223-=-.

解非齐次线性方程组A x b =的一般方法

1)设()()R A R A r ==,则A 中必有一个r 阶子式不等于零,其对应的r 阶方子矩阵可经行初等变换化为r 阶单位阵r E ,用行初等变换把增广矩阵A 化为包含一个r 阶单位阵

r E 的梯矩阵在子块B 的分块矩阵)(c B B =.

2)方程组B x c =的解极易求出,它就是方程组A x b =的解,因为方程组 A x b =与方程组B x c =同解.

例1求解下列非齐次线性方程组:

(1) ?

??

??=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ???

??

??-=+-=-+-=+-=++;

694,13283,542,

432z y x z y x z y x z y x

解 (1) 对系数的增广矩阵施初等行变换,有

4212133831210~0101134113080006---????

?

?

--

?

? ? ?-?

??

?

,()2R A =而()3R B =,故方程组无解. (2) 对系数的增广矩阵施行初等行变换:

???

???

? ??-----69

1

4

1328354214132????

??

?

??--00

000021101201~

即得???

??=+=--=z z z y z x 212,亦即??

??

?

??-+????? ??-=????? ??021112k z y x .

练习1 λ取何值时,非齐次线性方程组

1231232

1231x x x x x x x x x λλλλλ

?++=?

++=??

++=?,(1)有唯一解;(2)无解;(3)有无穷多个解?

解 (1) 01

1

11

1

1≠λ

λ

λ,即1,2λ≠-时方程组有唯一解.

(2) )()(B R A R <,

????

? ?

?=21

11

1

111

λλ

λλ

λB ???

? ??+-+----2

2

)

1)(1()

2)(1(0

)

1(11

011

~λλλλλλλλλ

λ

由0)1)(1(,0)2)(1(2

≠+-=+-λλλλ,得2λ=-时,方程组无解.

(3) 3)()(<=B R A R ,由0)1)(1()2)(1(2

=+-=+-λλλλ,得1λ=时,方程组有无穷多个解.

练习2 (1) 设???

??

?

?--=?????

??--=1322

31

,11

3122

214B A ,求X 使B AX =.

(2) 设???

?

??-=????? ??---=13

2

321,433312

120B A ,求X 使B XA =.

解 (1) ()?????

??----=13

223111

3

122

214B A 初等行变换

~10010201015300

112

4?? ?-- ? ??

?

1

10

215

3

124X A B -?? ?∴==-- ? ??

?

.

(2) ???

?

??---==-47

4

1121

BA

X . 参考书目:

1. 贺铁山等,线性代数(第二版),中山大学出版社,2004年8月.

2.吴赣昌,大学数学立体化教材:线性代数(经济类),中国人民大学出版社,2006年3月.

3.同济大学应用数学系,工程数学(第四版),高等教育出版社,2003年7月. 作业和思考题: Page63:16—21

课后小结:掌握秩的求法和判断线性方程组是否有解等问题.

行(列)满秩矩阵的性质及其应用

摘要 本文将行(列)满秩矩阵的性质与可逆矩阵(即满秩矩阵)的相关性质进行比较,归纳出行(列)满秩矩阵在解线性方程组、矩阵秩的证明及矩阵分解等方面的若干应用,使其不受方阵的正方性限制,而应用起来又与可逆矩阵相差无几。 关键词:可逆矩阵;行(列)满秩矩阵;矩阵的秩;线性方程组

Abstract This article will row (column) the nature of the full rank matrix and invertible matrix (i.e. full rank matrix) properties of comparison, induction travel (column) full rank matrix in solving linear equations, the proof of matrix rank and some applications of matrix decomposition, etc.to make it without being limited by a phalanx of tetragonality, and used up and reversible. Key words: Invertible matrix; Row (column) full rank matrix; Matrix rank; The System of linear equations.

目录 1 引言 (1) 2 预备知识 (2) 3 可逆矩阵的性质及其应用 (3) 4 行(列)满秩矩阵的性质 (5) 5 行(列)满秩矩阵的若干应用 (11) 5.1 在矩阵秩的证明中的应用 (11) 5.2 在齐次线性方程组中的应用 (12) 5.3 在非齐次线性方程组中的应用 (15) 5.4 在几类特殊矩阵分解方面的应用 (17) 参考文献 (20)

