第十一章界面现象

第十一章界面现象
第十一章界面现象

第十一章界面现象

一、基本要求

(1)理解表面张力和表面吉布斯自由能函数的概念。

(2)理解弯曲界面的附加压力概念和拉普拉斯公式及其应用。

(3)理解弯曲液面的饱和蒸汽压与平面液体的饱和蒸汽压的不同;掌握开尔文方程及其应用。

(4)了解铺展和铺展系数。了解润式、接触角和杨氏方程;了解毛细管现象。

(5)理解压稳状态及新相生成。

(6)了解溶液界面上的吸附现象,正吸附和负吸附,吉布斯模型及其表面过剩物质的量的概念。

(7)了解物理吸附和化学吸附的含义和区别。

(8)了解表面活性剂的特征及其应用。

(9)理解吉布斯吸附等温式。

(10)掌握兰缪尔单分子层吸附模型和吸附等温式。

(11)了解B.E.T.多分子层吸附定温式及其内容。

二、主要概念、定理与公式

1.界面

存在于两相之间的厚度约为几个分子大小(纳米级)的一薄层,称为界面层,简称界面。

通常有液-气、固-气、固-液、液-液、固-固等界面,对固-气界面及液-气界面亦称为表面。

2.分散度

把物质分散成细小微粒的程度,称为分散度。通常采用体积表面或质量表面来表示分散度的大小。

)表示多相分散体系的分散程度。其定义为:单位

通常用比表面(

体积或单位质量的物质所具有的表面积,分别用符号

式中

,V,m分别为物质的总表面积、体积和质量。

3.界面现象

凡物质处于凝聚状态,界面上发生的一切物理化学现象均称为界面现象。如毛细管现象、润湿作用、液体过热、蒸汽过饱和、吸附作用等,同称为界面现象。

4.表面自由能和表面张力

(1)表面功:由于分子在界面上与在体相中所处的环境不同,所以表面组成、结构、能量和受力情况与体相都不相同。如果把一个分子从内部移到界面(或者说增大表面积)时,就必须克服分子体系内部分子之间的吸引力而

所需要

对体系做功。在温度、压力和组成恒定时,可逆的使表面积增加

对体系做的功叫表面功。

(2)表面自由能:高分散体系具有巨大的表面积,所以具有巨大的表面能。表面自由能的广义定义为:

即在相应的特征变量和组成不变的情况下,每增加单位表面积时其热力学函数的增值。狭义的说是在等温、等压和组成不变时,每增加单位表面时体系吉布斯自由能的增值。

(3)表面张力(比表面能):简单的说,表面张力就是单位面积上的表面能量,即比表面能,因为它与力有相同的量纲,故叫表面张力。实际上,表面张力是表面层的分子垂直作用在单位长度的线段或边界上且与表面平行或相切的收缩力。其符号

为:

的单位为

为增加液体表面积时,环境对系统所做的功。

J·m-2=N·m·m-2= N·m-1。即作用在单位长度上的力,故

表面张力是沿着与表面(球面)相切或与表面(平面)的方向垂直做用于表面上单位长度的表面收缩力。如图:

表面张力和表面自由能的物理意义不同,单位不同,但它们具有相同的数值和量纲。

(4)高度分散系统的热力学基本方程:对于高度分散系统,其具有巨大的表面积并存在着除压力外的其它广义力即表面张力,会产生明显的表面效应,因此必须考虑系统表面面积对系统状态函数的贡献。于是,对组成可变的高度分散的敞开系统,且系统中只有一种体相或表面相,当考虑表面效应时则其热力学基本方程由式相应变为:

”表式表面面积的微变。

式中“

(5)影响表面张力的因素

1)分子间的影响。表面张力与物质的本性和与所接触相的性质有关。液体或固体中的分子间的相互作用力或化学键力越大,表面张力越大。一般,

(离子键)>(极性共价键)>(非极性共价键)。

(金属键)>

同一种物质与不同性质的其他物质接触时,表面层中分子所处力场则不同,导致表面(界面)张力出现明显差异。一般液-液界面张力介于该两种液体表面张力之间。

2)温度的影响。表面张力一般随温度升高而降低。这是由于虽温度升高,液体与气体的体积质量差减小,使表面层分子受指向液体内部的拉力减小,故降低。

3)压力的影响。表面张力一般虽压力的增加而下降。这是由于虽压力的增加,气体体积质量增大,同时气体分子更多的被液面吸附,并且气体在液体中溶解度液增大,以上三种效果均使

下降。

(二)润湿作用

1.润湿

润湿是指固体表面上的气体(或液体)被液体(或另一种液体)取代的现象。其热力学定义是:固体与液体接触后系统的吉布斯自由能降低(即

<0)的现象。润湿类型由三种:粘附润湿、浸渍润湿、铺展润湿。

2.润湿角

液体在固体表面上的润湿现象可用接触角来描述,即在气、液、固三相交界处,气-液界面和固-液界面之间的夹角,它的大小决定于三种界面张力

的绝对值,即

>时,则固体不为液体所润湿;当0°<<90°时,固体能被液体

润湿。如下图所示:

3.液体对固体的润湿作用

粘附润湿(adhesion wetting)、浸渍润湿和铺展润湿能否自发进行,则由在定温、定压下吉布斯函数判断来确定。

定义:

式中s称为铺展系数,若s>0,则液体可自行铺展于固体表面。

来表

液体在固体表面上的润湿现象还可以用接触角来描述(以符号

示)。则有

此时称为杨氏方程。

(三)弯曲液面的附加压力及其后果

1.弯曲液面的附加压力

弯曲液面的附加压力可分为两种:凸液面(如气相中的液滴)和凹液面(如液体种的气泡)。由于表面张力的作用,弯曲液面的两侧存在以压力差

,式中和分

,成为弯曲液面的附加压力。定义为:

别代表

2.弯曲液面的附加压力——杨-拉普拉斯方程

弯曲液面可呈现凸液面,如气相中的液滴;亦可呈现凹液面,如液体种

与液-气界面张立及弯曲液面的曲

的气泡。弯曲液面产生的附加压力

率半径的关系可推得如下:

该式为拉普拉斯方程。

因r >0,由杨-拉普拉斯方程可知:液面为凸液面时

>0,

> ,则附加压力指向液体;液面为凹液面时(毛细管中)

<0,

< ,则

附加压立指向球面的球心(或曲面的曲心)。

3.弯曲液面的饱和蒸汽压 平液面的炮和蒸汽压只与物质的本性、温度及压力有关,而弯曲液面的饱和蒸汽压不仅与物质的本性、温度及压力有关,而且还与液面弯曲程度(曲率半径r 的大小)有关。由热力学推导,可以得出液体的曲率半径r 对蒸汽

压影响的关系式如下:

式中,

为纯物质平液面及弯曲液面的饱和蒸汽压; 为液体的摩

尔质量 及体积质量;

为液体的表面张力; 为弯曲液面的曲率半径。上式称为开尔文(Kelvin )方程,对于凸液面曲正号,对于毛细管中凹液面取负号。显然凸液面(小液滴):

>0, > ;毛细管中凹液面: <0, < 。

因此,由开尔文方程可知

(凸液面)> (平液面)> (毛细管中凹液面),且曲率半径r 越小偏离程度越大。

4.毛细管现象

将毛细管插入液面后,会发生液面沿毛细管上升(或下降)的现象,称为毛细管现象。若液体能润湿管壁,即θ<90°,管内液面呈凹形,此时液体在毛细管中上升,反之,若液体不能润湿管壁,即θ>90°,管内液面将呈凸形,此时液体在毛细管中下降。见下图:

