感应电机矢量控制江南大学

感应电机矢量控制江南大学
感应电机矢量控制江南大学

感应电机矢量控制江南大

The Standardization Office was revised on the afternoon of December 13, 2020

设计题目:感应电机矢量控制的仿真

设计要求:

1.分析感应电机矢量控制原理,对系统各个组成模块进行详细介绍;

2.在Matlab/Simulink 环境下建立感应电机矢量控制系统的仿真模型;

3.在不同给定、负载下进行仿真分析;

4.按规范撰写课程设计报告。

撰写规范:

1.报告由封面、设计要求、正文和设计心得体会组成;

2.封面包括:课程设计名称、学院、班级、姓名、学号、日期、成绩;

3.正文报告格式请按照江南大学学报的要求。

摘要:本文从感应电动机的数学模型着手介绍一种基于matlab/simulink的感应电动机仿真模型,使用时只需要输入不同的电机参数即可。在此基础上设计一个典型的直接矢量控制系统,然后利用Simulink仿真软件对该控制系统运行情况进行仿真研究。

关键字:MATLAB/SIMULINK;感应电机;矢量控制;仿真

引言:

异步电动机的动态数学模型是一个高阶,非线性,强耦合的多变量系统,虽然通过坐标变换可以使之降阶并化简,但并没有改变其非线性多变量的本质。因此,需要异步电动机调速系统具有高动态性能,必须面向这样一个动态模型。目前电机调速行业内有几种控制方案已经获得了成功的应用。动态模型按转子磁链定向的直

接矢量控制系统就应用的很广泛!本文利用matlab/simulink 仿真软件建立一个通用的仿真模型。然后用到直接矢量控制系统中去,对该系统进行仿真研究。

一、各部分原理介绍

1、矢量控制系统原理

既然异步电动机经过坐标变换可以等效成直流电动机,那么,模仿直流电动机的控制策略,得到直流电动机的控制量,再经过相应的坐标反变换,就能够控制异步电动机了。由于进行坐标变换的是电流(代表磁动势)的空间矢量,所以这样通过坐标变换实现的控制系统就称为矢量控制系统,简称VC 系统。VC 系统的原理结构如图2.1所示。图中的给定和反馈信号经过类似于直流调速系统所用的控制器,产生励磁电流的给定信号*m

i

和电枢电流的给定信号*t

i ,经过反旋转变换1

-VR 一得到*αi 和*

βi ,再经过2/3变换得到*A

i 、*B

i 和*C

i 。把这三个电流控制信号和由控制器得到的频率信号1ω加到电流控制的变频器上,所输出的是异步电动机调速所需的三相变频电流。

图2.1矢量控制系统原理结构图

在设计VC 系统时,如果忽略变频器可能产生的滞后,并认为在控制器后面的反旋转变换器1-VR 与电机内部的旋转变换环节VR 相抵消,2/3变换器与电机内部的3/2变换环节相抵消,则图2.1中虚线框内的部分可以删去,剩下的就是直流调速系统了。可以想象,这样的矢量控制交流变压变频调速系统在静、动态性能上完全能够与直流调速系统相媲美。

2、坐标变换的基本思路

坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。以产生同样的旋转磁动势为准则,在三相坐标系上的定子交流电流A i 、B i 、C i ,通过三相——两相变换可以等效成两相静止坐标系上的交流电流αi 和βi ,再通过同步旋转变换,可以等效成同步旋转坐标系上的直流电流d i 和q i 。如果观察者站到铁心上与坐标系一起旋

转,他所看到的就好像是一台直流电动机。

把上述等效关系用结构图的形式画出来,得到图2.l 。从整体上看,输人为A ,B ,C 三相电压,输出为转速ω,是一台异步电动机。从结构图内部看,经过3/2变换和按转子磁链定向的同步旋转变换,便得到一台由m i 和t i 输入,由ω输出的直流电动机。。。。。。。

3/2

VR

等效直流电动机模型

αi β

i t

i A i m

i B

i C

i ?

