2020高考数学(文)刷题卷单元测试八:概率与统计(含解析)

2020高考数学(文)刷题卷单元测试八:概率与统计(含解析)
2020高考数学(文)刷题卷单元测试八:概率与统计(含解析)

单元质量测试(八)

时间:120分钟

满分:150分

第Ⅰ卷(选择题,共60分)

一、选择题(本大题共12小题,每小题5分,共60分)

1.同时抛掷3枚硬币,那么互为对立事件的是( )

A.“至少有1枚正面”与“最多有1枚正面”

B.“最多有1枚正面”与“恰有2枚正面”

C.“至多有1枚正面”与“至少有2枚正面”

D.“至少有2枚正面”与“恰有1枚正面”

答案 C

解析两个事件是对立事件必须满足两个条件:①不同时发生,②两个事件的概率之和等于1.故选C.

2.某小学共有学生2000人,其中一至六年级的学生人数分别为400,400,400,300,

300,200.为做好小学放学后“快乐30分”的活动,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么应抽取一年级学生的人数为( )

A .120

B .40

C .30

D .20 答案 B

解析 ∵一年级学生共400人,∴抽取一个容量为200的样本,用分层抽样的方法抽取的一年级学生人数为4002000

×200=40.选B .

3.(2018·合肥质检一)某广播电台只在每小时的整点和半点开始播放新闻,时长均为5分钟,则一个人在不知道时间的情况下打开收音机收听该电台,能听到新闻的概率是( )

A .114

B .112

C .17

D .16 答案 D

解析 我们研究在一个小时内的概率即可,不妨研究在一点至两点之间听到新闻的时间段.由题可知能听到新闻的时间段为1点到1点5分,以及1点30分到1点35分,总计10分钟的时间可以听到新闻,故能听到新闻的概率为1060=1

6

.故选D .

4.(2018·湖南邵阳二模)假设有两个分类变量X 和Y 的2×2列联表如下:

对同一样本,以下数据能说明X 与Y 有关系的可能性最大的一组为( ) A .a =45,c =15 B .a =40,c =20 C .a =35,c =25 D .a =30,c =30 答案 A

解析 根据2×2列联表与独立性检验可知, 当

a a +10与c c +30相差越大时,X 与Y 有关系的可能性越大,即a ,c 相差越大,a

a +10

与c

c +30

相差越大.故选A .

5.(2018·河南安阳二模)已知变量x 与y 的取值如下表所示,且2.5

由该数据算得的线性回归方程可能是( )

A .y ^=0.8x +2.3

B .y ^

=2x +0.4

C .y ^=-1.5x +8

D .y ^

=-1.6x +10 答案 D

解析 由2.5

4×(6.5

+m +n +2.5)∈(3.5,5.5),分别代入选项C ,D ,可得D 满足.故选D .

6.(2018·湖南长沙四县联考)如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是( )

A .1-π4

B .π12

C .π4

D .1-π12

答案 A

解析 鱼缸底面正方形的面积为22

=4,圆锥底面圆的面积为π.所以“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是1-π

4

.故选A .

7.(2018·佛山质检)已知袋中有5个球,其中红球3个,标号分别为1,2,3;蓝球2个,标号分别为1,2.从袋中任取2个球,则这2个球颜色不同且标号之和不小于4的概

率为( )

A .310

B .25

C .35

D .710 答案 A

解析 从这5个球中取出2个,有如下情况:(红1,红2),(红1,红3),(红1,蓝1),(红1,蓝2),(红2,红3),(红2,蓝1),(红2,蓝2),(红3,蓝1),(红3,蓝2),(蓝1,蓝2),共10种,其中2个球颜色不同且标号之和不小于4的有(红2,蓝2),(红3,蓝1),(红3,蓝2),共3种,所以所求概率为3

10

,故选A .

8.(2018·衡阳三模)若在边长为a 的正三角形内任取一点P ,则点P 到三角形三个顶点的距离均大于a

2

的概率是( )

A .1112-3π6

B .1-3π6

C .13

D .14 答案 B

解析 如图,正三角形ABC 的边长为a ,分别以它的三个顶点为圆心,以a

2为半径,在

△ABC 内部画圆弧,得三个扇形,依题意知点P 在这三个扇形外,因此所求概率为34a 2-12×π×a 2

234

a 2

=1-

6

.故选B . 9.10枚均匀的骰子同时掷出,共掷5次,至少有一次全部出现一点的概率是( )

A .1-56105

B .1-56610

C .1-1-16510

D .1-1-16105

答案 D

解析 一次同时掷出10枚均匀的骰子,10枚骰子全部出现一点的概率等于1610

,故10

枚骰子没有全部出现一点的概率等于1-1610

.事件“掷5次,至少有一次10枚骰子全部出

现一点”的对立事件为“掷5次,每次掷出的10枚骰子中,至少有一枚没有出现一点”,故至少有一次10枚骰子全部出现一点的概率等于1-1-16

105

.故选D .

10.(2018·广东广州海珠区综合测试)下列说法中正确的是( )

①相关系数r 用来衡量两个变量之间线性关系的强弱,|r |越接近于1,相关性越弱; ②回归直线y ^=b ^x +a ^

一定经过样本点的中心(x ,y );

③回归模型中残差是实际值y i 与估计值y ^

的差,残差点所在的带状区域宽度越窄,说明模型拟合精度越高;

④相关指数R 2

用来刻画回归的效果,R 2

越小,说明模型的拟合效果越好. A .①② B .③④ C .①④ D .②③ 答案 D

解析 ①相关系数r 用来衡量两个变量之间线性关系的强弱,|r |越接近于1,则相关性越强,错误;②回归直线y ^=b ^x +a ^

一定经过样本点的中心(x ,y ),正确;③由残差的定义和残差图的绘制可知正确;④相关指数R 2

用来刻画回归的效果,R 2

越小,说明模型的拟合效果越不好,错误.所以正确的有②③.故选D .