液面上升 液面下降

在弯曲表面上由于表面张力的存在,式弯曲表面下液体受到一个附加压

, 作用的方向总是指向曲面的圆心:

润湿角θ与毛细管半径r 及弯曲液面的曲率半径

间的关系为:

将此式代入式

,可得到液体在毛细管内上升(或下降)

的高度

式中,

为液体表面张力; 为液体体积质量; 为重力加速度。

在毛细管中,若液体对毛细管壁能润湿,即此时液体会沿毛细管上升;若液体对毛细管壁不润湿,即

> , <0,此时液体会沿毛细管下

降。

5.亚稳状态及新相的生成

一定温度下,当蒸汽分压超过该温度下的饱和蒸汽压,而蒸汽仍不凝结的现象叫蒸汽的过饱和现象,此时的蒸汽称为过饱和蒸汽。

在一定温度、压力下,当溶液中溶质的浓度已超过该温度、压力下的溶质的溶解度,而溶质仍不析出的现象叫溶液的过饱和现象,此时的溶液称为过饱和溶液。

在一定压力下,当液体的温度高于该压力下的沸点,而液体仍不沸腾的现象,叫液体的过热现象,此时的液体称为过热液体。

在一定压力下,当液体的温度低于该压力下液体的凝固点,而液体仍步凝固的现象叫液体的过冷现象,此时的液体称为过冷液体。

上述过饱和蒸汽、过饱和溶液、过热液体、过冷液体所处的状态均属压稳状态,它们不是热力学平衡态,不能长期稳定存在,但在适当条件下能稳定存在一段时间,故称为亚稳状态。

(四)固体表面吸附

1.固体表面吸附的原因

在固体表面(即使是非常光滑的)由许多缺陷,使固体表面的原子处在不对称的力场中,而是固体表面不平衡,表面层具有过剩自由能。为使表面能降低,固体表面的原子会自发的利用其未饱和的自由价来捕获气相或液相中的分子,使之在表面上浓集,形成固体表面的吸附。按吸附作用力性质的不同,可将吸附分为物理吸附(physisorption)和化学吸附(chemisorption)。如图所示:

按吸附本质的不同,分为物理吸附和化学吸附,它们的主要区别见下表:

但物理吸附和化学吸附无明确的界限。

2.吸附等温式

(1)兰缪尔吸附等温式:兰缪儿吸附理论假设:

1)固体表面对气体的吸附式单分子层;

2)固体表面使均匀的;

3)被吸附上的气体分子之间无相互作用力;

4)吸附平衡是动态平衡。

一定温度下,吸附达平衡时,兰缪尔单分子吸附等温式有:

(2)B.E.T吸附等温式:B.E.T吸附等温式接受了兰缪尔关于表面使均匀的,吸附作用是吸附和解吸附达到平衡的结果等观点,但B.E.T吸附认为吸附是多分子层的,吸附分子层数不受限制,由此得到了二常数公式:

上式叫B.E.T多分子吸附等温式。B.E.T吸附式常用来测定固体的比表面。(3)弗伦得利希(Freundlich)等温式:

意义:吸附量

与吸附时溶液的平衡浓度的次方成正比,n为特征常

数。

使用条件:固体在溶液中的等温吸附。

3.吸附热

吸附过程一般是放热过程,但有的解离吸附是吸热过程,吸附热的大小常用来衡量吸附的强弱程度。由于固体表面得不均匀性,吸附热是覆盖度

的函数。吸附热可用热量计直接测定,也可用克老修斯—克拉贝龙方程从吸附等量线求出:

吸附热中,吸热为“-”,放热为“+”。

(五)溶液界面上的吸附

1.溶液的表面张力

当溶剂中加入溶质,溶液的表面张力会发生改变。如在水中加入无机酸、碱、

略为升高;加入有机酸、醇、酯、醚、酮等

盐及蔗糖和甘油等,使水的

使水的

通常,把能显著降低液体表面张力的物质称为该液体的表面活性剂。

2.吉布斯吸附等温式

溶质(B)的表面超额为零的相对值,使之单为面积的表面层中所含溶质的量与具有相同质量溶剂的本体溶液中所含溶质的量之差值。

<0,则>0,发生正吸附,这种溶质为表面活性剂;

>0,<0,发生负吸附,这种溶质为非表面活性剂。

反之,

原则上吉布斯吸附等温式可用于任意两相界面,但由于

面张力不易直接测定,故通常只用于

3.表面活性剂

某些物质当它们以低浓度存在于一体系式时,可被吸附在该体系的表面(界面)上,使这些表面的表面自由能发生明显降低的现象,这些物质称为表面活性剂。

表面活性剂分子是由具有亲水性的极性基团和具有憎水性的非极性基团所组成的有机物。它的非极性憎水基团一般是8~18碳的直链烃,因此表面活性剂都是两亲分子(amphiphilic molecule)。吸附在水表面时采用极性集团向着水,非极性基团脱离水的表面定向。这种排列,使表面上不饱和的力场得到某种程度上的平衡,从而降低了表面张力(或界面张力)。(六)多相催化反应

多相催化反应包括以下五个基本步骤:

(1)反应物由体相扩散到催化剂固体表面;

(2)反应无在催化积表面上被吸附;

(3)反应物进行表面化学反应;

(4)产物从催化剂表面脱附;

(5)产物扩散离开催化剂表面。

第七章 表面现象习题答案.

第七章 表面现象习题答案 1.在293.15K 时,把半径为1 mm 的球形水滴分散成半径为1 μm 的球形小水滴,比表面为原来的多少倍?表面Gibbs 自由能增加了多少?此过程环境至少需做功多少?已知293K 时水的表面张力为0.07288 N ?m -1。 解: (1)小液滴比表面r a = r r r V A 3 3 4432=ππ=球体积球面积 r 1 = 10-3 m , r 2 = 10-6 m 36321121010 10/3/312 ===--r r r r a a r r = 倍 (2)分散前液滴表面积62111044-?==ππr A m 2 分散后小液滴数 9321323 121103 434=??? ? ??===r r r r V V n ππ 个 分散后液滴总表面积 () 32 6 9222104104104--?=?=?=πππr n A m 2 ?A = A 2 -A 1 ≈ A 2 ?G = σ??A = 0.07288?4π?10-3 = 9.158?10-4 J (3)环境至少做的功 W r '=?G =9.158?10-4 J 2. 将10-3 m 3 油状药物分散水中,制成油滴半径为10-6 m 的乳状液。已知油水界面张力为65?10-3 N ?m -1,求分散过程需作多少功?增加的表面Gibbs 能为多少?如果加入适量表面活性剂后,油水界面张力下降至30?10-3 N ?m -1,则此分散过程所需的功比原来过程减少了多少? 解:(1)分散后总表面积 小油滴面积小油滴体积 总体积 ?= A 36 332331031010310343 410?=?=?=?=----r r r ππ m 2 分散前表面积与分散后相比可忽略,?A =A 分散过程环境作的功及所增加的表面自由能: W r '=?G =σ??A =65?10-3?3?103=195 J (2) 加入表面活性剂后,分散过程环境作的功 W r '=?G =σ ??A =30?10-3?3=90 J 比原来过程少做功=195-90=105 J 3. 常压下,水的表面张力σ(N ?m -1)与温度T (K )的关系可表示为: σ=(75.64-0.00495 T )?10-3 。

傅献彩物理化学选择题———第十二章 界面现象 物化试卷(一)