ω

A B C

异步电动机

图2.2 异步电动机的坐标变换结构图

3、坐标变换

(1)三相——两相坐标系变换(3/2变换)

图2.3为交流电机坐标系等效变换图。图中的A ,B ,C 坐标轴分别代表电机参量分解的三相坐标系。而

α,β则表示电机参量分解的静止两相坐标系。每一个坐标轴上的磁动势分量,可以通过在此坐标轴的电流i 与电机在此轴上的匝数N 的乘积来表示。

图2.3 坐标变换图 假定A 轴与a 轴重合,三相坐标系上电机每相绕组有效匝数是3N ,两

相坐标系上电机绕组每相有效匝数为

2N ,在三相定子绕组中,通入正弦电流,则磁动势波形为正弦分布,因

此,当三相总安匝数与两相总安匝数

相等时,两相绕组瞬时安匝数在β

α,轴上投影应该相等。因此有式(2-1)和(2-2)。

21

(60cos 60cos 3030332i i i i i i B

A C

B A N N N N N --

=--=α (2-1)

)(2

3

60sin 60sin 303032i i i i i C B C B N N N N -=

-=β (2-2) 为了保持坐标变换前后的总功率,即应该保持变换前后有效绕组在气隙中的磁通相等

23B B =

(2-3)

设三相绕组磁通公式:

)]

2/32/3(sin )2/12/1([cos 33C B C B A i i i i i KN B -+--=θθ (2-4) 两相绕组磁通公式:

)sin (cos 22**+=βαθi i KN B

(2-5)

上面两式K 为固定比例参数,通过增入一个分量,我们可以写成矩阵形式为:

??

??

?????????????

??????

??

?

--=????

??????C B

A i i i x x x N N i i i 23230

21211230βα (2-6)

将上两式写成矩阵形式并对其规格化得到下面方程:

()12121122223=???

???????? ??-+??? ??-+???? ??N N (2-7)

从上式解得,三相到两相的匝数比应该为:

3

2

2

3

=N N (2-8)

因此,可以得到下面的矩阵形

式:

?????

??????????????

??

?

--

-=??????C B A i i i i i 232302121132βα (2-9)

当电机使用星型接法时,有等

式:

0=++C B A i i i (2-10)

则上面的变换矩阵可以写成下面的形式:

???

????????

?????

??=??????B A i i i i 22

1023βα (2-11)

同时,我们可以得到从两相到三相的变换矩阵,即为上面矩阵的逆变换:

???

????????

?

?????

?-

=??????βαi i i i B A 26

1023

(2-12)

从原理上分析,上面的变换公式具有普遍性,同样可以应用于电压或者其他参量的变换中。从三相坐标到两相坐标的变换,通常只是简化电机模型的第一步,为了满足不同参考坐标系的各个参量分量的分析,需要找出不同参考运动坐标系的变换方程,下面推导从静止坐标系到运动坐标系的变换公式。

(2)旋转变换(2s/2r 变换)

θ

α

图2.4 旋转坐标变换图

下面通过相电流的等效变换,来说明旋转变换原理。如图2.4表示了从两相静止坐标系到两相旋转坐标系dq 的电机相电流变换。此变换简称2s/2r 变换。其中s 表示静止,r 表

示旋转。从图中可以看出,假定固定坐标系的两相垂直电流与旋转坐标系的两相垂直的电流产生等效的、以同步转速旋转的合成磁动势,由于变换坐标变换前后各个绕组的匝数相等,

故能量恒定,因此变换前后的系数相

等。当合成磁动势在空间旋转,分量的大小保持不变,相当于在dq 坐标轴上绕组的电流是直流。α轴与d 轴夹角随时间而变化。从图上可以得到:

???

???=????????????-=??????q d s r q d i i C i i i i 2/2cos sin sin cos θθθθβα (2-13)

式中s r C 2/2为2s/2r 变换矩阵。 同理,经过坐标逆变换,也可以得到从两相静止坐标系变换到旋转坐标系的变换矩阵:

???

???=??????????

??-=??????βαβαθθθθi i C i i i i r s q d 2/2cos sin sin cos (2-14)

从上面电机的坐标系变换中,可

以看到,经过3/2变换以及旋转变

换,可以将子三相绕组电流等效在空

间任意角度坐标系上。同理,对于任

何电参数,都可以通过等效变换,将其变换在空间任意角度的坐标系上。如果将上面推导的电机数学模型中的电压矩阵经过旋转变换,同样可以将电机各个参量等效在空间任意位置的坐标系中,因此当选择与转子磁场固联的坐标系时,可以大大简化电机数学模型,便于电机解耦控制。在当前电机控制系统中应用广泛的广义旋转变换电压变换矩阵为:

????????????