11.(2018·南昌摸底)甲邀请乙、丙、丁三人加入了微信群聊“兄弟”,为庆祝兄弟相聚,甲发了一个9元的红包,被乙、丙、丁三人抢完,已知三人均抢到整数元,且每人至少抢到2元,则丙获得“手气最佳”(即丙领到的钱数不少于其他任何人)的概率是( )

A .13

B .310

C .25

D .34 答案 C

解析 用枚举法列出乙、丙、丁三人分别得到的钱数,有(2,2,5),(2,3,4),(2,4,3),(2,5,2),(3,2,4),(3,3,3),(3,4,2),(4,2,3),(4,3,2),(5,2,2),共有10种可能性.而丙获得“手气最佳”(即丙领到的钱数不少于其他任何人)的情况有(2,4,3),(2,5,2),(3,3,3),(3,4,2),共计4种,故所求概率为

410=2

5

.故选

C .

12.(2018·郑州质检)我市某高中从高三年级甲、乙两个班中各选出7名学生参加2018年全国高中数学联赛(河南初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数a ,b 满足a ,G ,b 成等差数列且x ,G ,y 成等比数列,则1a +4

b

的最小值为( )

A .49

B .2

C .9

4 D .9 答案 C

解析 甲班学生成绩的中位数为80+x =81,得x =1.由茎叶图可知,乙班学生的总分为76+80+82+(80+y )+91+93+96=598+y =7×86,所以y =4.若正实数a ,b 满足a ,

G ,b 成等差数列且x ,G ,y 成等比数列,则a +b =2G ,xy =G 2,所以a +b =4,所以1a +4

b

14(a +b )1a +4b =145+b a +4a b ≥1

45+2b a ·4a b =14×9=94,当且仅当b =2a =83时,1a +4

b

取得最小值.故选C .

第Ⅱ卷 (非选择题,共90分)

二、填空题(本大题共4小题,每小题5分,共20分)

13.(2018·广东华南师大附中测试)已知如图所示的矩形,长为12,宽为5,在矩形内随机地投掷1000颗黄豆,数得落在阴影部分的黄豆为600颗,则可以估计阴影部分的面积约为________.

答案 36

解析 由题意得阴影部分的面积约为600

1000

×60=36.

14.某天,甲要去银行办理储蓄业务,已知银行的营业时间为9:00至17:00,设甲在当天13:00至18:00之间任何时间去银行的可能性相同,那么甲去银行恰好能办理业务的概率是________.

答案 45

解析 该题为长度型几何概型,所以概率P =17-1318-13=4

5

15.(2018·青岛质检)已知某种商品的广告费支出x (单位:万元)与销售额y (单位:万元)之间有如下对应数据:

根据上表可得回归方程y ^=b ^x +a ^,其中b ^

=7,据此估计,当投入10万元广告费时,销售额为________万元.

答案 85

解析 x =2+4+5+6+85=5,y =30+40+50+60+70

5=50,又因为回归直线过样

本中心点,所以a ^=y -b ^

x =50-7×5=15.所以回归方程为y =7x +15,当x =10时,y =85,所以当投入10万元广告费时,销售额为85万元.

16.(2018·乌鲁木齐一诊)A,B,C,D四名学生按任意次序站成一排,则A或B在边上的概率为________.

答案5 6

解析A,B,C,D四名学生按任意次序站成一排,基本事件数共24种,如下图所示.

A,B都不在边上共4种,所以A或B在边上的概率为P=1-4

24=

5

6

三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)

17.(2018·广东华南师大附中综合测试三)(本小题满分10分)《汉字听写大会》不断创收视率新高,为了避免“书写危机”弘扬传统文化,某市大约10万名市民进行了汉字听写测试.现从某社区居民中随机抽取50名市民的听写测试情况,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第一组[160,164),第二组[164,168),……,第六组[180,184),如图是按上述分组方法得到的频率分布直方图.

(1)若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第1组或第4组的概率;

(2)已知第5,6两组市民中有3名女性,组织方要从第5,6两组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性市民的概率.

解(1)被采访人恰好在第1组或第4组的频率为(0.05+0.02)×4=0.28,

∴估计被采访人恰好在第1组或第4组的概率为0.28.

(2)第5,6两组[176,184)的人数为(0.02+0.01)×4×50=6,

∴第5,6两组中共有6名市民,其中女性市民有3名,

记第5,6两组中的3名男性市民分别为A,B,C,3名女性市民分别为x,y,z,从第5,6两组中随机抽取2名市民组成弘扬传统文化宣传队,共有15个基本事件,列举如下:AB,AC,Ax,Ay,Az,BC,Bx,By,Bz,Cx,Cy,Cz,xy,xz,yz,至少有1名女性的事件有Ax,Ay,Az,Bx,By,Bz,Cx,Cy,Cz,xy,xz,yz,共12个,

∴从第5,6两组中随机抽取2名市民组成宣传队,至少有1名女性市民的概率为12

15=

4

5

18.(2018·济南模拟)(本小题满分12分)2018年2月22日上午,山东省省委、省政府在济南召开山东省全面展开新旧动能转换重大工程动员大会,会议动员各方力量,迅速全面展开新旧动能转换重大工程.某企业响应号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取了200件产品作为样本,检测一项质量指标值,若该项质量指标值落在[20,40)内的产品视为合格品,否则为不合格品.如图是设备改造前样本的频率分布直方图,下表是设备改造后的样本的频数分布表.

