八年级全册全套试卷培优测试卷

八年级全册全套试卷培优测试卷
八年级全册全套试卷培优测试卷

八年级全册全套试卷培优测试卷

一、八年级数学全等三角形解答题压轴题(难)

1.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.

(1)如图1,求证:OA是第一象限的角平分线;

(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;

(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求

2HK+EF的值.

【答案】(1)证明见解析(2)答案见解析(3)8

【解析】

【分析】

(1)过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM,

根据非负数的性质求出a、b的值即可得结论;

(2)如图2,过A作AH平分∠OAB,交BM于点H,则△AOE≌△BAH,可得AH=OE,由已知条件可知ON=AM,∠MOE=∠MAH,可得△ONE≌△AMH,∠ABH=∠OAE,设BM 与NE交于K,则∠MKN=180°﹣2∠ONE=90°﹣∠NEA,即2∠ONE﹣∠NEA=90°;(3)如图3,过H作HM⊥OF,HN⊥EF于M、N,可证△FMH≌△FNH,则FM=FN,同理:NE=EK,先得出OE+OF﹣EF=2HK,再由△APF≌△AQE得PF=EQ,即可得

OE+OF=2OP=8,等量代换即可得2HK+EF的值.

【详解】

解:(1)∵|a﹣b|+b2﹣8b+16=0

∴|a﹣b|+(b﹣4)2=0

∵|a﹣b|≥0,(b﹣4)2≥0

∴|a﹣b|=0,(b﹣4)2=0

∴a=b=4

过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM

∴OA平分∠MON

即OA是第一象限的角平分线

(2)过A作AH平分∠OAB,交BM于点H

∴∠OAH =∠HAB =45° ∵BM ⊥AE ∴∠ABH =∠OAE

在△AOE 与△BAH 中

OAE ABH

OA AB AOE BAH ==∠∠??=??∠∠?

, ∴△AOE ≌△BAH (ASA ) ∴AH =OE

在△ONE 和△AMH 中

OE AH NOE MAH ON AM =??

∠∠??=?

=, ∴△ONE ≌△AMH (SAS ) ∴∠AMH =∠ONE 设BM 与NE 交于K

∴∠MKN =180°﹣2∠ONE =90°﹣∠NEA ∴2∠ONE ﹣∠NEA =90° (3)过H 作HM ⊥OF ,HN ⊥EF 于

M 、N

可证:△FMH ≌△FNH (SAS ) ∴FM =FN 同理:NE =EK ∴OE+OF ﹣EF =2HK

过A 作AP ⊥y 轴于P ,AQ ⊥x 轴于Q 可证:△APF ≌△AQE (SAS ) ∴PF =EQ ∴OE+OF =2OP =8 ∴2HK+EF =OE+OF =8 【点睛】

本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.

2.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .

(1)求∠AFE 的度数;

(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;

(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF

的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB )

【答案】(1)∠AFE =60°;(2)见解析;(3)75

【解析】 【分析】

(1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=?; (2)由(1)得到60AFE ∠=?,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;

(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.) 【详解】

(1)解:如图1中.

∵ABC 为等边三角形,

∴AC =BC ,∠BAC =∠ABC =∠ACB =60°, 在BCE 和CAD 中,

60

BE CD

CBE ACD

BC CA

=

?

?

∠=∠=?

?

?=

?

∴BCE CAD

≌(SAS),

∴∠BCE=∠DAC,

∵∠BCE+∠ACE=60°,

∴∠DAC+∠ACE=60°,

∴∠AFE=60°.

(2)证明:如图1中,∵AH⊥EC,

∴∠AHF=90°,

在Rt△AFH中,∵∠AFH=60°,

∴∠FAH=30°,

∴AF=2FH,

∵EBC DCA

≌,

∴EC=AD,

∵AD=AF+DF=2FH+DF,

∴2FH+DF=EC.

(3)解:在PF上取一点K使得KF=AF,连接AK、BK,

∵∠AFK=60°,AF=KF,

∴△AFK为等边三角形,

∴∠KAF=60°,

∴∠KAB=∠FAC,

在ABK和ACF中,

AB AC

KAB ACF

AK AF

=

?

?

∠=∠

?

?=

?

∴ABK ACF

≌(SAS),BK CF

=

∴∠AKB=∠AFC=120°,

∴∠BKE=120°﹣60°=60°,

∵∠BPC=30°,

∴∠PBK=30°,

2

9 BK CF PK CP

===,

7

9

PF CP CF CP

=-=,

45

()

99

AF KF CP CF PK CP CP CP

==-+=-=

7

7

9

55

9

CP

PF

AF CP

== .