目录(试卷均已上传至“百度文库”,请自己搜索)第一章热力学第一定律及其应用物化试卷(一)第一章热力学第一定律及其应用物化试卷(二)第二章热力学第二定律物化试卷(一) 第二章热力学第二定律物化试卷(二) 第三章统计热力学基础 第四章溶液物化试卷(一) 第四章溶液物化试卷(二) 第五章相平衡物化试卷(一) 第五章相平衡物化试卷(二) 第六章化学平衡物化试卷(一) 第六章化学平衡物化试卷(二) 第七章电解质溶液物化试卷(一) 第七章电解质溶液物化试卷(二) 第八章可逆电池的电动势及其应用物化试卷(一)第八章可逆电池的电动势及其应用物化试卷(二)第九章电解与极化作用 第十章化学动力学基础(一)物化试卷(一) 第十章化学动力学基础(一)物化试卷(二) 第十一章化学动力学基础(二) 物化试卷(一) 第十一章化学动力学基础(二) 物化试卷(二) 第十二章界面现象物化试卷(一) 第十二章界面现象物化试卷(二) 第十三章胶体与大分子溶液物化试卷(一) 第十三章胶体与大分子溶液物化试卷(二) 参考答案

1. 液体的表面自由能γ 可以表示为: ( ) (A) (α H/αA)T,p,n(B) (αF/αA)T,p,n (C) (αU/αA)S,V,n(D) (αG/αA)T,V,n 2. 对大多数纯液体其表面张力随温度的变化率是: ( ) (A) (αγ/αT)p> 0 (B) (αγ/αT)p< 0 (C) (αγ/αT)p= 0 (D) 无一定变化规律 3. 已知400 K 时,汞的饱和蒸气压为 p0,密度为ρ ,如果求在相同温度下,一个直径为10-7m 的汞滴的蒸气压,应该用公式:( ) (A) p = p0+ 2γ/R' (B) ln(p/p0) =ΔVapHm(1/T0-1/T)/R (C) RTln(p/p0) = 2γM/ρR' (D) p = nRT/V 4. 弯曲表面上附加压力的计算公式:Δp = p'-p0= 2γ/R' 中,R' 的符号:( ) (A) 液面为凸面时为正,凹面为负(C) 总为正 (B) 液面为凸面时为负,凹面为正(D) 总为负 5. 液体在毛细管中上升的高度与下列那一个因素无关: (A)温度(B)液体密度(C)重力加速度(D)大气压力 6. 把玻璃毛细管插入水中,凹面下液体所受的压力p 与平面液体所受的压力p 相比:( ) (A) p = p0(B)p < p0(C) p > p0(D) 不确定

第十章界面现象练习题及答案

第十章界面现象练习题 一、是非题(对的画√错的画×) 1、液体的表面张力总是力图缩小液体的表面积。() 2、液体的表面张力的方向总是与液面垂直。() 3、分子间力越大的物体其表面张力也越大。() 4、垂直插入水槽中一支干净的玻璃毛细管,当在管中上升平衡液面外加热时,水柱会上升。() 5、在相同温度下,纯汞在玻璃毛细管中呈凸液面,所以与之平衡的饱和蒸气压必大于其平液面的蒸汽压。() 6、溶液表面张力总是随溶液的浓度增大而减小。() 7、某水溶液发生负吸附后,在干净的毛细管中的上升高度比纯水在该毛细管中上升的高度低。() 8、通常物理吸附的速率较小,而化学吸附的速率较大。() 9、兰格缪尔等温吸附理论只适用于单分子层吸附。() 10、临界胶束浓度(CMC)越小的表面活性剂,其活性越高。() 11、物理吸附无选择性。() 12、纯水、盐水、皂液相比,其表面张力的排列顺序是:γ(盐水)<γ(纯水)<γ(皂液)。() 13、在相同温度与外压力下,水在干净的玻璃毛细管中呈凹液面,故管中饱和蒸气压应小于水平液面的蒸气压力。() 14、朗缪尔吸附的理论假设之一是吸附剂固体的表面是均匀的。() 15、同一纯物质,小液滴的饱和蒸气压大于大液滴的饱和蒸气压。() 16、弯曲液面的饱和蒸气压总大于同温度下平液面的蒸气压。() 17、表面张力在数值上等于等温等压条件下系统增加单位表面积时环境对系统所做的可逆非体积功。() 18、某水溶液发生正吸附后,在干净的毛细管中的上升高度比在纯水的毛细管中的水上升高度低。() 19、弯曲液面处的表面张力的方向总是与液面相切。()

20、吉布斯所定义的“表面过剩物质的量”只能是正值,不可能是负值。( ) 21、封闭在容器内的大、小液滴若干个,在等温下达平衡时,其个数不变,大小趋于一致。() 22、凡能引起表面张力降低的物质均称之为表面活性剂。() 23、表面过剩物质的量为负值,所以吸附达平衡后,必然引起液体表面张力降低。() 24、在吉布斯模型中,选择表面相的位置使溶剂的表面过剩物质的量n1(γ),则溶质的表面过剩物质的量ni(γ)可以大于零、等于零或小于零。() 25、过饱和蒸气之所以可能存在,是因新生成的微小液滴具有很大的 比表面吉布斯函数。() 二、选择题 1、液体表面分子所受合力的方向总是(),液体表面张力的方向总是() (1)沿液体表面的法线方向,指向液体内部。 (2)沿液体表面的法线方向,指向气体内部。 (3)沿液体表面的切线方向, (4)无确定的方向。 2、在定温定压下影响物质的表面吉布斯函数的因素是() (1)仅有表面积As (2)仅有表面张力γ (3)表面积As和表面张力γ(4)没有确定的函数关系 3、附加压力产生的原因是() (1)由于存在表面(2)由于在表面上存在表面张力 (3)由于表面张力的存在,在弯曲表面两边压力不同 (4)难于确定 4、在水平放置的玻璃毛细管中注入少许水(水润湿玻璃)在毛细管中水平水柱 的两端呈凹液面,当在右端水凹面处加热,毛细管中的水向何端移动。()(1)向左移动(2)向右移动 (3)不动(4)难以确定 5、今有一球形肥皂泡,半径为r,肥皂水溶液的表面张力为γ,则肥皂泡内附加压力是()

界面现象

第九章 界面现象 讲解:日常生活和生产中,有很多现象和界面有关。如:水在玻璃细管中会上升,这叫毛细现象;水可以在桌面上铺开,水银却成球状等。通常把气液和气固界面成为表面。 第一节 表面张力和表面吉布斯函数 一、表面现象及其本质 1.界面层的定义 界面的5种类型:g-l,g-s,l-l,l-s,s-s. 其中g-l 和g-s 界面也叫表面。 界面分子和内部分子的区别:内部分子受力对称,界面分子受力不对称,不均匀。 液体自发使表面积缩小。 讲解:测定液体蒸气压,不能有空气存在,液体表面指纯液体与其纯蒸气之间的过渡层,只有几个分子厚。日常生活中讲的液体表面,是指液体与空气之间的界面,其中空气被液体蒸气饱和。 2.系统的比表面(分散度) 单位质量具有的表面积,或单位体积具有的表面积。 def def S S m V A A A A m V ==质量表面积体积表面积 例:一个边长为0.01米的立方体表面积是多少?把这个立方体分成10-9m 的小立方体,求其总面积。 解:边长为0.01米的立方体表面积 2-421=60.01=610m A ?? () 3 213 90.011010-=小立方体的个数为 -92213226(10)10610m A =??=?小立方体总面积 物体被分散后的体积变化,请看358页表9.1。 二、表面张力、表面功、表面吉布斯函数 在等温等压条件下者3个概念是一回事。 讲解:吉布斯函数变就是等温等压条件下可逆过程得体积功。 :γ等温等压下可逆地增加单位表面积所需的功。 B ,,S T p n G A γ?? ?= ? ??? 表面张力就是表面功 表面张力F:表面上,每米长度所受的收缩力,垂直于表面切线方向。 -2-2-1 J m N m m N m ?=??=?单位: 表面功 表面张力