??????????????????? ??+-??? ??---??? ??+??? ??-=??????????C B A q d V V V V V V 21

212132sin 32sin sin 32cos 32cos cos 320πθπθθπθπθθ (2-15)

上面的变换矩阵的系数是经过规格化的。在不同控制方式中可将其等效在电机转子上,还可等效在旋转磁场上,也可以等效于一个变量上,如

电流,电压,或者磁通等。不同的坐

标等效导致了不同的坐标系和不同的控制方法。当角度为零时,就是上述的3/2变换,即为a ,β,0坐标下的模型,当坐标于转子轴上时,对异步电机来说:t ωθ=。

4、异步电动机在不同坐标系下

的数学模型

(1)异步电动机在βα,坐标系上的数学模型

对于异步电机定子侧的电磁量我们用下角标以s ,对于转子侧的电磁

量用下角标r ,气隙电磁量则用下角

标m ,电压矩阵方程为:

??????????????????????????+--+++=??????????????βαβαβαβαωωωωr r s s r r s s r r s s i i i i Lrp R Lr Lmp Lm Lr Lrp R Lm Lmp Lmp Lsp R Lmp p Ls R u u u u 000 (2-16) 磁链方程为:

???

???

?

???????????????????=??????????????βαβαβαβαψψψψr r s s r r s s i i i i Lr Lm Lr Lm Lm Ls Lm Ls 00000000 (2-17)

电磁转矩为:

)(βααβr s r s p i i i i Lm n Te -= (2-18)

(2)异步电动机在两相旋转坐标上的数学模型

因为2ψ定义方向为d 轴,所以

22d ψψ=,2q ψ=0通过变换,异步电机在d-q 坐标系下数学模型,电压方程为:

????

??

????????????????????++--+=??????????????irq rd sq sd s s r s s rq rd sq sd i i i Lr Lm Lrp R Lmp Lmp Lm Lsp R Ls Lm Lmp

Ls Lsp

R u u u u 00001111ωωωωωω (2-19) 磁链方程为:

??????????????????????????=?????????????

?rq rd sq sd rq rd sq sd i i i i Lr Lm Lr Lm Lm Ls Lm Ls 00000000ψψψψ (2-20)

电磁转矩为:

)(rd sq rq sd p e i i i i Lm n T -=

(2-21)

(3)转子磁链计算 按转子磁链定向的矢量控制系统的关键是r ψ的准确定向,也就是说需要获得转子磁链矢量的空间位置。根据转子磁链的实际值进行控制的方法,称作直接定向。

转子磁链的直接检测比较困难,现在实用的系统中多采用按模型计算的方法,即利用容易测得的电压、电流或转速等信号,借助于转子磁链模型,实时计算磁链的幅值与空间位置。转子磁链模型可以从电动机数学模型中推导出来,也可以利用专题观测器或状态估计理论得到闭环的观测模型。在计算模型中,由于主要实测信号的不同,又分为电流模型和电压模型两种。

1)在αβ坐标系上计算转子磁链的电流模型

由实测的三相定子电流通过3/2变换得到静止两相正交坐标系上的电流βαs s i i 和,在利用αβ坐标系中的数

学模型式计算转子磁链在αβ轴上的分量 ??

?????++-=+--=β

αβχαβααωψψψωψψψs r r r s r r r i Tr Lm Tr dt d i Tr Lm Tr dt d 11 (2-22) 也可表述为:

????

???

++=-+=)(11

)(11αβββααψωψψωψr r s m r r r r s m r r T i L s T T i L s T (2-23)

然后,采用直角坐标-极坐标变换,就可得到转子磁链矢量的幅值r ψ和空间位置?,考虑到矢量变换中实际使用的是?的正弦和余弦函数,故可以采用变换式

22χαψψψr r r += (2-24)

r

r ψψ?β

=sin (2-25) r

r ψψ?α

=cos (2-26)

在αβ坐标系中计算转子磁链时,即系统达到稳态,由于电压、电

流和磁链均为正弦量,计算量大,程序幅值,对计算步长敏感。

2)计算转子磁链的电压模型

根据电压方程中感应电动势等于磁链变化率的关系,取电动势的积分就可以得到磁链,这样的模型叫做电压模型。

αβ坐标系上定子电压方程为:

??

???+-=+-=βββαααψψs s s s s s s s u i R dt d u i R dt d (2-27)

磁链方程为:

??