从不同的角度看矩阵的行秩与列秩

tianpeng.72pines./ 从不同的角度看矩阵的行秩与列秩——兼论如何学好线性代数 线性代数中,有那么几个神秘又神奇的东西,总是让初学它的人琢磨不透,无法理解,其中就有矩阵的行向量和列向量的关系,为什么一个矩阵的行向量里有多少个线性无关的向量,列向量里就一定也有多少个线性无关的向量呢?或者考虑稍微简单一点的问题,一个方阵,为什么行向量线性无关或线性相关列向量就一定也线性无关或相关呢?行秩为何等于列秩? 这本来应该是一个基本又简单的事实。但是,请回忆一下你当初初学线性代数时的容编排顺序,是怎么引入这个问题的,当时又是怎样解决这个问题的? 传统的教材编写思路是从线性方程组开始整个线性代数话题的引入,这个过程中定义行列式和矩阵,用n 元数组引入向量,线性相关和无关等概念,讨论解存在的条件,解的结构,等等。总之,一切以方程组为核心,给人的感觉就是线性代数就是方程组的理论,一切讨论的目的都是为了解决小小的方程组问题。 在这个过程中,有一个矩阵行秩等于列秩的命题,此时学生只了解方程组理论和行列式,因此这时对这个问题的解释当然也无法离开方程组或行列式。下面简述两个典型的教材中的证明方法: 第一个证明来自志杰《高等代数与解析几何》。 证明:首先,矩阵的初等行变换不改变矩阵的行秩,初等列变换不改变矩阵的列秩。这是由向量组的初等变换不改变向量组的线性相关或无关性保证的,即将某个向量乘以非零的倍数、将某个向量加到另一个向量上,都不改变向量组的线性相关或无关性。 接着证明矩阵的初等行变换不改变矩阵的列秩。 设A是m*n阶矩阵,任意从A的n个列向量中选取k个列向量a1,a2,…,ak,它们线性无关的充要条件是线性方程组a1×1+a2×2+…+akxk=0只有零解。而对矩阵A进行初等行变换不改变此方程组的解,因此不改变这k个列向量的线性相关或无关性。这说明A的列向量的秩在矩阵的初等行变换中不变。同理矩阵的初等列变换不改变矩阵的行秩。 接下来,可以把A经过初等行变换和初等列变为只有对角线上有1或0,其它位置都为0的矩阵,在这个过程中行秩和列秩都不改变,从这个矩阵中看出行秩等于列秩,因此原来的矩阵行秩也等于列秩。 第二个证明来自北大数学系几何与代数教研室前代数小组编《高等代数》 证明:考虑线性方程组AX=0,首先证明如果未知数的个数超过A的行秩,那么它有非零解。设m*n阶矩阵A的行秩为r,考虑方程组AX=0,它由m个方程n个未知数组成。从A的行向量中选取r个线性无关的行向量,重新组合成矩阵B,那么方程组AX=0和BX=0同解。这时,如果B的列数大于行数,那么方程组BX=0必有非零解,从而AX=0也有非零解。 接着证明行秩等于列秩。设m*n阶矩阵A的行秩为r,列秩为s。考虑A的任意r+1个列向量组成的矩阵C,因为C的行秩不大于r(因为C的行向量都是A的行向量的一部分分量组成的),所以CX=0有非零解,这说明这r+1个列向量线性相关。所以A的列秩最大为r,即s<=r。同理可证r<=s,因此s=r。 有了行秩等于列秩的性质,完全可以用行秩或列秩定义矩阵的秩了。编写教材的人和老师们都认为,只要能够顺利定义出矩阵的秩,这个证明就足以满足初学时的需要了,既没有必要又没有条件再将它深入地挖掘下去。 但是它仍然让我困惑,即使把书上的这个证明看得明明白白,也不理解为什么行秩等于列秩。因为向量是个几何的概念,现在这个证明中看不出一点几何上向量的影子,这两个例子都依赖于线性方程组理论,都离不开高斯消元法,都是代数上的推导。虽然从代数上推导出了这个结果,但是在几何上我依然无法接受这个结果。矩阵的行向量和列向量“从图形上”到底是什么关系?可不可以让我一下子就能看出来它们的

矩阵与线性方程组问题1矩阵的初等变换与矩阵的秩有什么关系答

矩阵与线性方程组 问题1:矩阵的初等变换与矩阵的秩有什么关系? 答:对矩阵施行初等变换后得到的矩阵与原矩阵等价,而等价的矩阵有相同的等价标准型,从而有相同的秩。换言之,对矩阵施行初等变换不改变秩。于是利用这一性质,可以求出矩阵的秩。其过程可以描述为A 经过一系列初等变换化为阶梯形,阶梯形中非零行的行数即为矩阵的秩。 问题2: 线性方程组解的判定与矩阵的秩之间有何关系? 答:齐次线性方程组0=?x A n m 必有解: 当n A r =)(时,只有零解; 当n A r <)(时,有非零解。 非齐次线性方程组b x A n m =?分有解和无解的情况,有解时分有唯一解还是无穷多解: b x A n m =?无解)~()(A r A r ≠? b x A n m =?有解)~()(A r A r =? 有解的情况下:b AX n A r A r =?==)~()(有唯一解; b AX n A r A r =?==)~()(有无穷多解。 其中),(~ b A A = 为增广矩阵。 问题3:已知A 是n m ?矩阵,B 是s n ?矩阵,且O AB =,证明:.)()(n B r A r ≤+ 分析:由于齐次线性方程组的基础解系中解向量的个数和系数矩阵的秩有直接关系,因此关于矩阵的秩的问题可以转化为齐次线性方程组的问题来处理。 证明:将B 按列分块),...,,(21s b b b B =,则由题可知 O Ab Ab Ab b b b A AB s s ===),...,,(),...,,(2121 即s i Ab i ,...,2,1,0== 换言之,B 的每个列向量均是齐次线性方程组0=Ax 的解,即s b b b ,...,,21均可由0=Ax 的一组基础解系线性表示,设r A r =)(,则r n -ξξξ,...,,21为0=Ax 的一组基础解系。