第十二章界面现象 复习题解答

第十二章 界面现象复习题解答 1、 为什么气泡、液滴、肥皂泡等等都呈圆形?玻璃管口加热后会变的光滑并缩小(俗称圆口),这些现象的本质就是什么? 答:这些现象的本质就是:表面层分子总就是受到本体内部分子的拉力,有进入本体内部的趋势,即总就 是使表面积缩小到最小的趋势,因为相同体积的球形表面积最小,所以都成球形,而玻璃管口加热后变为 圆口也就是减小曲率半径((缩小表面积)。 2、 用学到的关于界面现象的知识解释以下几种做法或现象的基本原理:(1)人工降雨,(2)有机蒸馏中加沸石,(3)毛细凝聚,(4)过饱与溶液、过饱与蒸汽、过冷液体等过饱与现象,(5)重量分析中的“陈化”过程,(6)喷洒农药时为何常常要在药液中加少量表面活性剂。 答:都用开尔文公式RTlnP/P 0=2 r m/ρR’或RTlnP 1/P 2=(2 r m/ρ)*(1/R 1′-1/ R 2′)或RTlnS/S 0=2 r m/ρR’或 RTlnS 1/S 2=(2 r m/ρ)*(1/R 1′-1/ R 2′)来解释。 3、如图所示,在三通活塞的两端涂上肥皂液,关断右端通路,在左端吹一个大泡;然后关闭左端,在右端吹一个小泡,最后让左右两端相通,试问接通后两泡的大小有何变化?到何时达到平衡?讲出 变化的原因及平衡时两泡的曲率半径的比值。 答:接通后小泡变小,大泡变大,即小气泡的附加压力Ps 大于大气泡的附加压力,当达平衡时两气泡的曲 率半径相等。 4、因吉布斯自由能越低,体系越稳定,所以物体总有降低本身表面吉布斯自由能的趋势。请说说纯液体、溶液、固体就是如何降低自己的表面吉布斯自由能的。 答:纯液体通过缩小表面积来降低表面吉布斯自由能。溶液通过减小表面积与表面吸附两种途径来降低 表面吉布斯自由能,对表面活性剂产生正吸附(Pi= -a i /RT(dr/da i ),对非表面活性剂产生负吸附。固体通过 吸附气体分子或液体分子来降低体系吉布斯自由能。 5、为什么小晶粒的熔点比大块的固体的熔点略低而溶解度却比大晶粒大? 答:根据开尔文公式RTlnS 1/S 2=2 r m/ρR’说明小晶粒的溶解度大于大块固体的溶解度(因为相同质量的 小晶粒的表面吉布斯自由能大于大晶体的表面吉布斯自由能。因为熔点就是三相平衡点 , ∵RTlnP 小/P 大=(2 r m/ρ)*(1/R 小-1/ R 大),小晶体的蒸汽压大于大晶体的蒸汽压,所以小晶体的熔点比大晶

第10章 界面现象

第10章界面现象 10.1 请回答下列问题: (1)常见的亚稳定状态有哪些?为什么会产生亚稳定状态?如何防止亚稳定状态的产生? 解:常见的亚稳定状态有:过饱和蒸汽、过热或过冷液体和过饱和溶液等。 产生亚稳定状态的原因是新相种子难生成。如在蒸气冷凝、液体凝固和沸腾以及溶液结晶等过程中,由于要从无到有生产新相,故而最初生成的新相,故而最初生成的新相的颗粒是极其微小的,其表面积和吉布斯函数都很大,因此在系统中产生新相极其困难,进而会产生过饱和蒸气、过热或过冷液体和过饱和溶液等这些亚稳定状态。 为防止亚稳定态的产生,可预先在系统中加入少量将要产生的新相种子。 (2)在一个封闭的钟罩内,有大小不等的两个球形液滴,问长时间恒温放置后,会出现什么现象? 解:若钟罩内还有该液体的蒸气存在,则长时间恒温放置后,出现大液滴越来越大,小液滴越来越小,并不在变化为止。 其原因在于一定温度下,液滴的半径不同,其对应的饱和蒸汽压不同,液滴越小,其对应的饱和蒸汽压越大。当钟罩内液体的蒸汽压达到大液滴的饱和蒸汽压时。该蒸汽压对小液滴尚未达到饱和,小液滴会继续蒸发,则蒸气就会在大液滴上凝结,因此出现了上述现象。 (3)物理吸附和化学吸附最本质的区别是什么? 解:物理吸附与化学吸附最本质的区别是固体与气体之间的吸附作用力不同。 物理吸附是固体表面上的分子与气体分子之间的作用力为范德华力,化学吸附是固体表面上的分子与气体分子之间的作用力为化学键力。 (4)在一定温度、压力下,为什么物理吸附都是放热过程? 解:在一定温度、压力下,物理吸附过程是一个自发过程,由热力学原理可知,此过程系统的ΔG<0。同时气体分子吸附在固体表面,有三维运动表为二维运动,系统的混乱度减小,故此过程的ΔS<0。根据ΔG=ΔH-TΔS可得,物理吸附过程的ΔH<0。在一定的压力下,吸附焓就是吸附热,故物理吸附过程都是放热过程。 10.2 在293.15K及101.325kPa下,把半径为1×10-3m的汞滴分散成半径为1×10-9m小汞滴,试求此过程系统的表面吉布斯函数变为多少?已知汞的表面张力为0.4865N·m-1。

界面现象 复习题解答

第十二章界面现象复习题解答 1、为什么气泡、液滴、肥皂泡等等都呈圆形玻璃管口加热后会变的光滑并缩小(俗称圆口),这些现象 的本质是什么 答:这些现象的本质是:表面层分子总是受到本体内部分子的拉力,有进入本体内部的趋势,即总是使表面积缩小到最小的趋势,因为相同体积的球形表面积最小,所以都成球形,而玻璃管口加热后变为圆口也是减小曲率半径((缩小表面积)。 2、用学到的关于界面现象的知识解释以下几种做法或现象的基本原理:(1)人工降雨,(2)有机蒸馏中加沸石,(3)毛细凝聚,(4)过饱和溶液、过饱和蒸汽、过冷液体等过饱和现象,(5)重量分析中的“陈化”过程,(6)喷洒农药时为何常常要在药液中加少量表面活性剂。 答:都用开尔文公式RTlnP/P0=2 r m/ρR’或RTlnP1/P2=(2 r m/ρ)*(1/R1′-1/ R2′)或RTlnS/S0=2 r m/ρR’或RTlnS1/S2=(2 r m/ρ)*(1/R1′-1/ R2′)来解释。 3、如图所示,在三通活塞的两端涂上肥皂液,关断右端通路,在左端吹一个大泡;然后关闭左端,在右端吹一个小泡,最后让左右两端相通,试问接通后两泡的大小有何变化到何时达到平 衡讲出变化的原因及平衡时两泡的曲率半径的比值。 答:接通后小泡变小,大泡变大,即小气泡的附加压力Ps大于大气泡的附加压力,当达平衡时两气泡的曲率半径相等。 4、因吉布斯自由能越低,体系越稳定,所以物体总有降低本身表面吉布斯自由能的趋势。请说说纯液体、溶液、固体是如何降低自己的表面吉布斯自由能的。 答:纯液体通过缩小表面积来降低表面吉布斯自由能。溶液通过减小表面积和表面吸附两种途径来降低表面吉布斯自由能,对表面活性剂产生正吸附(Pi= -a i/RT(dr/da i),对非表面活性剂产生负吸附。 固体通过吸附气体分子或液体分子来降低体系吉布斯自由能。 5、为什么小晶粒的熔点比大块的固体的熔点略低而溶解度却比大晶粒大 答:根据开尔文公式RTlnS1/S2=2 r m/ρR’说明小晶粒的溶解度大于大块固体的溶解度(因为相同质量的小晶粒的表面吉布斯自由能大于大晶体的表面吉布斯自由能。因为熔点是三相平衡点, ∵RTlnP小/P大=(2 r m/ρ)*(1/R小-1/ R大),小晶体的蒸汽压大于大晶体的蒸汽压,所以小晶体的熔点