?

????

+=+=+=+=βββαααβββαααψψψψr r s m r r r s m r r m s s s r m s s s i L i L i L i L i L i L i L i L

(2-28)

由式(2-27)前两行解出:

???

?

???-=

-=m

s s s r m

s s s r L i L i L i L i ββ

βαααψψ (2-29)

代人式(2-28)后两行得:

()???

?

???-=

-=βββ

αβασψψσψψs s s m r

r s s s m r r i L L L i L L L )( (2-30)

由式(2-29)和式(2-30)得计算转子磁链的电压模型为:

[

][]

???

????--=--=??ββββαααασψσψs s s s s m r

r s s s s s m r r i L dt i R u L L i L dt i R u L L )()( (2-31)

计算转子磁链的电压模型如图6所

示,其物理意义是:根据实测的电压

和电流信号。

计算定子磁链,然后,再计算转子磁链。电压模型不需要转速信号,且算法与转子电阻无关,只要定子电阻有关,而定子电阻相对容易测得。和电流模型相比,电压模型受电动机参数变化的影响较小,而且算法简单,便于应用。但是,由于电压模型包含纯积分项,积分的初始值和累积误差都影响计算结果,在低速时,定子电阻电压降变化的影响也较大。

比较起来,电压模型更适用于中、高速范围,而电流模型能使用低速。有时为了提高准确度,把两种模型结合起来,在低速时采用电流模型,在中、高速时采用电压模型,只要解决好如何过渡的问题,就可以提高整个运行范围中计算转子磁链的准确度。

二、基于MATLAB的交流异步电机系统模型的建立

在Matlab7.1的Simulink 环境下利用SimPowerSystem丰富的模块库,在分析交流异步电机数学模型的基础上建立交流异步电机控制系统的仿真模型,整体设计框图如图所示,系统采用双闭环控制方案,转速环由PI调节器构成,电流环由电流滞环调节器构成。根据模块化建模的思想,将控制系统分割为各个功能独立的子模块,其中主要包括:交流异步电机本体模块,矢量控制模块,Park变换模块,坐标变换模块,电流滞环控制模块,速度控制模块,转矩计算和电压逆变等模块。通过这些功能模块的有机整合就可在Matlab/Simulink 中搭建出交流异步电机控制系统的仿真模型,并实现双闭环的控制。

图2 交流异步电机控制系统的仿真模

2.1 交流异步电机本体模块

在整个控制系统的仿真模型中,交流异步电机本体模块是最重要的部分,反映的是交流异步电机的本质属性。交流异步电机本体模块的输入为电机转速r w 和坐标变换模块输出的

dqo 两相相电压sd u ,sq u 。输出为dqo 两相相电流sd i 和sq i , 转子绕组磁链rd ψ和rq ψ,模块的结构框图如图所示。

框图中的等量关系为推导所得,

等式关系如下:

108987.01

1+=p i w kk rq

sd s rd ψψ

1

008987.01

32+=p i w k k sq

s rd rq ψψ

()dt u k i w i k w k k i sd sq sd rd r rd sd ?++-+=71654ψψ

()dt u k i w i k w k k i sq sd sq rd r rq sq ?+---=1111098ψψ

()sd rq sq rd e i i k T ψψ-=12

()dt T T k w l e r -=?13

dt w r ?=θ

根据上述关系式构建电机数学模型:

图3 电机数学模型

2.2 矢量控制模块

交流异步电机是一个高阶,非线

性,强耦合,多变量的系统,采用矢

量控制方法可使之降阶解耦,使控制

方法变得更为简单精确,使电机系统具有更优的动态品质。矢量控制的基本思想是将定子电流分解为相互垂直的两个分量d i ,q i ,其中d i 用以控制

转子磁链,q i 用以调节电磁转矩。矢量控制的最终结果是实现定子电流的分解,对转子磁链和电磁转矩进行解耦控制。

图4 矢量控制模块结构

2.3 Park 变换模块

Park 变换模块实现的是参考相电

流的dq/abc 变换即dq 旋转坐标系下两

相参考相电流abc 静止坐标系下三相

参考相电流的转换。根据变换原理得

出以下关系式,并在此基础上搭建

Park 变换子模块。

()

???

?

?

???? ??+-??? ??+=

???? ?