表设备改造后的样本的频数分布表

(1)完成下面的2×2列联表,并判断是否有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关;

(2)根据上图和上表提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;

(3)根据市场调查,设备改造后,每生产一件合格品企业可获利180元,一件不合格品亏损100元,用频率估计概率,则生产1000件产品企业大约能获利多少元?

附:

K 2

=n (ad -bc )2

(a +b )(c +d )(a +c )(b +d )

,n =a +b +c +d .

解 (1)根据题图和题表得到2×2列联表如下:

将2×2列联表中的数据代入公式计算得

K 2

=n (ad -bc )2

(a +b )(c +d )(a +c )(b +d )

=400×(172×8-28×192)2

200×200×364×36≈12.210,

∵12.210>6.635,

∴有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关. (2)根据题图和题表可知,

设备改造后产品为合格品的概率约为192200=96

100,

设备改造前产品为合格品的概率约为172200=86

100,

即设备改造后合格率更高,因此设备改造后性能更好.

(3)用频率估计概率,1000件产品中大约有合格品192

200×1000=960件,不合格品1000

-960=40件,

180×960-100×40=168800元,故该企业大约能获利168800元.

19.(2018·江西摸底)(本小题满分12分)某商场为了了解顾客的购物信息,随机的在商场收集了100位顾客购物的相关数据,整理如下:

统计结果显示100位顾客中购物款不低于100元的顾客占60%,据统计该商场每日大约有5000名顾客,为了增加商场的销售额度,对一次性购物不低于100元的顾客发放纪念品(每人一件).

(注:视频率为概率)

(1)试确定m,n的值,并估计该商场每日应准备纪念品的数量;

(2)为了迎接店庆,商场进行让利活动,一次购物款200元及以上的一次返利30元;一次性购物款小于200元的按购物款的百分比返利,具体见下表:

一次购物款

(单位:元)

[0,50)[50,100)[100,150)[150,200) 返利百分比06% 8% 10%

请估计该商场日均让利多少元?

解(1)由已知,100位顾客中购物款不低于100元的顾客有n+10+30=100×60%,解得n=20,∴m=100-80=20.

故该商场每日应准备纪念品的数量约为5000×60

100

=3000(件).

(2)设一次购物款为a元,

当a∈[50,100)时,顾客有5000×20%=1000(人),

当a∈[100,150)时,顾客有5000×30%=1500(人),

当a∈[150,200)时,顾客有5000×20%=1000(人),

当a∈[200,+∞)时,顾客有5000×10%=500(人),

∴估计该商场日均让利为75×6%×1000+125×8%×1500+175×10%×1000+30×500=52000(元).

∴估计该商场日均让利为52000元.

20.(2018·广东三校联考)(本小题满分12分)在某城市气象部门的数据中,随机抽取了100天的空气质量指数的监测数据如表:

(1)该城市各医院每天收治上呼吸道病症总人数y 与当天的空气质量t (t 取整数)存在如

下关系y =???

??

t ,t ≤100,

2t -100,100<t ≤300,

且当t >300时,y >500,试用频率估计在某一医院

收治此类病症人数超过200人的概率;

(2)若在(1)中,当t >300时,y 与t 的关系拟合于曲线y ^=a ^+b ^

ln t ,现已取出了10对

样本数据(t i ,y i )(i =1,2,3,…,10),且∑10

i =1ln t i =70,∑10

i =1y i =6000,∑10

i =1

(y i ln t i )=42500,∑10

i =1

(ln t i )2

=500,求拟合曲线方程. 附:线性回归方程y ^=a ^+b ^x 中,b ^=∑n

i =1x i y i -n x -y -

∑n i =1x 2i -n x 2,a ^=y --b ^

x .

解 (1)令y >200得2t -100>200,解得t >150, ∴当t >150时,病人人数超过200人.

由频数分布表可知100天内空气质量指数t >150的天数为25+15+10=50. ∴估计病人人数超过200人的概率为P =50100=1

2.

(2)令x =ln t ,则y ^

与x 线性相关,

x =∑10

i =1

ln t i 10=7,y =∑10

i =1

y i

10

=600,

∴b ^=42500-10×7×600500-10×49=50,a ^

=600-50×7=250,

∴拟合曲线方程为y ^

=50x +250=50ln t +250.

21.(2018·江西重点盟校联考一)(本小题满分12分)微信是当前主要的社交应用之一,有着几亿用户,覆盖范围广,及时快捷.作为移动支付的重要形式,微信支付成为人们支付的重要方式和手段.某公司为了解人们对“微信支付”的认可度,对[15,45]年龄段的人群随机抽取n 人进行了一次“你是否喜欢微信支付”的问卷调查,根据调查结果得到如下统计表和各年龄段人数频率分布直方图:

(1)补全频率分布直方图,并求n,a,p的值;

(2)在第四、五、六组“喜欢微信支付”的人中,用分层抽样的方法抽取7人参加“微信支付日鼓励金”活动,求第四、五、六组应分别抽取的人数;

(3)在(2)中抽取的7人中随机选派2人做采访嘉宾,求所选派的2人没有第四组人的概率.

解(1)补全频率分布直方图,如图所示.

由统计表中第四组数据可知,第四组总人数为60

0.4=150,再结合频率分布直方图,

可知n =150

0.03×5

=1000,

所以a =0.04×5×1000×0.5=100.

因为第二组的频率为0.3,所以p =195

300

=0.65.