物理化学-表面现象习题

物理化学-表面现象习题

第七章 表面现象习题 1. 在293K 时,把半径为10-3 m 的水滴分散成半 径为10-6 m 小水滴,问比表面增加了多少倍?表面吉布斯能增加了多少?完成该变化时,环境至少需做功多少?已知293K 时水的表面张力为0.07288 N/m. 解: 2363 ,2,13 ,1 3 336391296232322134443 (1)433310********* (2)[(10)]/[(10)]1033104(10)4(10)4100.072884109.15810(3)9.15810s s s s A r a V r r a a a V n V A A A m G A J W G J πππππππσπ-----------== --=====?-=?-≈??=?=??=?=-?=-?球 球 =分散后液滴数个 = 2. 将10-6 m 3油分散到盛有水的烧杯内,形成半 径为10-6 m 的粒子的乳状液。设油水间界面张力为62×10-3 N/m ,求分散过程所需的功为多少?所增加的表面自由能为多少?如果加入微量的表面活性剂之后,再进行分散,这是油水界面张力下降到42

×10-3 N/m 。问此分散过程所需的功比原来过程减少多少? 解: 62 1223310(1)4343 621030.186(2)0.186(3)21030.1260.1860.1260.06V A A m V W A J G W J W A J J ππσσσσ---=??≈=???=-???-62 单个乳状油滴-63212’=(10)=(10)=-=-(A -A )-A ==-加入表面活性剂后,所需的功:=-=4=比原来减少的功为:-= 3. 常压下,水的表面张力σ(N/m)与温度t (℃) 的关系可表示为 σ= 7.564×10-2 - 1.4×10-4 t 若在10℃时,保持水的总体积不变,试求可逆 地扩大1cm 2表面积时,体系的W 、Q 、ΔS 、ΔG 和ΔH 。 解: 242244 246644887.56410 1.410107.42410/7.56410 1.410(273) ( )( ) 1.410 7.42410107.424107.42410( ) 1.41010 1.410/283 1.410T A T N m T S A T W A J G W J S S A J K A Q T S σσσσ--------------????=??-??=-=???=-?=-??=-??=-=???=?=??=??=?=??=-=-66653.965107.42410 3.96510 1.1410J H G T S J ----=??=?+?=?+?=?

物理化学第十章界面现象

第十章界面现象 10.1 界面张力 界面:两相的接触面。 五种界面:气—液、气—固、液—液、液—固、固—固界面。(一般常把与气体接触的界面称为表面,气—液界面=液体表面,气—固界面=固体表面。) 界面不是接触两相间的几何平面!界面有一定的厚度, 有时又称界面为界面相(层)。 特征:几个分子厚,结构与性质与两侧体相均不同 比表面积:αs=A s/m(单位:㎡·㎏-1) 对于一定量的物质而言,分散度越高,其表面积就越大,表面效应也就越明显,物质的分散度可用比表面积αs来表示。 与一般体系相比,小颗粒的分散体系有很大的表面积,它对系统性质的影响不可忽略。 1. 表面张力,比表面功及比表面吉布斯函数 物质表面层的分子与体相中分子所处的力场是不同的——所有表面现象的根本原因! 表面的分子总是趋向移往内部,力图缩小表面积。液体表面如同一层绷紧了的富有弹性的橡皮膜。 称为表面张力:作用于单位界面长度上的紧缩力。单位:N/m, 方向:表面(平面、曲面)的切线方向 γ可理解为:增加单位表面时环境所需作的可逆功,称比表面功。单位:

J · m-2。 恒温恒压: 所以: γ等于恒温、恒压下系统可逆增加单位面积时,吉布斯函数的增加,所以,γ也称为比表面吉布斯函数或比表面能。单位J · m-2 表面张力、比表面功、比表面吉布斯函数三者的数值、量纲和符号等同,但物理意义不同,是从不同角度说明同一问题。(1J=1N·m故1J·m-2=1N·m-1,三者单位皆可化成N·m-1) 推论:所有界面——液体表面、固体表面、液-液界面、液-固界面等,由于界面层分子受力不对称,都存在界面张力。 2. 不同体系的热力学公式 对一般多组分体系,未考虑相界面面积时:

第十章界面现象InterfacePhenomena

第十章 界面现象 Interface Phenomena 界面(相界面/界面相):密切接触的两相之间的过渡区(约几个分子的厚度) 界面的类型:气—液、气—固、液—液、液—固、固—固 表面 surface 界面现象的原因:“表里不一” 分散度:比表面 s A m V s a =表面积质量或体积 多孔硅胶 300~700 ,活性炭 1000~2000 m 2 . g –1 §10.1 表面吉布斯自由能和表面张力 一、表面功、表面吉布斯自由能、表面张力 液体都有自动缩小其表面积的趋势 γ dA s = δW ?r = dG T,P 表面功 ,,B s T P n G A γ???= ??? ? γ 称为比表面吉布斯自由能,单位:J . m –2 ,物理意义:定温定压定组成条件下,系统增加单位表面积时所增加的吉布斯自由能,也即单位面积表面层的分子比相同数量的内部分子所多出来的那部分能量。如:20℃的纯水,γ = 0.07275 1g (10 –6 m 3) 球形水滴 半径 1 nm 的小水滴 半径 0.62 cm 1 nm 个数 1 2.39 × 1020 表面积 4.83 × 10 – 4 m 2 3.01 × 103 m 2 ΔG = γ ΔA s = 219 J (相当于使这1g 水升温52.4 K)

系统比表面越大,能量越高,越不稳定。 粉尘爆炸极限:淀粉/硫磺7mg/L 空气,面粉/糖粉10,煤粉17。 δW ?r = γ dA s = γ . 2l d x F δW ?r = F d x 2F l γ==力总长 γ 称为表面张力 surface tension ,单位:N . m –1 ,物理意义:垂直作用于单位长度相界面上的表面紧缩张力。 任意形状自由移动 张开成圆(面积最大) 单位面积的表面功、比表面吉布斯自由能、表面张力:数值、量纲相同,物理意义、单位不同。 二、热力学基本方程(考虑表面功) dU = T dS – p dV + ∑ μB d n B + γ d A s dH = T dS + V dp + ∑ μB d n B + γ d A s dA = – S dT – p dV + ∑ μB d n B + γ d A s dG = – S dT + V dp + ∑ μB d n B + γ d A s ,,,,,,,,B B B B s s s s S V n S p n T V n T p n U H A G A A A A γ????????????==== ? ? ? ?????????????