工程数学教案25矩阵的初等行变换和矩阵的秩

教案头 教学详案 一、回顾导入(10分钟) ——复习线性方程组的消元解法引入新课。 二、主要教学过程(70分钟,其中学生练习20分钟) 一:矩阵的初等行变换 对矩阵实施下列三种变换,称为初等行变换: (1) 互换矩阵两行的位置(交换第i,j 两行,记作j i r r ?); (2) 以非零数k 乘矩阵某一行的所有元素(k 乘第i 行记作i kr ); (3) 把矩阵某一行的元素的k 倍加到另一行的对应得元素上(第i 行的k 倍加到第j 行上记作i j kr r +) 练习1:设矩阵?????? ? ??-----=324751122413A ,将矩阵进行下列初等行变换: (1) 交换矩阵A 的第1行与第3行的位置; (2) 用数3乘矩阵A 的第2行; (3) 将矩阵A 的第3行的(-4)倍加到第4行上。 注意:对矩阵进行初等行变换以后,新矩阵与原来矩阵不再相等。故元矩阵与新矩阵之间只能用箭头连接,而不能用等号连接。 练习2:用矩阵的初等行变换将矩阵A ???? ? ??--=121011322化为简化阶梯形矩阵。 将矩阵化为简化阶梯型矩阵的程序为:

(1) 首先使第一行第一个非零元为1,然后将其下方的元素全部化为零;在将第二行第一个非零元的下 方元素全部化为零;以此类推,直到将矩阵化为阶梯型矩阵。 (2) 从非零行的最后一行起,将该行第一个非零元化为1,并将其上方的元素全部化为零:再将倒数第 二个非零行的第一个非零元化为1,并将其上方的元素全部化为零;直到矩阵化为阶梯型矩阵。 注:1)实际解题的时候,两步骤不用分开。 2)矩阵的阶梯型矩阵不唯一,但简化阶梯型矩阵是唯一的。 练习3:用矩阵的初等行变换将矩阵A ?????? ? ??-------=11370030311111014321化为简化阶梯形矩阵 二:矩阵的秩 矩阵秩是矩阵本身的属性,是矩阵部分的一个重要概念。需认真把握。 1) 矩阵秩的概念: 将一矩阵化为阶梯型矩阵后,阶梯型矩阵中非零行的行数,成为矩阵的秩,记作)(A r 例 求方程组的系数矩阵 的秩 练习4:求矩阵A ?????? ? ??-------=111204244024023171033的秩。 注:矩阵秩的概念有许多定义,这些定义都是等价的。 三、归纳总结(10分钟) 对矩阵进行初等行变换以后,新矩阵与原来矩阵不再相等。故元矩阵与新矩阵之间只能用箭头连接,而不能用等号连接; 矩阵的阶梯型矩阵不唯一,但简化阶梯型矩阵是唯一的; 矩阵秩的概念有许多定义,这些定义都是等价的。 四、课后作业 ???? ? ??--→????? ??---????? ??--=---→00055012155055012113431 212123121324r r r r r r A 所以 2)(=A R ????? ??--=134312121A

关于矩阵秩的证明

关于矩阵秩的证明 -----09数应鄢丽萍 中文摘要 在高等代数中,矩阵的秩是一个重要的概念。它是矩阵的一个数量特征,而且在初等变换下保持不变。关于矩阵秩的问题,通常转化为矩阵是否可逆,线性方程组的解的情况等来解决。 所谓矩阵的行秩就是指矩阵的行向量组的秩,矩阵的列秩就是矩阵的列向量组的秩,由于矩阵的行秩与列秩相等,故统称为矩阵的秩。向量组的秩就是向量组中极大线性无关组所含向量的个数。 关键词:初等变换向量组的秩极大线性无关组

约定用E 表示单位向量,A T 表示矩阵A 的转置,r(A)表示矩阵A 的秩。在涉及矩阵的秩时,以下几个简单的性质: (1) r(A)=r(A T ); (2) r(kA)=? ??=≠0 00 )(k k A r (3) 设A,B 分别为n ×m 与m ×s 矩阵,则 r(AB)≤min{r(A),r(B),n,m,s} (4) r(A)=n,当且仅当A ≠0 (5) r ???? ??B O O A =r(A)+r(B)≤r ??? ? ??B O C A (6) r(A-B)≤r(A)+r(B) 矩阵可以进行加法,数乘,乘法等运算,运算后的新矩阵的秩与原矩阵的秩有一定关系。

定理1:设A,B 为n ×n 阶矩阵,则r(A+B)≤r(A)+r(B) 证: 由初等变换可得 ???? ??B O O A →???? ??B A O A →???? ??+B B A O A 即???? ??E E O E ???? ??B O O A ???? ??E E O E =??? ? ??+B B A O A 由性质5可得 r ???? ??B O O A =r ??? ? ??+B B A O A 则有r(A)+r(B)≥r(A+B) 定理2(sylverster 公式)设A 为s ×n 阶矩阵,B 为n ×m 阶矩阵,则有r(A)+r(B)-n ≤r(AB) 证:由初等变换可得 ???? ??O A B E n →? ??? ??-AB O B E n →???? ??-AB O O E n 即? ??? ??-s n E A O E ??? ? ??O A B E n ? ??? ? ?-m n E O B E =???? ??-AB O O E n 则r ???? ??O A B E n =r ??? ? ??-AB O O E n 即r(A)+r(B)-n ≤r(AB)