???? ??--??? ??-=-=32sin 32cos 3232sin 32cos 32sin cos 3

2******

***

πθπθπθπθθθi i i i i i i i i q d c q d b q

d

a

图5 Park 变换模块结构图 2.4 坐标变换模块

位于交流异步电机本体模块之前

的3s/2r 模块和位于交流异步电机本体模块之后的2r/3s 模块,其基本功能是实现三相/两相变换或两相/三相变换因此都将它们称为坐标变换模块。

3s/2r 模块实现的abc 静止坐标系

下的三相相电压向ab 静止坐标系的两

相相电流的等效变换,模块功能由三

相/两相电压变换方程式实现,依据此

关系可搭建相应的子模块:

图6 3s/2r 子模块

2r/3s 模块实现的是ab 静止坐标系下的两相相电流向abc 静止坐标系的三相相电流的等效变换,模块功能由两相/三相电流变换方程式实现。由此可以搭建相关的子模块:

图7 2r/3s 子模块

2.5 电流滞环控制模块

电流滞环控制模块的作用是实现滞环电流控制,其输入为三相参考电流*a i ,*b i ,*c i 和三相实际电流a i ,b i ,c i ,输出为三相电压模拟信号,模块结构框图如图。当实际电流低于参考电流且偏差大于滞环比较器的环宽时,对应相正向导通负向关断。当实际电流超过参考

电流且偏差大于滞环比较器的环宽时,对应相正向关断负向导通。选择适当的滞环环宽即可使实际电流不断跟踪参考电流的波形,实现电流闭环控制。

电流滞环控制模块给出逆变控制信号输出为三相模拟相电压信号a u ,b u ,c u 。

图8 电流滞环控制子模块 2.6 速度控制模块

速度控制模块的结构如图,单输

入参考转速和实际转速的差值,单输出参考电磁转矩Te 。其中Ki 为PI 控制器中P (比例)的参数,K/Ti 为PI 控制器中I (积分)的参数。Saturation 饱和限幅模块可将输出的参考电磁转矩的幅值限定在要求范围内。

图9 速度控制子模块

2.7 转矩计算

根据交流异步电机数学模型中的电磁转矩方程式进行abc/dq 坐标变换可得电磁转矩计算方程式为

()rq sd rd sq r

m

p

e i i L L n T ψψ-= 相关的搭建模块已嵌入电动机的数学模型当中,作为电动机的输出环节,并用相关的反馈量,具体的搭建方法可见2.1中电机数学模型输出环节Te 。

三、仿真结果与分析

为了验证所设计的交流异步电机控制系统仿真模型的静动态性能,系统空载起动,待进入稳态后在t= 0.5s 时突加负载l T =3m N ?, 可得系统转速,转矩,三相电流以及定子磁通等波形如图:

转速响应波形r w

转矩响应波形e T

旋转坐标定子电流dq i

定子三相电流abc i

旋转坐标转子磁通

dq

r_

四、心得体会

本次课程设计进行了整整一周,刚拿到这个课题的时候,完全不知道如何入手,后来我们重新学习了相关理论知识才慢慢有了思路。做课设的过程是个自我探索、自我学习的过程,在此期间,我们不仅学到了专业的知识,也提升了自己的学习能力。这次课设收获很大,不仅深入了解了异步电动机矢量控制,也再一次熟悉了Matlab这个常用软件。调配参数费了很多时间,总是得不到理想的仿真结果,其中需要自己学习很多东西,并在很短的时间内融会贯通,考验了自己的学习能力。我明白了坚持不懈的真正含义,是次难忘的课设。通过以上仿真过程可以看出,采用MATLAB 环境下的SIMULINK仿真工具,可以快速地完成一个电动机控制系统的建模、仿真,且无须编程,仿真直观、方便、灵活。异步电动机矢量控制MATLAB仿真实验对于开发和研究

交流传动系统有着十分重要的意义,并为系统从设计到实现提供了一条捷径。

永磁同步电动机矢量控制(结构及方法)