第七章表面现象

第七章 表面现象 (一)主要公式及其适用条件 1、表面张力的定义 A W A G N p T d /d )/('r ,,=??=σ 式中:N p T A G ,,)/(??为在温度、压力及相组成恒定的条件下,系统的吉布斯函数随表面积A 的变化率,称为比表面吉布斯函数;A W d /d 'r 为在恒温、恒压及相组成恒定的可逆条件下,系统每增加单位表面积所得到的最大非体积功,称为比表面功。二者的单位皆为J ·m -2 = N ·m -1。 2、润湿角与杨氏方程 l -g l -s g s /)(cos σσσθ-=- 式中:σs -g 、σs -l 及σg -l 分别在一定温度下,固-气、固-液及气-液之间的表面(或界面)张力;θ为气、液、固三相交界处,在同一个垂直剖面上,气-液界面与固-液界面之间含有液体的夹角,称为润湿角或接触角。此式适用的条件为铺展系数?≤0。 3、铺展系数的定义 ? = σs -g -σs -l -σg -l 4、拉普拉斯方程 ?p = 2σ / r 此式适用于在一定温度下,曲率半径为r 的圆球形液滴或在液体中半径为r 的小气泡附加压力?p 的计算。 对于悬浮在气体中半径为r 的小气泡,因为它有内外两个表面,所以泡内气体所承受的附加压力。 ?p = 4σ / r 式中σ为液膜的表面张力。 5、开尔文公式 r M p p RT r ρσ/2)/ln( 式中:σ、ρ、p 和p r 分别为在温度T 时液体的表面张力、密度、饱和蒸气压和半径为r 圆球形小液滴的饱和蒸气压;M 为液体的摩尔质量。适用条件为圆球形液滴和不考虑分散度对σ的影响。 6、兰格缪尔吸附等温式 ),1/(bp bp +=θ 或 )1/(bp bp +Γ=Γ∞ 在一定温度下指定吸附系统,式中θ为覆盖度,b 为吸附系数,p 为吸附平衡压力,Γ及Γ∞分别为平衡吸附量和饱和吸附量。此式适用于气体在固体表面上的单分子层吸附。 若将上式中的p 换成c ,也可适用于溶液中溶质在固体表面上的吸附。 7、吉布斯吸附公式 Γ = -(c /RT )T c )/(??σ 式中:T c )/(??σ为在温度T 、浓度c 时σ随c 的变 化率,Γ为溶质的表面吸附量。此式适用于稀溶液 中的溶质在溶液表面层中吸附量的计算。 (二)概念题 7·2·1 填空题 1、液体表面层中的分子恒受到指向( )力,表面张力是在( )的方向上,这两种力的方向是相互( )的。 2、在一定温度下,液体分子间的作用力越大,其表面张力( )。 图7·2·1-8

界面现象

第十二章界面现象 一、选择题 1.下列叙述不正确的是( ) A比表面自由能的物理意义是,在定温定压下,可逆地增加单位表面 积引起系统吉布斯自由能的增量 B表面张力的物理意义是,在相表面的功面上,垂直作用于表面上任 意单位长度功线的表面紧缩力 C比表面自由能与表面张力量纲相同,单位不同 D比表面自由能单位为J·m2,表面张力单位为N·m-1时,两者数值不 同 2.在液面上,某一小面积S周围表面对S有表面张力,下列叙述不正确的是( ) A表面张力与液面垂直 B表面张力与S的周边垂直垂直 C表面张力沿周边与表面相切 D表面张力的合力在凸液面指向液体内部(曲面球心),在凹液面指向液体外部3.同一体系,比表面自由能和表面张力都用γ表示,它们( ) A物理意义相同,数值相同 B量纲和单位完全相同 C物理意义相同D前者是标量,后者是矢量相同,单位不同 4.一个玻璃毛细管分别插入25oC和75oC的水中,则毛细管中的水在两不同温度水中上升的高度( ) A相同B无法确定C25oC水中高于75oC水中D75oC水中高于25oC水中 5.纯水的表面张力是指恒温恒压组成时水与哪类相接触的界面张力( ) A饱和水蒸汽B饱和了水蒸气的空气C空气D含有水蒸气的空气 6.已知20oC时水~空气的界面张力为 7.27×10-2N·m-1,当在20oC下可逆地增加水的表面积4cm2,则系统的ΔG为( ) A2.91×10-5J B2.91×10-1J C-2.91×10-5J D-2.91×10-1J 7.对处于平衡状态的液体,下列叙述不正确的是( ) A凸液面内部分子所受压力大于外部压力 B凹液面内部分子所受压力小于外部压力 C水平液面内部分子所受压力大于外部压力 D水平液面内部分子所受压力等于外部压力 8.弯曲液面下的附加压力与表面张力的联系与区别在于( ) A产生的原因与方向相同,而大小不同 B作用点相同,而方向和大小不同 C产生的原因相同,而方向不同 D作用点相同,而产生的原因不同 9.在一个密闭容器中,有大小不同的两个水珠,长期放置后会发生( ) A大水珠变大,小水珠变小 B大水珠变大,小水珠变大 C大水珠变小,小水珠变大 D大水珠、小水珠均变小

第十章 界面现象

第十章界面现象 1.液体在毛细管中上升的高度与基本无关。 A.温度 B.液体密度 C.大气压力 D.重力加速度 2.微小晶体与同一种的大块晶体相比较,下列说法中不正确的是。 A.微小晶体的饱和蒸气压大 B.微小晶体的表面张力未变 C. 微小晶体的溶解度小 D.微小晶体的熔点较低 3.水在某毛细管内上升高度为h,若将此管垂直地向水深处插下,露在水面以上的高度为h/2,则。 A.水会不断冒出 B. 水不流出,管内液面凸起 C. 水不流出,管内凹液面的曲率半径增大为原先的2倍 D.水不流出,管内凹液面的曲率半径减小为原先的一半 4. 在用最大气泡法测定液体表面张力的实验中,是错误的。 A.毛细管壁必须清洁干净 B.毛细管口必须平整 C.毛细管必须垂直放置 D.毛细管须插入液体内部一定深度 5. 在干净的粗细均匀的U形玻璃毛细管中注入纯水,两侧液柱的高度相同,然后用微量注射器从右侧注入少许正丁酸水溶液,两侧液柱的高度将是。 A.相同 B.左侧高于右侧 C.右侧高于左侧 D.不能确定 6. 在三通活塞两端涂上肥皂液,关闭右端,在左端吹一大泡,关闭左端,在右端吹一小泡,然后使左右两端相通,将会出现什么现象。 A.大泡变小,小泡变大 B.小泡变小,大泡变大 C.两泡大小保持不变 D.不能确定 7. 在一支干净的、水平放置的、内径均匀的玻璃毛细管中部注入一滴纯水,形成一自 由移动的液柱。然后用微量注射器向液柱右侧注入少量NaCl水溶液,假设接触角不变,则液柱将。 A. 不移动 B.向右移动 C.向左移动 D无法判断 8. 在潮湿的空气中,放有3只粗细不等的毛细管,其半径大小顺序为:r1>r2>r3,则毛细管内水蒸气易于凝结的顺序是。