(2)因为第四、五、六组“喜欢微信支付”的人数共有105人,由分层抽样原理可知,第四、五、六组分别抽取的人数为4人、2人、1人.

(3)设抽取的第四组的4人为A 1,A 2,A 3,A 4,第五组的2人为B 1,B 2,第六组的1人为

C 1,

则从7人中随机抽取2人的所有可能的结果为

A 1A 2,A 1A 3,A 1A 4,A 1

B 1,A 1B 2,A 1

C 1,A 2A 3,A 2A 4,A 2B 1,A 2B 2,A 2C 1,A 3A 4,A 3B 1,A 3B 2,A 3C 1,A 4B 1,A 4B 2,A 4C 1,B 1B 2,B 1C 1,B 2C 1,共21种,

其中恰好没有第四组人的所有可能结果为B 1B 2,B 1C 1,B 2C 1,共3种, 所以所选派的2人没有第四组人的概率为P =321=1

7

22.(2018·安徽合肥模拟)(本小题满分12分)某公司共有10条产品生产线,不超过5条生产线正常工作时,每条生产线每天纯利润为1100元,超过5条生产线正常工作时,超过的生产线每条纯利润为800元,原生产线利润保持不变.未开工的生产线每条每天的保养等各种费用共100元.用x 表示每天正常工作的生产线条数,用y 表示公司每天的纯利润.

(1)写出y 关于x 的函数关系式,并求出纯利润为7700元时工作的生产线条数; (2)为保证新开的生产线正常工作,需对新开的生产线进行检测,现从该生产线上随机抽取100件产品,测量产品数据,用统计方法得到样本的平均数x =14,标准差s =2,绘

制如图所示的频率分布直方图,以频率值作为概率估计值.

为检测该生产线生产状况,现从加工的产品中任意抽取一件,记其数据为X ,依据以下不等式评判(P 表示对应事件的概率):

①P (x -s

评判规则为:若至少满足以上两个不等式,则生产状况为优,无需检修;否则需检修生产线.试判断该生产线是否需要检修.

解 (1)由题意知,当x ≤5时,

y =1100x -100×(10-x )=1200x -1000;

当5

y =1100×5+800×(x -5)-100×(10-x )=900x +500;

∴y =???

??

1200x -1000(x ≤5且x ∈N +),900x +500(5

当y =7700时,900x +500=7700,x =8,即8条生产线正常工作. (2)x =14,s =2,由频率分布直方图得,

P (120.6826, P (10

∵不满足至少两个不等式,∴该生产线需要检修.

全国各地高考数学统计与概率大题专题汇编.doc

1.【2015·新课标II】某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79 (Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可); 价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率. 2.【2015·福建】某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (Ⅰ)求当天小王的该银行卡被锁定的概率; (Ⅱ)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.

3.【2015·山东】若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10 分;若能被10整除,得1分. 整除,得1 (I)写出所有个位数字是5的“三位递增数” ; (II)若甲参加活动,求甲得分X的分布列和数学期望EX. 4.【2015·安徽】已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率; (Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所 需要的检测费用(单位:元),求X的分布列和均值(数学期望).

高考数学概率与统计知识点汇编

高中数学之概率与统计 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式 ()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是: 第一步,确定事件性质?? ?? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算 ?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 例1. 在五个数字12345,,,,中,。 例2. 若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [解答过程]0.3提示:13 35C 33. 54C 10 2P ===?

(完整word版)2018年高考数学总复习概率及其计算

第十三章概率与统计本章知识结构图

第一节 概率及其计算 考纲解读 1.了解随机事件发生的不确定性、频率的稳定性、概率的意义、频率与概率的区别。 2.了解两个互斥事件的概率的加法公式。 3.掌握古典概型及其概率计算公式。 4.了解随机数的意义,能运用模拟方法估计概率。 5.了解几何概型的意义。 命题趋势探究 1.本部分为高考必考内容,在选择题、填空题和解答题中都有渗透。 2.命题设置以两种概型的概率计算及运用互斥、对立事件的概率公式为核心内容,题型及分值稳定,难度中等或中等以下。 知识点精讲 一、必然事件、不可能事件、随机事件 在一定条件下: ①必然要发生的事件叫必然事件; ②一定不发生的事件叫不可能事件; ③可能发生也可能不发生的事件叫随机事件。 二、概率 在相同条件下,做次重复实验,事件A 发生次,测得A 发生的频率为,当很大时,A 发生的频率总是在某个常数附近摆动,随着的增加,摆动幅度越来越小,这时就把这个常数叫做A 的概率,记作。对于必然事件A ,;对于不可能事件A ,=0. 三、基本事件和基本事件空间 在一次实验中,不可能再分的事件称为基本事件,所有基本事件组成的集合称为基本事件空间。 四、两个基本概型的概率公式 1、古典概型 条件:1、基本事件空间含有限个基本事件 2、每个基本事件发生的可能性相同 ()(A) = ()A card P A card = Ω包含基本事件数基本事件总数 2、几何概型 条件:每个事件都可以看作某几何区域Ω的子集A ,A 的几何度量(长度、面积、体积或时间)记为 A μ.