第2章永磁同步电机结构及控制方法 2.1 永磁同步电机概述 永磁同步电动机的运行原理与电励磁同步电动机相同,但它以永磁体提供的磁通替代后的励磁绕组励磁,使电动机结构较为简单,降低了加工和装配费用,且省去了容易出问题的集电环和电刷,提高了电动机运行的可靠性;又因无需励磁电流,省去了励磁损耗,提高了电动机的效率和功率密度。因而它是近年来研究得较多并在各个领域中得到越来越广泛应用的一种电动机。 永磁同步电动机分类方法比较多:按工作主磁场方向的不同,可分为径向磁场式和轴向磁场式;按电枢绕组位置的不同,可分为内转子式(常规式)和外转子式;按转子上有无起绕组,可分为无起动绕组的电动机(用于变频器供电的场合,利用频率的逐步升高而起动,并随着频率的改变而调节转速,常称为调速永磁同步电动机)和有起动绕组的电动机(既可用于调速运行又可在某以频率和电压下利用起动绕组所产生的异步转矩起动,常称为异步起动永磁同步电动机);按供电电流波形的不同,可分为矩形波永磁同步电动机和正弦波永磁同步电动机(简称永磁同步电动机)。异步起动永磁同步电动机用于频率可调的传动系统时,形成一台具有阻尼(起动)绕组的调速永磁同步电动机。 永磁同步伺服电动机的定子与绕组式同步电动机的定子基本相同。但根据转子结构可分为凸极式和嵌入式两类。凸极式转子是将永磁铁安装在转子轴的表面,如图 2-1(a)。因为永磁材料的磁导率十分接近空气的磁导率,所以在交轴(q 轴)、直轴(d 轴)上的电感基本相同。嵌入式转子则是将永磁铁安装在转子轴的内部,如图 2-1(b),因此交轴的电感大于直轴的电感。并且,除了电磁转矩外,还有磁阻转矩存在。 为了使永磁同步伺服电动机具有正弦波感应电动势波形,其转子磁钢形状呈抛物线状,其气隙中产生的磁通密度尽量呈正弦分布;定子电枢绕组采用短距分布式绕组,能最大限度地消除谐波磁动势。永磁体转子产生恒定的电磁场。当定子通以三相对称的正弦波交流电时,则产生旋转的磁场。两种磁场相互作用产生电磁力,推动转子旋转。如果能改变定子三相电源的频率和相位,就可以改变转子的转速和位置。

浅析交流伺服电机的矢量控制

浅析交流伺服电机的矢量控制 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)关于交流电机的矢量控制技术,有很多论文与各种文章介绍。但多用难解的公式与坐标来记述,如果没有扎实的数学和控制等理论基础的话,相信大家有同感比较难理解。日笃君尽量用简单易懂的图解与计算来聊聊电机的构造,静止坐标与旋转坐标的变化,矢量控制,伺服控制等电机驱动技术。 在聊控制之前,为了更好理解控制,我们先来看看电机的构造。实时应用的电机构造很复杂,但可以简单的理解成:电机由装在里面的转子与装在外面的定子构成(也有相反的电机),转子里面一般放入永久磁石,定子里面一般缠绕铜线。然后在中间插入中轴来带动驱动物体。 电机技术经过百年的发展,形成了如上的各种分类。电机上使用的磁石属于稀有金属,产量主要分布在中国,近年由于稀土材料的价格高腾,工业界正在积极研究如何减少稀土的使用量,保持性能的同时降低产品成本,是企业也更是工程师永远的课题。如今实际应用中,同步电机得到广泛的采用。 同步电机又以磁石所装入的部位,主要分类为SPM(表面磁石)和IPM(内部磁石): SPM电机由于控制简单,早起被工业界所采用,但是这种电机由于磁石装在转子的表面,所以可以利用的动力主要来源于自身的表面磁石。 IPM电机由于可以利用磁石与磁石周围励磁的动力,产生高密度的能量,而且可以通过构造的工夫减少稀土的使用量,所以今年得到更广泛的应用。 下面进入正题,聊聊交流电机的控制问题。

异步电机矢量控制

目录 1引言 (1) 1.1 交流电机调速系统发展的现状 (1) 1.2 矢量控制的现状 (1) 1.3 课题的研究背景及意义 (2) 1.4 本课题的主要内容 (2) 2 矢量控制的基本原理 (4) 2.1 坐标变换的基本思路 (4) 2.2 矢量控制坐标变换 (5) 2.3 矢量控制系统结构 (8) 3 转子磁链定向的矢量控制方程及解耦控制 (10) 4 转速、磁链闭环控制的矢量控制系统 (13) 4.1 带磁链除法环节的直接矢量控制系统 (13) 4.2 带转矩内环的直接矢量控制系统 (13) 5 控制系统的设计与仿真 (15) 5.1 矢量控制系统的设计 (15) 5.2 异步电动机的重要子模块模型 (16) 5.3 系统仿真结果和分析 (18) 6 结论 (21) 参考文献 (22) 致谢.............................................................................................. 错误!未定义书签。