第七章 表面现象习题答案

第七章 表面现象习题答案 1.在293、15K 时,把半径为1 mm 得球形水滴分散成半径为1 μm 得球形小水滴,比表面为原来得多少倍?表面Gibbs 自由能增加了多少?此过程环境至少需做功多少?已知293K 时水得表面张力为0、07288 N ?m 1。 解: (1)小液滴比表面= r 1 = 103 m, r 2 = 106 m 倍 (2)分散前液滴表面积 m 2 分散后小液滴数 个 分散后液滴总表面积 m 2 ?A = A 2 A 1 ≈ A 2 ?G = σ??A = 0、07288?4π?103 = 9、158?104 J (3)环境至少做得功 W r '=?G =9、158?104 J 2、 将103 m 3 油状药物分散水中,制成油滴半径为106 m 得乳状液。已知油水界面张力为65?103 N ?m 1,求分散过程需作多少功?增加得表面Gibbs 能为多少?如果加入适量表面活性剂后,油水界面张力下降至30?103 N ?m 1,则此分散过程所需得功比原来过程减少了多少? 解:(1)分散后总表面积 m 2 分散前表面积与分散后相比可忽略,?A =A 分散过程环境作得功及所增加得表面自由能: W r '=?G =σ??A =65?103?3?103=195 J (2) 加入表面活性剂后,分散过程环境作得功 W r '=?G =σ ??A =30?103?3=90 J 比原来过程少做功=19590=105 J 3、 常压下,水得表面张力σ(N ?m 1)与温度T (K)得关系可表示为: σ=(75、64-0、00495 T )?103 。 若在298 K 时,使一定量得纯水可逆地增大0、1m 2表面积时,求体系得W ,Q ,?S ,?G 与?H 。 解: 298K 时,σ=(75、640、00495T )?103=(75、640、00495?298)? 103=7、416?102 N ?m 1 W r '=?G =σ??A =7、416?102?101=7、416?103 J J ?K 1 J J 4.证明药粉S 在两种不互溶得液体A 与B 中得分布: (1)当 ,S 分布在液体A 中 (2)当 ,S 分布在A 、B 界面上。 证明: 设药粉S 有2单位面积,它所处得三种可能状态及相应得表面能见图: (1) 当时 若I SB (σ 若I →III,?G =(2σSB +σAB )(2σSA +σAB )=2(σSB +σSA )>0 这一过程也不会自发进行。 状态I 2σAS +σA 状态II σAS +σBS 状态III 2σBS +σA

物理化学界面现象知识点

界面现象 1. 表面张力、表面功及表面吉布斯函数 表面张力γ:引起液体或固体表面收缩的单位长度上的力,单位为N·m -1。 表面功:'δ/d r s W A ,使系统增加单位表面所需的可逆功,单位为J·m -2。 表面吉布斯函数:B ,,()(/)s T p n G A α??,恒温恒压下系统增加单位表面时所增加的吉布斯 函数,单位为J·m -2。 表面吉布斯函数的广义定义: B()B()B()B(),,,,,,,,( )()()()S V n S p n T V n T p n s s s s U H A G A A A A ααααγ????====???? ',r s T p s W dA dG dA γδ== 表面张力是从力的角度描述系统表面的某强度性质,而表面功及表面吉布斯函数则是从能量角度和热力学角度描述系统表面的某一性质。三者虽为不同的物理量,但它们的数值及量纲等同的,均可化为N·m -1。 在一定温度、压力下,若系统有多个界面,其总界面吉布斯函数: s i i s i G A γ=∑ 2. 弯曲液面的附加压力、拉普拉斯方程 附加压力:Δp =p 内-p 外 拉普拉斯方程:2p r γ?= 规定弯曲液面凹面一侧压力位p 内,凸面一侧压力位p 外;γ为表面张力;r 为弯曲液面的曲率半径,△p 一律取正值;附加压力方向总指向凹面曲率半径中心。 3. 毛细现象 毛细管内液体上升或下降的高度 2cos h r g γθρ= 式中:γ为表面张力;ρ为液体密度;g 为重力加速度;θ为接触角;r 为毛细管半径。当液体不能润湿管壁,θ>90°即0cos θ<时,h 为负值,表示管内凸液体下降的深度。 4. 微小液滴的饱和蒸汽压——开尔文公式

认知心理学 教案 讲义 第七章表象

第七章表象(4课时) 表象(Mental image),亦称表象、心象。认知心理学认为表象是指当未直接呈现的事物的一种心理表征。表象包括记忆表象和想象表象。 第一节表象知觉表征(1课时) 一、表象与知觉技能等价(难点) 认知心理学中尽管对表象的理解有不少差别,但存在着一个共同点:表象和知觉是连在一起的,将表象看作是类似知觉的信息表征。如Neisser(1972)认为,表象活动就是应用知觉时所用的某些认知过程,只不过这时没有引起知觉的刺激输入而已,后来又把表象看作对知觉的期待。Kosslyn(1980,1981)把视觉表象看成类似于视知觉的人脑中的图画,或类似图画的信息表争。这些观点强调的是表象与知觉的机能等价。下面一些实验支持了这些观点。 1、定位实验 将在知觉条件下完成的一种作业与在表象条件下完成的同一作业进行比较,以发现是否有共同的或类似的情况,从而确定表象与知觉是否等价。Podgorny和Shepand(1978)的视觉定位实验。实验分5组(1)视觉-记忆组,带字母的5×5网格(2)带网格的表象组,空的5×5网格,想象出字母(3)不带网格的表象组,其他同(2)组,只是测试的网格只画出外边的框子,内部方格不画出。 实验表明,3个组的实验结果无显著差异,有四种共同的反应模式。说明知觉条件和表象条件下,完成同一作业的情况是一样的或相似的。 2、视敏度实验 3、McCollough效应实验 什么是NcCollough效应,指澳大利亚心理学家McCollough发现的一组视觉后效现象。1965年McCollough做了一个有趣的实验:分别通过红色和绿色滤光后向屏幕上交替投射垂直栅条和水平栅条,每10秒交替一次。让被试注视10分钟后,紧接着呈现一个一半是垂直的一半是水平的黑白栅条。结果被试报告说看到的垂直栅条是绿色的,水平栅条是红色的。如果被试的头倾斜90°,继续观察,原来发绿的栅条变为发红,原来发红的栅条变为发绿了。这种随测验图形的条纹方向而变化的颜色后效就是McCollough after-effect。麦氏推断,人脑中有执行方向和颜色双重任务的觉察器,能对方向和颜色同时进行加工。当被试注视红色垂直条纹一段时间后,红色-垂直觉察器就会发生适应,而难以激活,而绿色-垂直觉察器没有适应,成了神经反应中的主要成分,从而把测验图形中的黑白垂直栅条看成是绿色的。同样,当绿色-垂直觉察器发生适应时,红色-水平觉察器在神经反应中起主导作用,把测验图形中的黑白水平栅条看成是红色的。 麦氏后效是一种知觉实验中测到的,在表象实验中如何呢?