从不同的角度看矩阵的行秩与列秩解析

https://www.360docs.net/doc/1715736437.html,/ 从不同的角度看矩阵的行秩与列秩——兼论如何学好线性代数 线性代数中,有那么几个神秘又神奇的东西,总是让初学它的人琢磨不透,无法理解,其中就有矩阵的行向量和列向量的关系,为什么一个矩阵的行向量里有多少个线性无关的向量,列向量里就一定也有多少个线性无关的向量呢?或者考虑稍微简单一点的问题,一个方阵,为什么行向量线性无关或线性相关列向量就一定也线性无关或相关呢?行秩为何等于列秩? 这本来应该是一个基本又简单的事实。但是,请回忆一下你当初初学线性代数时的内容编排顺序,是怎么引入这个问题的,当时又是怎样解决这个问题的? 传统的教材编写思路是从线性方程组开始整个线性代数话题的引入,这个过程中定义行列式和矩阵,用n元数组引入向量,线性相关和无关等概念,讨论解存在的条件,解的结构,等等。总之,一切以方程组为核心,给人的感觉就是线性代数就是方程组的理论,一切讨论的目的都是为了解决小小的方程组问题。 在这个过程中,有一个矩阵行秩等于列秩的命题,此时学生只了解方程组理论和行列式,因此这时对这个问题的解释当然也无法离开方程组或行列式。下面简述两个典型的教材中的证明方法: 第一个证明来自陈志杰《高等代数与解析几何》。 证明:首先,矩阵的初等行变换不改变矩阵的行秩,初等列变换不改变矩阵的列秩。这是由向量组的初等变换不改变向量组的线性相关或无关性保证的,即将某个向量乘以非零的倍数、将某个向量加到另一个向量上,都不改变向量组的线性相关或无关性。 接着证明矩阵的初等行变换不改变矩阵的列秩。 设A是m*n阶矩阵,任意从A的n个列向量中选取k个列向量a1,a2,…,ak,它们线性无关的充要条件是线性方程组a1×1+a2×2+…+akxk=0只有零解。而对矩阵A进行初等行变换不改变此方程组的解,因此不改变这k 个列向量的线性相关或无关性。这说明A的列向量的秩在矩阵的初等行变换中不变。同理矩阵的初等列变换不改变矩阵的行秩。 接下来,可以把A经过初等行变换和初等列变为只有对角线上有1或0,其它位置都为0的矩阵,在这个过程中行秩和列秩都不改变,从这个矩阵中看出行秩等于列秩,因此原来的矩阵行秩也等于列秩。 第二个证明来自北大数学系几何与代数教研室前代数小组编《高等代数》 证明:考虑线性方程组AX=0,首先证明如果未知数的个数超过A的行秩,那么它有非零解。设m*n阶矩阵A的行秩为r,考虑方程组AX=0,它由m个方程n个未知数组成。从A的行向量中选取r个线性无关的行向量,重新组合成矩阵B,那么方程组AX=0和BX=0同解。这时,如果B的列数大于行数,那么方程组BX=0必有非零解,从而AX=0也有非零解。 接着证明行秩等于列秩。设m*n阶矩阵A的行秩为r,列秩为s。考虑A的任意r+1个列向量组成的矩阵C,因为C的行秩不大于r(因为C的行向量都是A的行向量的一部分分量组成的),所以CX=0有非零解,这说明这r+1个列向量线性相关。所以A的列秩最大为r,即s<=r。同理可证r<=s,因此s=r。 有了行秩等于列秩的性质,完全可以用行秩或列秩定义矩阵的秩了。编写教材的人和老师们都认为,只要能够顺利定义出矩阵的秩,这个证明就足以满足初学时的需要了,既没有必要又没有条件再将它深入地挖掘下去。 但是它仍然让我困惑,即使把书上的这个证明看得明明白白,也不理解为什么行秩等于列秩。因为向量是个几何的概念,现在这个证明中看不出一点几何上向量的影子,这两个例子都依赖于线性方程组理论,都离不开高斯消元法,都是代数上的推导。虽然从代数上推导出了这个结果,但是在几何上我依然无法接受这个结果。矩阵的行向量和列向量“从图形上”到底是什么关系?可不可以让我一下子就能看出来它们的秩是相等的?尽管经过了行列变换之后行列秩相等是显然的,但这个过程中却把原来的行列向量给变得面目全非了。 更有甚者,有些教材上竟然用矩阵的子式和行列式理论推导行秩等于列秩,由于这种证明过于复杂,这里就不列出了。 直到最近的一次偶然机会,又让我想起了这个问题。一开始,发现它和对偶空间与对偶映射有关系。记得当初学习线性代数时,直到最后才接触了一些有关对偶空间和对偶映射的知识,教材还写得十分抽象,以至于我们都囫

求矩阵的秩的步骤

求矩阵的秩的步骤 方阵(行数、列数相等的矩阵)的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或。 m×n矩阵的秩最大为m和n中的较小者,表示为min(m,n)。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足(或称为“欠秩”)的。 设A是一组向量,定义A的极大无关组中向量的个数为A的秩。 定义1. 在m*n矩阵A中,任意决定k行和k列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。 例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式就是矩阵A的一个2阶子式。 定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。 特别规定零矩阵的秩为零。