()P A = A μμΩ 。 五、互斥事件的概率 1、互斥事件 在一次实验中不能同时发生的事件称为互斥事件。事件A 与事件B 互斥,则 ()()() P A B P A P B =+U 。 2、对立事件 事件A,B 互斥,且其中必有一个发生,称事件A,B 对立,记作B A =或A B =。 ()() 1P A p A =- 。 3、互斥事件与对立事件的联系 对立事件必是互斥事件,即“事件A ,B 对立”是”事件A ,B 互斥“的充分不必要条件。 题型归纳及思路提示 题型176 古典概型 思路提示 首先确定事件类型为古典概型,古典概型特征有二:有限个不同的基本事件及各基本事件发生的可能性是均等的;其次计算出基本事件的总数及事件A 所包含的基本事件数;最后计算 ()A P A = 包含基本事件数 基本事件总数。 例13.1 设平面向量(),1m a m =,()2,n b n = ,其中{}, 1.2,3,4m n ∈ (1)请列出有序数组(),m n 的所有可能结果; (2) 若“使得()m m n a a b ⊥-成立的(),m n 为事件A ,求事件A 发生的概率。 分析:两向量垂直的充要条件是两向量的数量积为0,从而可得m 与n 的关系,再从以上 (),m n 的16个有序数组中筛选出符合条件的,即得事件A 包含的基本事件个数。 解析:(1)由{}, 1.2,3,4m n ∈,有序数组(),m n 的所有可能结果为()1,1 , ()()() 1,2,1,3,1,4, ()()()() 2,1,2,2,2,3,2,4, ()()()() 3,1,3,2,3,3,3,4, ()()()()4,1,4,2,4,3,4,4 共16个。 (2)因为(),1m a m =,()2,n b n =,所以()2,1m n a b m n -=-- .又()m m n a a b ⊥-,得 ()(),12,10m m n ?--= ,即22m 10m n -+-= ,所以()21n m =- 。故事件A 包含的

2020高考数学概率统计(大题)

全国一卷真题分析---概率统计 1.(2011年)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的 概率为0.3,设各车主购买保险相互独立. (Ⅰ)求该地1位车主至少购买甲、乙两种保险中的l种的概率; (Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数.求X的期望. 2.(2012年)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果 当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进16朵玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,N n )的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表: 以100天记录的各需求量的频率作为 各需求量发生的概率. (ⅰ)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差; (ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由. 3.(2013年)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中 优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下, 这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为1 2, 且各件产品是否为优质品相互独立. (1)求这批产品通过检验的概率; (2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望. 1

高考数学复习专题:统计与概率(经典)

11 12 13 3 5 7 2 2 4 6 9 1 5 5 7 图1 统计与概率专题 一、知识点 1、随机抽样:系统抽样、简单随机抽样、分层抽样 1、用简单随机抽样从100名学生(男生25人)中抽选20人进行评教,某男生被抽到的概率是( ) A . 1001 B .251 C .5 1 D . 5 1 2、为了解1200名学生对学校教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k 为( ) A .40 B .30 C .20 D .12 3、某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一容量为20的样本,则抽取管理人员( ) A .3人 B .4人 C .7人 D .12人 2、古典概型与几何概型 1、一枚硬币连掷3次,只有一次出现正面的概率是( ) A .83 B .32 C .31 D .4 1 2、如图所示,在正方形区域任意投掷一枚钉子,假设区域内每一点被投中的可能性相等,那么钉子投进阴影区域的概率为____________. 3、线性回归方程 用最小二乘法求线性回归方程系数公式1 2 211 ???n i i i n i x y nx y b a y bx x nx ==-==--∑∑,. 二、巩固练习 1、随机抽取某中学12位高三同学,调查他们春节期间购书费用(单位:元),获得数据的茎叶图如图1, 这12位同学购书的平均费用是( ) A.125元 B.5.125元 C.126元 D.5.126元 2、200辆汽车通过某一段公路时的时速频率分布直方图如图所示,时速在[50,60) 的汽车大约有( ) A .30辆 B . 40辆 C .60辆 D .80辆 3、某校有高级教师26人,中级教师104人,其他教师若干人.为了了解该校教师 的工资收入情况,若按分层抽样从该校的所有教师中抽取56人进行调查,已知从其 他教师中共抽取了16人,则该校共有教师 ______人. 4、执行下边的程序框图,若0.8p =,则输出的n = . 0.04 0.030.020.01频率 组距时速8070605040开始 10n S ==, S p

概率统计大题题型总结(理)学生版

统计概率大题题型总结 题型一 频率分布直方图与茎叶图 例1.(2013广东理17)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如 图所示,其中茎为十位数,叶为个位数. (Ⅰ) 根据茎叶图计算样本均值; (Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有名优秀工人的概率. 例2.(2013新课标Ⅱ理)经销商经销某种农产品,在一个销售季度内,每售出t 该产品获利润500 元,未售出的产品,每t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品,以X (单位:t,150100≤≤X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内销商该农产品的利润. (Ⅰ)将T 表示为X 的函数; (Ⅱ)根据直方图估计利润T 不少于57000元的概率; 1 7 9 2 0 1 5 3 0 第17题图

(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的概率),求利润T 的数学期望. 变式1. 【2015高考重庆,理3】重庆市2013年各月的平均气温(o C )数据的茎叶图如下: 08912 58 200338312 则这组数据的中位数是( ) A 、19 B 、20 C 、21.5 D 、23 /频率组距0.010 0.0150.0200.0250.030100110120130140150需求量/x t

高考数学概率与统计

高考数学概率与统计 SANY GROUP system office room 【SANYUA16H-

第16讲概率与统计 概率内容的新概念较多,相近概念容易混淆,本课时就学生易犯错误作如下归纳总结: 类型一“非等可能”与“等可能”混同 例1 掷两枚骰子,求所得的点数之和为6的概率. 错解掷两枚骰子出现的点数之和2,3,4,…,12共11种基本事件,所以概率为 P=1 11 剖析以上11种基本事件不是等可能的,如点数和2只有(1,1),而点数之和为6有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)共5种.事实上,掷两枚骰子共有36 种基本事件,且是等可能的,所以“所得点数之和为6”的概率为P=5 36 . 类型二“互斥”与“对立”混同 例2 把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是() A.对立事件 B.不可能事件 C.互斥但不对立事件 D.以上均不对 错解A 剖析本题错误的原因在于把“互斥”与“对立”混同,二者的联系与区别主要体现在: (1)两事件对立,必定互斥,但互斥未必对立;(2)互斥概念适用于多个事件,但对 立概念只适用于两个事件;(3)两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表示它们有且仅有一个发生. 事件“甲分得红牌”与“乙分得红牌”是不能同时发生的两个事件,这两个事件可能恰有一个发生,一个不发生,可能两个都不发生,所以应选C.