1引言 1.1 交流电机调速系统发展的现状 在当今用电系统中,电动机作为主要的动力设备而广泛地应用于工农业生产、防、科技及社会生活的方方面面[1] [2] [3] [4]。电动机负荷约占总发电量的60%~70%,成为电量最多的电气设备。根据采用的电流制式不同,电动机分为直流电动机和交电动机两大类,交流电动机分为同步电动机和异步电动机两种。电动机作为把能转换为机械能的主要设备,在实际的应用中,一是要使电动机具有较高的机能量转换效率:二是要根据生产机械的工艺要求控制并调节电动机的转速。电动的调速性能直接影响着产品质量、劳动生产效率和节电性能。 但是直到20世纪70年代,凡是要求调速范围广、速度控制精度高和动态响性能好的场合,几乎全都采用直流电动机调速系统。其原因主要是:(1)不论异步电动机还是同步电动机,唯有改变定子供电频率调速是最为方便的,而且以获得优异的调速特性。但大容量的变频电源却在长时期内没有得到很好的解;(2)异步电动机和直流电动机不同,它只有一个供电回路—定子绕阻,致其速度控制比较困难,不像直流电动机那样通过控制电枢电压或控制励磁电流可方便地控制电动机的转速。但交流电机,特别是笼式异步电动机,拥有结构单、坚固耐用、价格便宜且不需要经常维修等优点,正是这些突出的优点使得气工程师们没有放弃对电力牵引交流传动技术的探索和发展。进入20世纪70代,由于电力电子器件制造技术和微电子技术的突破和发展,先进的控制理论矢量控制、直接转矩控制等具有高动态控制性能的新技术开始被采用,使得交传动进入一个崭新的阶段。 交流电动机的诞生已有一百多年的历史,时至今日已经研制出了形式、用途容量等各种不同的品种。交流电动机分为同步电动机和异步电动机两大类。同电动机的转子转速与定子电流的频率保持严格不变的关系:异步电动机则不保这种关系。其中交流异步电动机拥有量最多,提供给工业生产的电量多半是通交流电动机加以利用的。据统计,交流电动机用电量约占电机总用电量的85%。 1.2 矢量控制的现状 自20世纪70年代,德国西门子公司的EBlasehke提出了“磁场定向控制的理论”和美国的PC.Custmna与A.AQark申请了专利“感应电机定子电压的坐标交换控

异步电动机矢量控制系统的仿真

异步电动机矢量控制系统仿真 1.异步电机矢量控制系统的原理及其仿真 1.1 异步电动机矢量控制原理 异步电机矢量变换控制系统和直接转矩控制系统都是目前已经获得使用的高性能异步电机调速系统,对比直接转矩控制系统,矢量变换系统有可以连续控制,调速范围宽的优点,因此矢量变换控制系统为现代交流调速的重要方向之一。 本文采用的是转子磁场间接定向电流控制型交流异步电机矢量控制系统[1],如图1所示。 图1矢量变换控制系统仿真原理图 如果把转子磁链方向按空间旋转坐标系的M轴方向定向,则可得到按转子磁场方式定向下的三相鼠笼式异步电动机的矢量控制方程。 (1) (2) (3) (4)

(5) 上列各式中,是转子励磁电流参考值;是转差角频率给定值;是定子电流的励磁分量;是定子电流的转矩分量;是定子频率输入角频率; 是转子速度;是转子磁场定向角度;是转子时间常数;和分别是电机互感和转子自感。 图4所示控制系统中给定转速和实际电机转速相比较,误差信号送入转速调节器,经转速调节器作用产生给定转矩信号,电机的激磁电流给定信号根据电机实际转速由弱磁控制单元产生,再利用式(1)产生定子电流激磁分量给定信号,定子电流转矩分量给定信号则根据式(2)所示的电机电磁转矩表达式生成。、和转子时间常数Lr一起产生转差频率信号,和ωr相加生成转子磁场频率给定信号,对积分则得到转子磁场空间角度给定信号。和经坐标旋转和2/3相变换产生定子三相电流给定信号、和,和定子三相电流实测信号、和相比较,由滞环控制器产生逆变器所需的三相PWM信号。 1.2 异步电机转差型矢量控制系统建模 在MATLAB/SIMULINK环境下利用电气系统模块库中的元件搭建交流异步电机转差型矢量控制系统[2],电流控制变频模型如图2所示。 图2 电流控制变频模型图 整个仿真图由电气系统模块库中的元件搭建组成,元件的直观连接和实际的主电路相像似,其中主要包括:速度给定环节,PI速度调节器、坐标变换模块、