显然rA≤min(m,n) 易得: 若A中至少有一个r阶子式不等于零,且在r

当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。 当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。

矩阵的秩

授课题目:第五节 矩阵的秩 教学目的:理解矩阵的秩的定义,掌握秩的求法,重点掌握线性方程组有解的充 要条件. 教学重点:掌握秩的求法和线性方程组有解的充要条件. 教学难点:线性方程组有解的充要条件. 课时安排:2学时. 授课方式:多媒体与板书结合. 教学基本内容: 2.5 矩阵的秩 1概念 定义1 在矩阵m n A ?中任取k 行k 列,位于这些行列交叉处的2 k 个元素按原次序组成的 k 阶行列式称为A 的k 阶子式.则A 中不为零的子式的最高阶数称为矩阵A 的秩,记为()R A ,并规定(0)0 R =. 注1) 若()R A r =,则A 中至少有一个r 阶子式不等于零;而若存在1r +阶子式,则所有的1r +阶子式全为0. 2)对m n A ?,有()m in (,)R A m n ≤. 3)()()T R A R A =. 4) 对于n 阶方阵A ,()R A n =的充分必要条件是0A ≠,故也称0A ≠的A 为满秩矩阵. 5) 定义1 对给定的m n ?矩阵A ,称其非零子式的最高阶数为A 的秩,记作()R A ,并规定(0)0R =.一些教科书称这样定义的秩为矩阵的行列式秩. 在第4章建立向量组秩的概念后,分别定义矩阵的行秩与列秩,届时指出矩阵秩就是其列向量组的秩或行向量组的秩. 6) 若发现A 有一k 阶非零子式,则必成立()R A k ≥. 2 计算 直接按定义去计算矩阵的秩,需要求出矩阵最高阶的非零子式,在一般情形下这决非轻而易举的事情,但对形状特殊的行阶梯形矩阵而言,这却是极为简单的. 性质1 行阶梯形矩阵的秩等于其非零行的行数. 定理1 矩阵经行初等变换后,其秩不变. 推论1 矩阵经列初等变换后,其秩不变. 推论2 设A 为m n ?矩阵,B 为m 阶满秩方阵, C 为n 阶满秩方阵,则 ()()()()r A r B A r A C r B A C ===.

矩阵的秩及其应用

山西师范大学本科毕业论文(设计) 矩阵的秩及其应用 姓名杨敏娜 院系数学与计算机科学学院专业数学与应用数学 班级11510102 学号1151010240 指导教师王栋 答辩日期 成绩

矩阵的秩及其应用 内容摘要 矩阵在高等代数的研究中占有极其重要的地位,矩阵的秩更是研究矩阵的一个重要纽带。通过对矩阵的秩的分析,对判断向量组的线性相关性,求其次线性方程组的基础解系,求解非其次线性方程组等等都有一定的意义和作用。 论文第一部分介绍矩阵的概念,一般性质及秩的求法,这对之后介绍秩的应用有重要的铺垫作用。第二部分再利用这些性质及定理解决向量组和线性方程组的有关问题。第三部分研究矩阵的秩在解析几何应用中,着重用于判断空间两直线的位置关系。在与特征值间的关系主要是计算一些复杂矩阵的值。最后将矩阵的秩推广到特征值和其他与向量组有关的向量空间的应用。 本文主要对矩阵的秩相关定义定理进行总结和证明,并将其运用到一些具体事例中。 【关键词】矩阵的秩向量组线性方程组特征值解析几何

The Rank of Matrix and the Application of the Rank of Matrix Abstract The matrix plays a very important role in the research on advanced algebra. The rank of matrix is an important link of matrix. The analysis of the rank of matrix determines the linear relation of vector group. And there are certain significance and role to solve some linear equations and non linear equations. First, the article introduces the concept of matrix, general nature and method for the rank of matrix, it plays an important role for the application of the rank. Second, use the properties and theorems of vector group to solve the problem of linear equations. Third, analysis the rank of matrix in geometry application, it focuses on the judgment of space position relationship of two lines. In the characteristics of value, it mainly calculates some complex matrix. Finally, the application of the rank of matrix is extended to Eigen value and other related vectors in vector space. This paper mainly summarizes the matrix rank and its related theorem, and applies it to some specific examples. 【Key Words】rank of matrix vector group linear equations characteristic value Analytic geometry

知识点总结 矩阵的初等变换与线性方程组

第三章 矩阵的初等变换与线性方程组 第一节 矩阵的初等变换 初等行变换 ()1()i j r r ?对调两行,记作。 ()20()i k r k ≠?以数乘以某一行的所有元素,记作。 ()3()i j k r kr +把某一行所有元素的倍加到另一行对应的元素上去,记作。 初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记号是把“r ”换成“c ”。 扩展 矩阵的初等列变换与初等行变换统称为初等变换,初等变换的逆变换仍为初等变换, 且类型相同。 矩阵等价 A B A B 如果矩阵经有限次初等变换变成矩阵,就称矩阵与等价。 等价关系的性质 (1)反身性 A~A 2 A ~B , B ~A;()对称性若则 3 A ~B,B ~C, A ~C ()传递性若则。(课本P59) 行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也是非零行的第一个非零元。 行最简形矩阵:行阶梯矩阵中非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0. 标准型:对行最简形矩阵再施以初等列变换,可以变换为形如r m n E O F O O ???= ???的矩阵,称为标准型。标准形矩阵是所有与矩阵A 等价的矩阵中形状最简单的矩阵。 初等变换的性质