第十一章 界面现象

第十一章界面现象 一、基本要求 (1)理解表面张力和表面吉布斯自由能函数的概念。 (2)理解弯曲界面的附加压力概念和拉普拉斯公式及其应用。 (3)理解弯曲液面的饱和蒸汽压与平面液体的饱和蒸汽压的不同;掌握开尔文方程及其应用。 (4)了解铺展和铺展系数。了解润式、接触角和杨氏方程;了解毛细管现象。 (5)理解压稳状态及新相生成。 (6)了解溶液界面上的吸附现象,正吸附和负吸附,吉布斯模型及其表面过剩物质的量的概念。 (7)了解物理吸附和化学吸附的含义和区别。 (8)了解表面活性剂的特征及其应用。 (9)理解吉布斯吸附等温式。 (10)掌握兰缪尔单分子层吸附模型和吸附等温式。 (11)了解B.E.T.多分子层吸附定温式及其内容。 二、主要概念、定理与公式 1.界面 存在于两相之间的厚度约为几个分子大小(纳米级)的一薄层,称为界面层,简称界面。 通常有液-气、固-气、固-液、液-液、固-固等界面,对固-气界面及液-气界面亦称为表面。

2.分散度 把物质分散成细小微粒的程度,称为分散度。通常采用体积表面或质量表面来表示分散度的大小。 )表示多相分散体系的分散程度。其定义为:单位 通常用比表面( 体积或单位质量的物质所具有的表面积,分别用符号 或 式中 ,V,m分别为物质的总表面积、体积和质量。 3.界面现象 凡物质处于凝聚状态,界面上发生的一切物理化学现象均称为界面现象。如毛细管现象、润湿作用、液体过热、蒸汽过饱和、吸附作用等,同称为界面现象。 4.表面自由能和表面张力 (1)表面功:由于分子在界面上与在体相中所处的环境不同,所以表面组成、结构、能量和受力情况与体相都不相同。如果把一个分子从内部移到界面(或者说增大表面积)时,就必须克服分子体系内部分子之间的吸引力而 所需要 对体系做功。在温度、压力和组成恒定时,可逆的使表面积增加 对体系做的功叫表面功。 (2)表面自由能:高分散体系具有巨大的表面积,所以具有巨大的表面能。表面自由能的广义定义为:

最新界面现象题目--答案参考

界面现象习题集 1、为什么自由液滴必成球形? 答:纯液体表面上的分子比内部分子具有更高的能量,而能量降级为一自发过程,所以它必然导致表面面积为最小状态。 2、为什么有云未必有雨?如何使云变成雨 答:空气的上升运动,造成气温下降,形成过饱和水气;加上吸湿性较强的凝结核的作用,水气凝结成云,来自云中的云滴,冰晶体积太小,不能克服空气的阻力和上升气流的顶托,从而悬浮在空中。当云继续上升冷却,或者云外不断有水气输入云中,使云滴不断地增大,以致於上升气流再也顶不住时候,才能从云中降落下来,形成雨。 3、分子间力与什么有关,其与表面张力的关系何在? 答:分子间力与温度、电荷分布、偶极矩、分子相对质量、外加电场有关 表面张力实质为每增加单位表面积所增加的自由焓 1)表面张力的物理意义需用分子间作用力解释: 在液体表面,表面分子的两侧受力不等。气相分子对它的引力远远小于液相。必然受到向下的拉力。所以,要将液体内部的分子拉至表面,必须克服分子间力对其做功。 该功主要用来增加其表面能。即:Γ为增加单位表面积所做的功。对纯液体而言,热力学诸函数关系为: 通常以等温等压和定组成条件下,每增加单位表面积引起自由焓的变化,即比表面自由焓。比表面自由焓即为表面张力。 2)表面张力是液体分子间引力大小的度量指标之一,凡是影响分子间力的因素必将影响表面张力。 4、20℃时汞的表面张力Γ=4.85×10-1N/m,求在此温度及101.325kPa的压力下,将半径r1=1.0mm的汞滴分散成r2=10-5mm的微小汞滴至少需要消耗多少的功? dA=8 =4.85×10-1N/m 5、分子间力的认识过程说明了什么?你有哪些体会? 答:我们对于分子间力的认识是一个不断深化的过程。由于看到了各物质之间的异同而提出了分子间力这样一个概念来解释。随着解释的不断深入,认识也在不断地提高,从而对其进行更多的修正。这样才深化出静电力、诱导力和色散力的观点,并研究出其计算过程。而 dA w dΓ = -' n V S n P S n T V n T P A U A H A F A G dA pdV Tds dV dA Vdp Tds dH dA sdT pdV dF dA sdT Vdp dG , , , , , , , , ? ? ? ? ? ? ? = ? ? ? ? ? ? ? = ? ? ? ? ? ? ? = ? ? ? ? ? ? ? = Γ Γ + - = Γ + + = Γ + - - = Γ + - =

第七章 表面现象习题

第七章表面现象习题 一、是非题 下列各题中的叙述是否正确?正确的选“√”,错误的选“×”。 √ × 1.垂直插入水槽中一支干净的玻璃毛细管,当在管中上升平衡液面处加热时,水柱会上升。 √ × 2.水在干净的玻璃毛细管中呈凹液面,因附加压力p < 0,所以表面张力< 0 。 √ × 3.通常物理吸附的速率较小,而化学吸附的速率较大。 √ × 4.兰缪尔定温吸附理论只适用于单分子层吸附。 二、选择题 选择正确答案的编号: 1.附加压力产生的原因是: (A)由于存在表面; (B)由于在表面上存在表面张力; (C)由于表面张力的存在,在弯曲表面两边压力不同 (D)难于确定。 2.在水平放置的玻璃毛细管中注入少许水(水润湿玻璃),在毛细管中水平水柱的两端呈凹液面,当在右端水凹面处加热,毛细管中的水向何端移动: (A)向左移动;(B)向右移动;(C)不动; 3.今有一球形肥皂泡,半径为r,肥皂水溶液的表面张力为,则肥皂泡内附加压力是: (A);(B);(C)。(D)以上答案均不正确4.接触角是指: (A)g/l界面经过液体至l/s界面间的夹角;

(B)l/g界面经过气相至g/s界面间的夹角; (C)g/s界面经过固相至s/l界面间的夹角; (D)l/g界面经过气相和固相至s/l界面间的夹角; 5.高分散度固体表面吸附气体后,可使固体表面的吉布斯函数: (A)降低;(B)增加;(C)不改变(D)以上答案均不正确 6.高分散度固体表面吸附气体后,可使固体表面的吉布斯函数: (A)降低;(B)增加;(C)不改变(D)以上答案均不正确 7.兰谬尔吸附定温式适用于: (A)化学吸附;(B)物理吸附;(C)单分子吸附;(D)多分子吸附 (E)以上答案均不正确 8将待测乳浊液中加入高锰酸钾,振荡均匀后取一滴于显微镜下观察,若判定结果为“O/W”型,则显微镜视野中必须有如下现象,即(B ) (A)不连续的亮点被成片红色所包围,分散相为“W”,分散介质为“O” (B)不连续的亮点被成片红色所包围,分散相为“O”,分散介质为“W” (C)不连续的红斑点被成片清亮液包围,分散相为“W”,分散介质为“O” (D)不连续的红斑点被成片清亮液包围,分散相为“O”,分散介质为“W” 9比表面能是( C ) (A)单位体积物质的表面能(B)一摩尔物质的表面能 (C)单位面积的表面能(D) 表面张力 10恒温恒压条件下的润湿过程是:( A ) (A)表面Gibbs自由能降低的过程(B)表面Gibbs自由能增加的过程 (C)表面Gibbs自由能不变的过程(D)表面积缩小的过程 11. 丁达尔效应是由于下列哪种原因造成的() A.光的反射B.光的散射C.光的折射D.光的透射 12. 气体在固体表面的物理吸附是指() (A)气体分子存在于固体表面,且渗透到固体表面以下 (B)气体分子与固体表面分子之间在范德华力作用下在固体表面上的吸附 (C)气体分子与固体表面分子之间为化学健力作用 (D)气体分子与固体表面的化学反应

相关文档
最新文档