类型三 “互斥”与“独立”混同 例3 甲投篮命中率为O .8,乙投篮命中率为,每人投3次,两人恰好都命中2次的 概率是多少? 错解 设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件B ,则两人都恰好投中 两次为事件A+B ,P(A+B)=P(A)+P(B): 22223 30.80.20.70.30.825c c ?+?= 剖析 本题错误的原因是把相互独立同时发生的事件当成互斥事件来考虑,将两人都恰 好投中2次理解为“甲恰好投中两次”与“乙恰好投中两次”的和.互斥事件是指 两个事件不可能同时发生;两事件相互独立是指一个事件的发生与否对另一个 事件发生与否没有影响,它们虽然都描绘了两个事件间的关系,但所描绘的关 系是根本不同. 解: 设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件B ,且A ,B 相互独 立, 则两人都恰好投中两次为事件A·B ,于是P(A·B)=P(A)×P(B)= 类型四 “条件概率P(B / A)”与“积事件的概率P(A·B)”混同 例4 袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次, 求第二次才取到黄色球的概率. 错解 记“第一次取到白球”为事件A ,“第二次取到黄球”为事件B,”第二次才取到黄球” 为事件C,所以P(C)=P(B/A)=6293 =. 剖析 本题错误在于P(A ?B)与P(B/A)的含义没有弄清, P(A ?B)表示在样本空间S 中,A 与B 同时发生的概率;而P (B/A )表示在缩减的样本空间S A 中,作为条件的 A 已经发生的条件下事件 B 发生的概率。 解: P (C )= P(A ?B)=P (A )P (B/A )= 46410915 ?=. 备用

18题-高考数学概率与统计知识点

18题-高考数学概率与统计知识点

高考数学第18题(概率与统计) 1、求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)= ) ()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)= k n k k n p p C --)1(. 其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结

的概率P (i x =ξ)=i P ,则称下表. 为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++2 1 P P (1) ②常见的离散型随机变量的分布列: (1)二项分布 n 次独立重复试验中,事件A 发生的次数ξ是一个 随机变量,其所有可能的取值为0,1,2,…n ,并且k n k k n k q p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的 分布列如下: 称这样随机变量ξ服从二项分布,记作),(~p n B ξ ,其中n 、p 为参数,并记:) ,;(p n k b q p C k n k k n =- . (2) 几何分布 在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机

【精品】2007——2017年高考数学全国卷概率统计大题(教师版)

【精品】2007——2017年高考数学全国卷概率统计大题 2007某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6.经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元. (Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率; (Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率. 记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”. 2 ()(10.6) 0.064 P A =-=,()1()10.0640.936P A P A =-=-=. (Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”. 0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”. 1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”. 则01B B B =+.30()0.60.216P B ==,12 13()0.60.40.432P B C =??=. 01()()P B P B B =+01()()P B P B =+0.2160.432=+0.648=. 2008 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方案: 方案甲:逐个化验,直到能确定患病动物为止. 方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. 求依方案甲所需化验次数不少于依方案乙所需化验次数的概率. (20)解:记A 1、A 2分别表示依方案甲需化验1次、2次,B 表示依方案乙需化验3次,A 表示依方案甲所需化验次数不少于依方案乙所需化验次数。依题意知A 2与B 独立,且 B A A A 21+=, 5 1C 1)A (P 15 1= = ,5 1A A )A (P 25 142= = ,5 2) (1 3 3 51224= ??= C C C C B P 。 P(A )=P(A 1+A 2·B) =P(A 1)+P(A 2·B)=P(A 1)+P(A 2)·P(B) =5 25 15 1? += 25 7 所以 P(A)=1-P(A )= 25 18=0.72 2009 甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。 (Ⅰ)求再赛2局结束这次比赛的概率;

概率与统计高考数学

辅导讲义:概率与统计 一、知识回顾: 1、总体、个体、样本、样本容量: 总体:在统计中,所有考察对象的全体。 个体:总体中的每一个考察对象。 样本:从总体中抽取的一部分个体叫做这个总体的一个样本。 样本容量:样本中个体的数目。 2、统计的基本思想:用样本估计总体,即通常不直接去研究总体,而是通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况。 3、抽样方法:简单随机抽样、系统抽样、分层抽样。 4、简单随机抽样:一般地,从个体为N烦人总体中逐个不放回地取出n个个体作为样本(n