【点睛】

掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.

3.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,他们的运动时间为

t(s).

(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由

(2)判断此时线段PC和线段PQ的关系,并说明理由。

(3)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变,设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由。

【答案】(1)△ACP≌△BPQ,理由见解析;

(2)PC=PQ且PC⊥PQ,理由见解析;

(3)存在;

1

1

t

x

=

?

?

=

?

2

3

2

t

x

=

?

?

?

=

??

【解析】

【分析】

(1)利用SAS证得△ACP≌△BPQ;

(2)由(1)得出PC=PQ,∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;

(3)分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【详解】

解:(1)如图(1),△ACP≌△BPQ,理由如下:

当t=1时,AP=BQ=1,

∴BP=AC=3,

又∵∠A=∠B=90°,

在△ACP和△BPQ中,

AP BQ

A B

AC BP

=

?

?

∠=∠

?

?=

?

∴△ACP≌△BPQ(SAS).

(2)PC=PQ且PC⊥PQ,理由如下:

由(1)可知△ACP≌△BPQ

∴PC=PQ,∠ACP=∠BPQ,

∴∠APC+∠BPQ=∠APC+∠ACP=90°.

∴∠CPQ=90°,

∴PC⊥PQ.

(3)如图(2),分两种情况讨论:

当AC=BP,AP=BQ时,△ACP≌△BPQ,则

34t

t xt

=-

?

?

=

?

解得

1

1

t

x

=

?

?

=

?

当AC=BQ,AP=BP时,△ACP≌△BQP,则,

3

4

xt

t t

=

?

?

=-

?

解得

2

3

2

t

x

=

?

?

?

=

??

综上所述,存在

1

1

t

x

=

?

?

=

?

2

3

2

t

x

=

?

?

?

=

??

使得△ACP与△BPQ全等.

【点睛】

本题主要考查了全等三角形的判定与性质的综合应用,能熟练进行全等的分析判断以及运用分类讨论思想是解题关键.

4.(1)在等边三角形ABC中,

①如图①,D,E分别是边AC,AB上的点,且AE CD

=,BD与EC交于点F,则BFE

∠的度数是___________度;

②如图②,D,E分别是边AC,BA延长线上的点,且AE CD

=,BD与EC的延长线交于点F,此时BFE

∠的度数是____________度;

(2)如图③,在ABC

?中,AC BC

=,ACB

∠是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,且AE CD

=,BD与EC的延长线交于点F,若ACBα

∠=,求BFE

∠的大小(用含法α的代数式表示).

【答案】(1)60;(2)60;(3)BFEα

∠=

【解析】

【分析】

(1)①只要证明△ACE≌△CBD,可得∠ACE=∠CBD,推出

∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°;

②只要证明△ACE≌△CBD,可得∠ACE=∠CBD=∠DCF,即可推出

∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°;

(2)只要证明△AEC≌△CDB,可得∠E=∠D,即可推出

∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.

【详解】

解:(1)①如图①中,

∵△ABC是等边三角形,

∴AC=CB,∠A=∠BCD=60°,

∵AE=CD,

∴△ACE≌△CBD,

∴∠ACE=∠CBD,

∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60;

②如图②,

∵△ABC是等边三角形,

∴AC=CB,∠A=∠BCD=60°,

∴∠CAE=∠BCD=′120°

∵AE=CD,

∴△ACE≌△CBD,

∴∠ACE=∠CBD=∠DCF,

∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.

故答案为60;

(2)如图③中,

图③

点O是AC边的垂直平分线与BC的交点,

∴=,

OC OA

∴∠=∠=

OAC ACOα

=-,

∴∠=∠?

EAC DCBα

180

=,AE CD

AC BC

=,

∴???,

AEC CDB

∴∠=∠,

E D

BFE D DCF E ECA OACα

∴∠=∠+∠=∠+∠=∠=.

【点睛】

本题考查全等三角形的判定和性质和等腰三角形的性质和判定以及等边三角形的性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.

5.探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图

(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;

(2)请你直接利用以上结论,解决以下问题:

①如图(2),把一块三角尺XYZ放置在△ABC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.

②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE 的度数.