设A 与B 为m ×n 矩阵,那么 (1);r A B m P PA B ?=:存在阶可逆矩阵,使 (2)~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)P ;A B m P n Q AQ B ?=:存在阶可逆矩阵,及阶可逆矩阵,使 初等矩阵:由单位矩阵经过一次初等变换得到的方阵称为初等矩阵。 初等矩阵的性质 设A 是一个m ×n 矩阵,则 (1)对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵; ~;r A B m P PA B ?=即存在阶可逆矩阵,使 (2)对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵; 即~;c A B n Q AQ B ?=存在阶可逆矩阵,使 (3)~P ;A B m P n Q AQ B ?=存在阶可逆矩阵,及阶可逆矩阵,使 (4)方阵A 可逆的充分必要条件是存在有限个初等方阵1212,,,,l l P P P A PP P =L L 使。 (5)~r A A E 可逆的充分必要条件是。(课本P ? ) 初等变换的应用 (1)求逆矩阵:()1(|)|A E E A -????→初等行变换或1A E E A -????????→ ? ????? 初等列变换。 (2)求A -1B :A (,) ~ (,),r A B E P 即() 1(|)|A B E A B -??→行,则P =A -1B 。或1E A B BA -????????→ ? ????? 初等列变换. 第二节 矩阵的秩

求矩阵的秩的步骤

矩阵的秩就是指这个矩阵经过行列变换过后,化为最简式,以后非零行或者是非零列的最小的数目,这里简单介绍一下,怎样求矩阵的秩。工具/原料 ?矩阵 ?matlab 方法/步骤 1.1 启动matlab程序。 2.2 在命令窗口任意输入一个矩阵a。 >>a=rand(9,9) 3.3 调用rank函数,按一下回车键即可求得矩阵的秩=9。 4.4 再任意输入一个矩阵b。 >>b=rand(5,8) 5.5 再次调用rank函数,即可求到矩阵的秩=5。 END 注意事项 ?当一个矩阵的秩等于五的时候,就表示矩阵当中有五个飞线性 相关的向量组。

?出现的字肯定是小于行数,或者是小于列数。 r3-2r1,r4-r1~ 1 1 2 2 1 0 2 1 5 -1 0 -2 -1 -5 1 0 0 -2 2 -2 r3+r2,交换r3 r4 ~ 1 1 2 2 1 0 2 1 5 -1 0 0 -2 2 -2 0 0 0 0 0 只是求秩就不用再计算,显然矩阵的秩为3 矩阵的秩一般有2种方式定义 1.用向量组的秩定义 矩阵的秩= 行向量组的秩= 列向量组的秩 2.用非零子式定义 矩阵的秩等于矩阵的最高阶非零子式的阶 单纯计算矩阵的秩时,可用初等行变换把矩阵化成梯形 梯矩阵中非零行数就是矩阵的秩 这个定义涉及到向量的极大线性无关组.设a1,a2……as为一个n维向量组,如果向量组中有r个向量线性无关,而任何r+1个向量都线性相关,那么这r个线性无关的向量称为向量组的一个极大线性无关组.

向量组的极大线性无关组中所含向量的个数,称为向量的秩. 矩阵的行向量的秩称为行秩.列向量的秩成为列秩.

第3讲矩阵的秩与矩阵的初等变换.

§1.3 矩阵的秩与矩阵的初等变换 主要问题:1. 自由未知数个数的唯一性 2. 相抵标准形的唯一性 3. 矩阵秩的性质 4. 满秩矩阵的性质 一、矩阵的秩 定理矩阵用初等行变换化成的阶梯形矩阵中,主元的个数(即非零行的数目)唯一。 定义矩阵A 用初等行变换化成的阶梯形矩阵 中主元的个数称为矩阵A的秩,记为秩(A)或r(A)例求下述矩阵的秩 2 1 0 3 12 3 1 2 1 01 A 4 1 6 3 58 2 2 2 6 16

2 1 0 3 1 2 3 1 2 1 0 1 A 4 1 6 3 5 8 2 2 2 6 1 6 R4 ( 1)R1 2 1 0 3 1 2 R3 ( 2)R1 R2 ( 1)R1 1 2 2 2 1 1 0 3 6 9 3 4 0 1 2 3 2 8 1 2 2 2 1 1 R2 R1 2 1 0 3 1 2 0 3 6 9 3 4 0 1 2 3 2 8 1 2 2 2 1 1 R2 ( 2)R1 0 5 4 7 3 4 0 3 6 9 3 4 0 1 2 3 2 8 1 2 2 2 1 1 R2 R4 0 1 2 3 2 8 0 3 6 9 3 4 0 5 4 7 3 4