(3)随机数表是统计工作者用计算机生成的随机数,并保证表中的每个位置上的数字是等可能出现的。 8、抽签法—编号、制签、搅拌、抽取,关键是“搅拌”后的随机性;随机数表法—编号、选数、取号、抽取,其中取号的方向具有任意性。 9、简单随机抽样的特点: 它的总体个数有限的; 它是逐个地进行抽取; 它是一种不放回抽样; 它是一种等概率抽样. 10、系统抽样: 将总体平均分成几个部分,然后按照一定的规则,从每个部分中抽取一个个体作为样本,这样的抽样方法称为系统抽样。也可称为“等距抽样”。 注:如果个体总数不能被样本容量整除时该怎么办? (1)随机将这1003个个体进行编号1,2,3,……1003。 (2)利用简单随机抽样,先从总体中剔除3个个体(可以随机数表法),剩下的个体数1000能被100整除,然后按系统抽样的方法进行。 11、系统抽样的步骤: (1)采用随机的方式将总体中的 N 个体编号。 (2)整个的编号分段(即分成几个部分),要确定分段的间隔k 。当 n N (为总体中的个体的个数,n 为样本容 量)是整数时,取n N k = ;当n N 不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N '能被n 整 除,这时取n N k ' = ,并将剩下的总体重新编号; (3)在第一段中用简单随机抽样确定起始的个体编号l ; (4)按照一定的规则抽取样本,通常将编号为k n l k l k l l )1(2-+++,,,, 的个体抽出。 12、简单随机抽样、系统抽样的特点是什么? 简单随机抽样:①逐个不放回抽取;②等可能入样;③总体容量较小。 系统抽样:①分段,按规定的间隔在各部分抽取;②等可能入样;③总体容量较大。 13、分层抽样:一般地,当总体由差异明显几部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较明显的几部分,然后按照各部分在总体中所占的比实施抽样,这种抽样方法 有限性

高三数学概率统计知识点归纳

高三数学概率统计知识 点归纳 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

概率统计知识点归纳 平均数、众数和中位数 平均数、众数和中位数.要描述一组数据的集中趋势,最重要也是最常见的方法就是用这“三数”来说明. 一、正确理解平均数、众数和中位数的概念 平均数平均数是反映一组数据的平均水平的特征数,反映一组数据的集中趋势.平均数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化. 2.众数在一组数据中出现次数最多的数据叫做这一组数据的众数.一组数据中的众数有时不唯一.众数着眼于对各数出现的次数的考察,这就告诉我们在求一组数据的众数时,既不需要排列,又不需要计算,只要能找出样本中出现次数最多的那一个(或几个)数据就可以了.当一组数据中有数据多次重复出现时,它的众数也就是我们所要关心的一种集中趋势. 3.中位数中位数就是将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).一组数据中的中位数是唯一的. 二、注意区别平均数、众数和中位数三者之间的关系 平均数、众数和中位数都是描述一组数据的集中趋势的量,但它们描述的角度和适用的范围又不尽相同.在具体问题中采用哪种量来描述一组数据的集中趋势,那得看数据的特点和要关注的问题. 三、能正确选用平均数、众数和中位数来解决实际问题 由于平均数、众数和中位数都是描述一组数据的集中趋势的量,所以利用平均数、众数和中位数可以来解决现实生活中的问题.

极差、方差、标准差 极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大小的量. 极差 一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值.极差能够反映数据的变化范围,差是最简单的一种度量数据波动情况的量,它受极端值的影响较大. 二、方差 方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小. 求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据x1、x2、x3、…、xn 的平均数为x ,则该组数据方差的计算公式为: ])()()[(1222212x x x x x x n S n -++-+-= . 三、标准差 在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差. 即标准差=方差. 四、极差、方差、标准差的关系 方差和标准差都是用来描述一组数据波动情况的量,常用来比较两组数据的波动大小.两组数据中极差大的那一组并不一定方差也大.在实际问题中有时用到标

题 高考数学概率与统计知识点

题高考数学概率与统计 知识点 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

高考数学第18题(概率与统计) 1、求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式 ()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是: 第一步,确定事件性质?? ?? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.

第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 2.离散型随机变量的分布列 1.随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示. ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列 ①离散型随机变量的分布列的概念和性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值 i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表. 机变量ξ的概率分布,简称ξ的分布列. 为随由概 率的性质可知,任一离散型随机变量的 分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++21P P …=1. ②常见的离散型随机变量的分布列: (1)二项分布

2017年高考数学—概率统计(解答+答案)

2017年高考数学—概率统计(解答+答案) 1.(17全国1理19.(12分)) 为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2 (,)N μσ. (1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望; (2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸: 0.212≈,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =???. 用样本平均数x 作为μ的估计值?μ ,用样本标准差s 作为σ的估计值?σ,利用估计值判断是否需对当天的生产过程进行检查?剔除????(3,3)μ σμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布2 (,)N μσ,则(33)0.997 4P Z μσμσ-<<+=, 160.997 40.959 2=0.09≈.

2.(17全国1文19.(12分)) 为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸: 经计算得16119.9716i i x x ===∑,0.212 s ==≈,18.439≈,16 1 ()(8.5) 2.78i i x x i =--=-∑, 其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =???. (1)求(,)i x i (1,2,,16)i =???的相关系数r ,并回答是否可以认为这一天生产的零件尺 寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小). (2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条 生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查? (ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产 线当天生产的零件尺寸的均值与标准差.(精确到0.01) 附:样本(,)i i x y (1,2,,)i n =???的相关系数()() n i i x x y y r --= ∑, 0.09≈.