【答案】(1)∠BDC=∠BAC+∠B+∠C,理由见解析;(2)①50;②∠DCE=85°.【解析】

【分析】

(1)首先连接AD并延长至点F,然后根据外角的性质,即可判断出∠BDC=

∠BAC+∠B+∠C;

(2)①由(1)可得∠A+∠ABX+∠ACX=∠X,然后根据∠A=40°,∠X=90°,即可求解;

(3)②由∠A=40°,∠DBE=130°,求出∠ADE+∠AEB的值,然后根据∠DCE=

∠A+∠ADC+∠AEC,求出∠DCE的度数即可.【详解】

(1)如图,∠BDC=∠BAC+∠B+∠C,理由是:过点A、D作射线AF,

∵∠FDC=∠DAC+∠C,∠BDF=∠B+∠BAD,

∴∠FDC+∠BDF=∠DAC+∠BAD+∠C+∠B,

即∠BDC=∠BAC+∠B+∠C;

(2)①如图(2),∵∠X=90°,

由(1)知:∠A+∠ABX+∠ACX=∠X=90°,∵∠A=40°,

∴∠ABX+∠ACX=50°,

故答案为:50;

②如图(3),∵∠A=40°,∠DBE=130°,∴∠ADE+∠AEB=130°﹣40°=90°,

∵DC平分∠ADB,EC平分∠AEB,

∴∠ADC=1

2

∠ADB,∠AEC=

1

2

∠AEB,

∴∠ADC+∠AEC=1

(ADB AEB)

2

∠+∠=45°,

∴∠DCE=∠A+∠ADC+∠AEC=40°+45°=85°.

【点睛】

本题主要考查了三角形外角性质以及角平分线的定义的运用,熟知三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.

二、八年级数学轴对称解答题压轴题(难)

6.再读教材:

宽与长的比是5-1

约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.

世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)

第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.

第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.

第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,

第四步,展平纸片,按照所得的点D折出 DE,使 DE⊥ND,则图④中就会出现黄金矩形,

问题解决:

(1)图③中AB=________(保留根号);

(2)如图③,判断四边形 BADQ的形状,并说明理由;

(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.

(4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.

【答案】(1)5;(2)见解析;(3)见解析; (4) 见解析.

【解析】

分析:(1)由勾股定理计算即可;

(2)根据菱形的判定方法即可判断;

(3)根据黄金矩形的定义即可判断;

(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.

详解:(1)如图3中.在Rt△ABC中,AB=22

+=22

AC BC

+=5.

12

故答案为5.

(2)结论:四边形BADQ是菱形.理由如下:

如图③中,∵四边形ACBF是矩形,∴BQ∥AD.

∵AB∥DQ,∴四边形ABQD是平行四边形,由翻折可知:AB=AD,∴四边形ABQD是菱形.

(3)如图④中,黄金矩形有矩形BCDE,矩形MNDE.

∵AD =5.AN =AC =1,CD =AD ﹣AC =5﹣1. ∵BC =2,∴CD BC =51

2

-,∴矩形BCDE 是黄金矩形. ∵

MN DN =215+=512

-,∴矩形MNDE 是黄金矩形. (4)如图④﹣1中,在矩形BCDE 上添加线段GH ,使得四边形GCDH 为正方形,此时四边形BGHE 为所求是黄金矩形.

长GH =5﹣1,宽HE =3﹣5.

点睛:本题考查了几何变换综合题、黄金矩形的定义、勾股定理、翻折变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.

7.已知:AD 是ABC ?的高,且BD CD =. (1)如图1,求证:BAD CAD ∠=∠;

(2)如图2,点E 在AD 上,连接BE ,将ABE ?沿BE 折叠得到'A BE ?,'A B 与AC 相交于点F ,若BE=BC ,求BFC ∠的大小;

(3)如图3,在(2)的条件下,连接EF ,过点C 作CG EF ⊥,交EF 的延长线于点

G ,若10BF =,6EG =,求线段CF 的长.

图1. 图2. 图3.