所以秩(A) = 4 o | 性质 (1) 秩(A) = 0当且仅当 A = 0 ⑵秩(A m n ) min{ m , n} (3)初等行变换不改变矩阵的秩。 定义设A 是n 阶方阵。若秩(A) = n ,则称A 是满秩方阵;若 秩(A) < n ,则称A 是降秩方阵。 定理 满秩方阵只用初等行变换即可化为单位 方阵。 R 4 ( 5)R 2 R 3 3R 2 1 2 2 2 1 0 1 2 3 2 0 0 0 0 3 1 8 20 0 0 6 8 13 44 01 0 0 6 8 13 44 0 0 0 0 3 20 R 3

矩阵的秩及其求法

第五节:矩阵的秩及其求法 一、矩阵秩的概念 1. k 阶子式 定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的 阶行列式,称为A 的一个k 阶子式。 例如 共有 个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。显然, 矩阵 A 共有 个 k 阶子式。 2. 矩阵的秩 定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全 为0 , 称r 为矩阵A 的秩,记作R (A )或秩(A )。 规定: 零矩阵的秩为 0 . 注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 . (2) 有行列式的性质, (3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } . (4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n . 二、矩阵秩的求法 1、子式判别法(定义)。 例1 设 为阶梯形矩阵,求R (B )。 解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R (B ) = 2. 结论:阶梯形矩阵的秩=台阶数。 例如 一般地,行阶梯形矩阵的秩等于其“台阶数”—— 非零行的行数。 () n m ij a A ?={}),min 1(n m k k ≤≤? ? ??? ??----=1 10145641321A 182423=C C 43334=C C 101 22--= D 1 0156 43213-=D n m ?k n k m c c () n m ij a A ?=0, r D ≠()(). T R A R A =0,A ≠0.A ≠??? ? ? ??=000007204321B 0 2 021≠????? ??=010*********A ????? ??=001021B ???? ? ??=100010011C 125034000D ?? ? = ? ? ??2 123508153000720 000 0E ?? ? ?= ? ??? ()3=A R ()2=B R ()3=C R ()2R D =()3 R E =

矩阵的秩及其多样性的解法

矩阵的秩及其多样性的解法 数学学院 数学与应用数学(师范)专业 摘 要:矩阵论是代数学中一个重要组成部分和主要研究对象,而矩阵的秩又是矩阵的一个重要指标,本文研究了与矩阵的秩的相关性质及其多样性的解法, 用定理和实例说明了行列式、线性空间、线性方程组、分块矩阵和矩阵秩的关系及其在求矩阵的秩中的应用。 关键词: 矩阵的秩; 行列式; 线性方程组; Abstract :Matrix theory is an important part of the main object of study in algebra and rank of the matrix is an important indicator of the matrix, we study the rank of the matrix solution of the nature and diversity of theorems and examples illustratedeterminant, linear space, linear equations, the block matrix and the matrix rank and matrix rank. Keywords: Rank of matrix; V ector; Linear equations; 引言、引理 矩阵理论是高等代数的主要内容之一, 在数学及其它科学领域中有着广泛的应用.在矩阵理论中, 矩阵的秩是一个重要的概念. 它是矩阵的一个数量特征, 而且是初等变换下的不变量. 本文归纳了矩阵的秩相关性质及等价条件,并从行列式、线性方程组、线性空间以及分块矩阵的角度来阐述矩阵秩的不同解法。 矩阵的秩的等价刻划 设A F m n ?∈ ,则rank(A)=r ?A 中不为零的子式的最大阶数是r ; ?A 中有一个r 阶子式D 不等于零,所有包含D 作为子式的 r+1阶子式全为零; ? 存在可逆矩阵m n P F ?∈,m n Q F ?∈,使得000r E P A Q ?? = ??? ; ? A 的行(列)向量的极大无关组所含向量的个数为r;

矩阵初等行变换矩阵秩

矩阵初等行变换矩阵秩

————————————————————————————————作者:————————————————————————————————日期:

矩阵的初等行变换与矩阵的秩一、矩阵的初等行变换 矩阵的初等行变换是指对矩阵进行下列三种变换: 1.互换矩阵两行的位置(对换变换); 2.用非0常数遍乘矩阵的某一行(倍乘变换); 3.将矩阵的某一行遍乘一个常数k加到另一行(倍加变换)上。 二、阶梯形矩阵 满足下列条件的矩阵称为阶梯形矩阵 1.各个非0行(元素不全为0的元素)的第一个非0元素的列标随着行标的递增而严格增大;

2.如果矩阵有0行,0行在矩阵的最下方。 例如 重要定理一 任意一个矩阵经过若干次初等行变换可以化成阶梯形矩阵。 例题 注意:一个矩阵的阶梯形矩阵不唯一例如: 三、矩阵的秩 矩阵A的阶梯形矩阵非0行的行数称为矩阵A的秩,记作秩(A)或r(A) 例如下列矩阵的秩分别为2、3、4

????? ? ?--00 0049201321、????? ??--100980201、??? ? ? ? ? ? ?---500 00301000783013002 例题 求矩阵 ?????? ? ? ?----=35 22 2232111201107033 A 秩及秩(T A ) 解

??????? ? ?----=35 222232111201107033A ()?????? ? ? ?----??→?35 2222321107033120 11,②① ??????? ? ?--????→?-+-+-+11200112003100012011) 2() 1()3(①④①③①② ????? ?? ? ?--???→?-+00000112003100012 011) 1(③④