2020高考理科数学大题专项练习:统计与概率问题

大题专项:统计与概率问题 一、解答题 1.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛. (1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率; (2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望. 解:(1)由已知,有P (A )= C 22C 32+C 32C 3 2C 8 4=6 35. 所以,事件A 发生的概率为6 35. (2)随机变量X 的所有可能取值为1,2,3,4. P (X=k )= C 5k C 3 4-k C 8 4(k=1,2,3,4). 所以,随机变量X 的分布列为 随机变量X 的数学期望E (X )=1×1 14+2×3 7+3×3 7+4×1 14=5 2. 好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立. (1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率; (3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk =1”表示第k 类电影得到人们喜欢,用“ξk =0”表示第k 类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差D (ξ1),D (ξ2),D (ξ3),D (ξ4),D (ξ5),D (ξ6)的大小关系. 解:(1)设“从电影公司收集的电影中随机选取1部,这部电影是获得好评的第四类电影”为事件A , 第四类电影中获得好评的电影为200×0.25=50(部). P (A )=50 140+50+300+200+800+510=50 2 000=0.025.

高考数学概率与统计知识点

高中数学之概率与统计 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m ; 等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ; 设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式 ()m P A n = 求值; 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的 概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是: 第一步,确定事件性质 ?? ?? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算 ?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解

第四步,答,即给提出的问题有一个明确的答复. 例1. 在五个数字12345,,,,中,。 例2. 若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示). [解答过程]0.3提示:13 35C 33. 54C 10 2P ===? 例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本, 则指定的某个个体被抽到的概率为 . [解答过程]1 . 20提示: 51.10020P == 例3.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热 反应的概率为__________.(精确到0.01) [考查目的] 本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以及推理和运算能力. [解答提示]至少有3人出现发热反应的概率为 33244555550.800.200.800.200.800.94 C C C ??+??+?=. 故填0.94. 离散型随机变量的分布列 1.随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示. ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列 ①离散型随机变量的分布列的概念和性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……, ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表. 为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++21P P …=1. ②常见的离散型随机变量的分布列: (1)二项分布

高考数学概率与统计(理科)部分分类汇编

鑫榜教育概率与统计(理) 江苏5.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率为_______ 安徽理(20)(本小题满分13 分)工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超 过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别p , p , p ,假设p , p ,p 互不相等,且假定各人能否完成任务的事件相互独立. (Ⅰ)如果按甲最先,乙次之,丙最后的顺序派人,求任务能被完成的概率。若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化? (Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为q,q,q ,其中q,q ,q 是p,p , p的一个排列,求所需派出人员数目X 的分布列和均值(数字期望)EX ; (Ⅲ)假定p p p ,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达 到最小。 北京理17.本小题共13 分以下茎叶图记录了甲、乙两组个四名同学的植树棵树。乙组记录中有一个数据模糊,无法确认,在图中以X 表示。 (Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差; (Ⅱ)如果X=9 ,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y 的分布列和数学期望。 12 2 2 (注:方差s2x1 x x2 x K x n x ,其中x为x1,x2,??x n的平均数) n 福建理13.盒中装有形状、大小完全相同的5 个球,其中红色球3 个,黄色球2个。若从中随机取出2个球,则所取出的2 个球颜色不同的概率等于__________ 。 福建理19.(本小题满分13 分)某产品按行业生产标准分成8 个等级,等级系数X 依次为1,2,??,8,其中X≥5为标准 A ,X≥为标准B,已知甲厂执行标准 A 生产该产品,产品的零售价为 6 元/件;乙厂执行标准 B 生产该产品,产品的零售价为 4 元/件,假定甲、乙两厂得产品都符合相应的执行标准 (I)已知甲厂产品的等级系数X1 的概率分布列如下所示: x15678 P0.4a b0.1 且X1 的数字期望EX1=6,求 a,b 的值; II )为分析乙厂产品的等级系数X2 , 从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据 如 下: 3533855634 6347534853 8343447567 用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2 的数学期望. III )在(I)、(II )的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.

高考数学复习+概率统计大题-(理)

专题十二概率统计大题 (一)命题特点和预测: 分析近8年的全国新课标1理数试卷,发现8年8考,每年1题.以实际生活问题为背景,第1问多为考查抽样方法、总体估计等统计问题或概率计算、条件概率、正态分布等概率问题,第2问多为随机变量分布列及其期望计算、回归分析或独立性检验等问题,位置为18题或19题,难度为中档题.2019年仍将以实际生活问题为背景,第1问多为考查抽样方法、总体估计等统计问题或概率计算、条件概率、正态分布等概率问题,第2问多为随机变量分布列及其期望计算、回归分析或独立性检验等问题,难度仍为中档题. (二)历年试题比较: 的最大值点 )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验? 个零件中其尺寸在

.是否需对当天的生产过程进行检查?剔除 . ,确定

y w 8 2 1 () i i x x =-∑ 6 3 (Ⅰ)根据散点图判断,y=a 二乘估计分别为:测量这些产品的一项质量指标值,

区间 , 作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.

【解析与点睛】 (2018年(20)【解析】(1)20件产品中恰有2件不合格品的概率为.因此 . 的最大值点为 (2)由(1 (i180件产品中的不合格品件数,依题意知,,即

所以 . (ii )如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. . 点睛:该题考查的是有关随机变量的问题,在解题的过程中,一是需要明确独立重复试验成功次数对应的概率公式,再者就是对其用函数的思想来研究,应用导数求得其最小值点,在做第二问的时候,需要明确离散型随机变量的可取值以及对应的概率,应用期望公式求得结果,再有就是通过期望的大小关系得到结论. (2017年)【解析】 试题分析:(1)根据题设条件知一个零件的尺寸在 之内的概率为0.9974,则零件的尺寸在 (ii )由 ,得μ的估计值为?9.97μ =,σ的估计值为?0.212σ=,由样本数据可以看出有一个零件的尺寸在 之外,因此需对当天的生产过程进行检查. 剔除之外的数据9.22,剩下数据的平均数为 ,因此μ的估计

相关文档
最新文档