【答案】(1)见解析,(2)BFC ∠=60(3)8=CF . 【解析】 【分析】

(1)根据等腰三角形三线合一,易得AB=AC ,BAD CAD ∠=∠;

(2)在图2中,连接CE ,可证得BCE ?是等边三角形,60BEC ∠= ,30BED ∠=且由折叠性质可知1

'2

ABE A BE ABF ∠=∠=

∠,可得BFC FAB ABF ∠=∠+∠ ()2BAD ABE =∠+∠ 260BED =∠=;

(3)连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点

N ,可证得

Rt BEM Rt CEN ???,BM CN =,BF FM CF CN -=+,可得线段CF 的长. 【详解】

解:(1)证明:如图1,AD BC ⊥,BD CD = AB AC ∴=

BAD CAD ∴∠=∠;

图1

(2)解:在图2中,连接CE

ED BC ⊥,BD CD = BE CE ∴= 又BE BC = BE CE BC ∴== BCE ∴?是等边三角形

60BEC ∴∠= 30BED ∴∠=

由折叠性质可知1

'2

ABE A BE ABF ∠=∠=

∠ 2ABF ABE ∴∠=∠ 由(1)可知2FAB BAE ∠=∠

BFC FAB ABF ∴∠=∠+∠ ()2BAD ABE =∠+∠ 223060BED =∠=?=

图2

(3)解:连接CE ,过点E 分别作EH AB ⊥于点H ,EM BF ⊥于点M ,EN AC ⊥于点N

'ABE A BE ∠=∠,BAD CAD ∠=∠ EM EH EN ∴==

AFE BFE ∴∠=∠ 又60BFC ∠= 60AFE BFE ∴∠=∠=

在Rt EFM ?中,

906030FEM ∠=-= 2EF FM ∴=

令FM m =,则2EF m = 62FG EG EF m ∴=-=- 同理1

2

FN EF m =

=,2124CF FG m ==- 在Rt BEM ?和Rt CEN ?中,EM EN =,BE CE = Rt BEM Rt CEN ∴???

BM CN ∴=

BF FM CF FN ∴-=+ 10124m m m ∴-=-+ 解得1m = 8CF ∴=

图3

故答案为(1)见解析,(2)BFC ∠= 60(3)8CF =. 【点睛】

本题考查翻折的性质,涉及角平分线的性质、等腰三角形的性质和判定、等边三角形的判定和性质、含30度角的直角三角形、全等三角形的判定和性质等知识点,属于较难的题型.

8.问题探究:

如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .

(1)证明:AD=BE ; (2)求∠AEB 的度数. 问题变式:

(3)如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=90°,点A 、D 、E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE .(Ⅰ)请求出∠AEB 的度数;(Ⅱ)判断线段CM 、AE 、BE 之间的数量关系,并说明理由.

【答案】(1)见详解;(2)60°;(3)(Ⅰ)90°;(Ⅱ)AE=BE+2CM ,理由见详解. 【解析】

【分析】

(1)由条件△ACB和△DCE均为等边三角形,易证△ACD≌△BCE,从而得到对应边相等,即AD=BE;

(2)根据△ACD≌△BCE,可得∠ADC=∠BEC,由点A,D,E在同一直线上,可求出

∠ADC=120°,从而可以求出∠AEB的度数;

(3)(Ⅰ)首先根据△ACB和△DCE均为等腰直角三角形,可得AC=BC,CD=CE,

∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE;然后根据全等三角形的判定方法,判断出△ACD≌△BCE,即可判断出BE=AD,∠BEC=∠ADC,进而判断出∠AEB的度数为90°;(Ⅱ)根据DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,据此判断出AE=BE+2CM.

【详解】

解:(1)如图1,

∵△ACB和△DCE均为等边三角形,

∴CA=CB,CD=CE,∠ACB=∠DCE=60°,

∴∠ACD=∠BCE.

在△ACD和△BCE中,

AC BC

ACD BCE

CD CE

=

?

?

∠=∠

?

?=

?

∴△ACD≌△BCE(SAS),

∴AD=BE;

(2)如图1,∵△ACD≌△BCE,

∴∠ADC=∠BEC,

∵△DCE为等边三角形,

∴∠CDE=∠CED=60°,

∵点A,D,E在同一直线上,

∴∠ADC=120°,

∴∠BEC=120°,

∴∠AEB=∠BEC-∠CED=60°;

(3)(Ⅰ)如图2,

∵△ACB 和△DCE 均为等腰直角三角形,

∴AC=BC ,CD=CE ,∠ACB=∠DCE=90°,∠CDE=∠CED=45°, ∴∠ACB-∠DCB=∠DCE-∠DCB , 即∠ACD=∠BCE ,

在△ACD 和△BCE 中,AC BC ACD BCE CD CE =??

∠=∠??=?