矩阵的秩

矩阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或rank A。 m× n矩阵的秩最大为m和n中的较小者,表示为 min(m,n)。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足(或称为“欠秩”)的。 [1] 设A是一组向量,定义A的极大无关组中向量的个数为A的秩。 定义1. 在m*n矩阵A中,任意决定k行和k列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。 例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式就是矩阵A的一个2阶子式。 定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A 的秩,记作rA,或rankA或R(A)。 特别规定零矩阵的秩为零。 显然rA≤min(m,n) 易得: 若A中至少有一个r阶子式不等于零,且在r

定理矩阵的乘积的秩Rab<=min{Ra,Rb}; 当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。 当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。

求矩阵的秩的步骤

求矩阵的秩的步骤 在学习矩阵的秩之前,首先我们要先了解矩阵A的k阶子式:即在m×n矩阵A中,任取k行k列( k≤m,k≤n),位于这些行列交叉处的k2个元素,不改变它们在A中所处的位置次序而得的k阶行列式。先在矩阵中的m行中任选k行,得到组合;再在矩阵中的n列任选k列,得到组合。将二者相乘,便是矩阵A的k阶子式计算公式。 现在我们就可以定义矩阵的秩:设在m×n矩阵A中有不为零的r阶子式D,且所有r+1阶子式(如果存在的话)均为零,那么D称为矩阵A的最高阶非零子式,阶数r称为矩阵A的秩,记作R(A)。特别地规定了零矩阵的秩等于0。举个例子,我们先假定一个3阶矩阵。由定义可得S不可能再有大于三阶的子阵,那么我们知道S的三阶子阵只有一个|S|,若计算出|S|≠0,那么S的秩就为3,记做R(S)=3;若是|S|=0,那就同理再看S的9个二阶子阵……当然,越高阶的矩阵的秩会越难计算,下面的视频来讲解行阶梯形矩阵在求解高阶矩阵的秩中的妙用。 学习矩阵的秩并归纳出矩阵秩的一些最基本的四个性质,具体证明过程详见课本,其中最主要的是第三条性质,它证明了两个等价矩阵的秩是相等的,因此将矩阵通过初等变换化为行阶梯形矩阵能大大简化矩阵秩的运算。 矩阵的子式定义:

在m×n矩阵A中,任取k行k列(k≤m,k≤n),位于这些行列交叉处的k2个元素,不改变它们在A中所处的位置次序而得的k阶行列式,称为矩阵A的k阶子式。 矩阵的秩定义: 设矩阵A中有一个不等于零的r阶子式D,且所有r +1阶子式(如果存在的话)全等于零,那么D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A)。 规定零矩阵的秩为零。 矩阵的秩基本性质: ①若A为m×n矩阵,则 0≤R(A)≤min(m, n) ②R(AT)=R(A)

矩阵的秩的性质

矩阵的秩的性质和 矩阵秩与矩阵运算之间的关系 要谈矩阵的秩,就得从向量组的秩说起,向量组的秩,简而言之就是其极大无关组里向量的个数。进而扩展到线性方程组,在线性方程组的概念中(课本P90)定理1说:“线性方程组有解的充要条件是,它的系数矩阵和增广矩阵有相同的秩。” 那么不妨把矩阵用向量组的方式来看,则有行秩和列秩,一个矩阵的行秩和列秩相同,而其初等变换又不会改变秩。自然而然,我们就得到了一个判断矩阵秩的方法,就是将它转化为阶梯形矩阵,非零行数目即其秩。矩阵进一步发展就是运算了,包括数乘、加减、乘积等,又涉及到单位矩阵、三角矩阵、可逆矩阵以及矩阵的分块等概念,综合所学,我们得到如下性质: 1、矩阵的初等变换不改变秩,任一矩阵的行秩等于列秩。 2、秩为r 的n 级矩阵(n r ≥),任意r+1阶行列式为0,并且至少有一个r 阶子式不为0. 3、)}(),(min{)(B rank A rank AB rank ≤ )'()(A r a n k A r a n k =,)()()(B rank A rank B A rank ±=± )()(A rank kA rank = 4、设A 是n s ?矩阵,B 为s n ?矩阵,则+)(A rank )}(),(min{)()(B rank A rank AB rank n B rank ≤≤- 5、设A 是n s ?矩阵,P,Q 分别是s,n 阶可逆矩阵,则 )()()(A rank AQ rank PA rank ==

6、设A 是n s ?矩阵,B 为s n ?矩阵,且AB=0,则 n B rank A rank ≤+)()( 7、设A 是n s ?矩阵,则)()'()'(A rank A A rank AA rank == 其中,也涉及到线性方程组解得问题: 8、对于齐次线性方程组,设其系数矩阵为A ,n A rank =)( 则方程组有惟一非零解,n A rank <)(则有无穷多解,换言之,即为克莱姆法则, 非齐次线性方程组有解时,n A rank =)(惟一解,n A rank <)( 有无穷多解。 还有满秩矩阵: 9、可逆?满秩 10、行(列)向量组线性无关,即n 级矩阵化为阶梯形矩阵后非零行数目为n 。 扩展到矩阵的分块后: 11、110(A )(A )0n n A rank rank rank A ?? ?=++ ? ??? 12、()()0A C rank rank A rank B B ??≥+ ???

相关文档
最新文档