∴△ACD ≌△BCE (SAS ), ∴BE=AD ,∠BEC=∠ADC , ∵点A ,D ,E 在同一直线上, ∴∠ADC=180-45=135°, ∴∠BEC=135°,

∴∠AEB=∠BEC-∠CED=135°-45°=90°, 故答案为:90°;

(Ⅱ)如图2,∵∠DCE=90°,CD=CE ,CM ⊥DE , ∴CM=DM=EM , ∴DE=DM+EM=2CM , ∵△ACD ≌△BCE (已证), ∴BE=AD ,

∴AE=AD+DE=BE+2CM , 故答案为:AE=BE+2CM . 【点睛】

本题属于三角形综合题,主要考查了全等三角形的判定方法和性质,等边三角形的性质以及等腰直角三角形的性质的综合应用.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.

9.小明在学习了“等边三角形”后,激发了他的学习和探究的兴趣,就想考考他的朋友小崔,小明作了一个等边ABC ?,如图1,并在边AC 上任意取了一点F (点F 不与点A 、点C 重合),过点F 作FH

AB ⊥交AB 于点H ,延长CB 到G ,使得BG AF =,连接

FG 交AB 于点l .

(1)若10AC =,求HI 的长度;

(2)如图2,延长BC 到D ,再延长BA 到E ,使得AE BD =,连接ED ,EC ,求证:ECD EDC ∠=∠.

【答案】(1)HI =5;(2)见解析. 【解析】 【分析】

(1)作FP ∥BC 交AB 于点P ,证明APF ?是等边三角形得到AH=PH , 再证明

PFI BGI ???得到PI=BI ,于是可得HI =1

2

AB ,即可求解;

(2)延长BD 至Q ,使DQ=AB ,连结EQ ,就可以得出BE=BQ ,得出△BEQ 是等边三角形,就可以得出BE=QE ,得出△BCE ≌△QDE 就可以得出结论. 【详解】

解:如图1,作FP ∥BC 交AB 于点P ,

∵ABC ?是等边三角形, ∴∠ABC=∠A=60°, ∵FP ∥BC,

∴∠APF=∠ABC=60°, ∠PFI=∠BGI, ∴∠APF=∠A=60°, ∴APF ?是等边三角形, ∴PF=AF, ∵FH

AB ⊥,

∴AH=PH, ∵AF=BG, ∴PF=BG,

∴在PFI ?和BGI ?中,

PIF BIG

PFI BGI

PF BG

∠=∠

?

?

∠=∠

?

?=

?

,

∴PFI BGI

???,

∴PI=BI,

∴PI+PH=BI+AH=

1

2

AB,

∴HI=PI+PH =

1

2

AB=

1

10

2

?=5;

(2)如图2,延长BD至Q,使DQ=AB,连结EQ,

∵△ABC是等边三角形,

∴AB=BC=AC,∠B=60°.

∵AE=BD,DQ=AB,

∴AE+AB=BD+DQ,

∴BE=BQ.

∵∠B=60°,

∴△BEQ为等边三角形,

∴∠B=∠Q=60°,BE=QE.

∵DQ=AB,

∴BC=DQ.

∴在△BCE和△QDE中,

BC DQ

B Q

BE QE

=

?

?

∠=∠

?

?=

?

∴△BCE≌△QDE(SAS),

∴EC=ED.

∴∠ECD=∠EDC.

【点睛】

本题考查了等边三角形的判定及性质的运用,全等三角形的判定及性质的运用,解答时作出相应辅助线构造全等三角形是关键.本题难度较大,需要有较强的综合能力.

10.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点. (1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ?,若2OA =,4OB =,试求C 点的坐标;

(2)如图2,若点A 的坐标为()

23,0-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以

B 为顶点,BA 为腰作等腰Rt ABD ?.试问:当B 点沿y 轴负半轴向下运动且其他条件都不

变时,整式2253m n +-的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;

(3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ?,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明.

【答案】(1) C(-6,-2);(2)不发生变化,值为3-3)EN=1

2

(EM-ON),证明见详解. 【解析】 【分析】

(1)作CQ ⊥OA 于点Q,可以证明AQC BOA ?,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标;

(2)作DP ⊥OB 于点P ,可以证明AOB BPD ?,则有BP=OB-PO=m-(-n)=m+n 为定值,从而可以求出结论2253m n +-3- (3)作BH ⊥EB 于点B ,由条件可以得出

∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明ENO BGM ?,则GM=ON,就有EM-ON=EM-GM=EG ,最后由平行线分线段成比例定理就可得出EN=1

2

(EM-ON). 【详解】

(1)如图(1)作CQ ⊥OA 于Q,

相关主题
相关文档
最新文档