感应电机矢量控制系统的仿真

《运动控制系统》课程设计学院: 班级: 姓名: 学号: 日期: 成绩:

感应电机矢量控制系统的仿真 摘要:本文先分析了异步电机的数学模型和坐标变换以及矢量控制基本原理,然后利用Matlab /Simulink软件进行感应电机的矢量控制系统的仿真。采用模块化的思想分别建立了交流异步电机模块、逆变器模块、矢量控制器模块、坐标变换模块、磁链观测器模块、速度调节模块、电流滞环PWM调节器,再进行功能模块的有机整合,构成了按转子磁场定向的异步电机矢量控制系统仿真模型。仿真结果表明了该系统转速动态响应快、稳态静差小、抗负载扰动能力强,验证了交流电机矢量控制的可行性和有效性。 关键词:异步电机;坐标变换;矢量控制;Simulink仿真 一、异步电机的动态数学模 型和坐标变换 异步电机的动态数学模型是一个 高阶、非线性、强耦合的多变量系统, 异步电机的数学模型由下述电压方 程、磁链方程、转矩方程和运动方程 组成。 电压方程: 礠链方程: 转矩方程: 运动方程: 异步电机的数学模型比较复杂, 坐标变换的目的就是要简化数学模 型。异步电机数学模型是建立在三相 静止的ABC坐标系上的,如果把它变 换到两相坐标系上,由于两相坐标轴 互相垂直,两相绕组之间没有磁的耦 合,仅此一点,就会使数学模型简单 了许多。 (1)三相--两相变换(3/2变换) 在三相静止绕组A、B、C和两相 静止绕组a、b 之间的变换,或称三相 静止坐标系和两相静止坐标系间的变 换,简称 3/2 变换。 (2)两相—两相旋转变换(2s/2r变 换) 从两相静止坐标系到两相旋转坐 标系 M、T 变换称作两相—两相旋转 变换,简称 2s/2r 变换,其中 s 表 示静止,r 表示旋转。

感应电机矢量控制江南大学

感应电机矢量控制江南大 学 The Standardization Office was revised on the afternoon of December 13, 2020

设计题目:感应电机矢量控制的仿真 设计要求: 1.分析感应电机矢量控制原理,对系统各个组成模块进行详细介绍; 2.在Matlab/Simulink 环境下建立感应电机矢量控制系统的仿真模型; 3.在不同给定、负载下进行仿真分析; 4.按规范撰写课程设计报告。 撰写规范: 1.报告由封面、设计要求、正文和设计心得体会组成; 2.封面包括:课程设计名称、学院、班级、姓名、学号、日期、成绩; 3.正文报告格式请按照江南大学学报的要求。 摘要:本文从感应电动机的数学模型着手介绍一种基于matlab/simulink的感应电动机仿真模型,使用时只需要输入不同的电机参数即可。在此基础上设计一个典型的直接矢量控制系统,然后利用Simulink仿真软件对该控制系统运行情况进行仿真研究。 关键字:MATLAB/SIMULINK;感应电机;矢量控制;仿真 引言: 异步电动机的动态数学模型是一个高阶,非线性,强耦合的多变量系统,虽然通过坐标变换可以使之降阶并化简,但并没有改变其非线性多变量的本质。因此,需要异步电动机调速系统具有高动态性能,必须面向这样一个动态模型。目前电机调速行业内有几种控制方案已经获得了成功的应用。动态模型按转子磁链定向的直

接矢量控制系统就应用的很广泛!本文利用matlab/simulink 仿真软件建立一个通用的仿真模型。然后用到直接矢量控制系统中去,对该系统进行仿真研究。 一、各部分原理介绍 1、矢量控制系统原理 既然异步电动机经过坐标变换可以等效成直流电动机,那么,模仿直流电动机的控制策略,得到直流电动机的控制量,再经过相应的坐标反变换,就能够控制异步电动机了。由于进行坐标变换的是电流(代表磁动势)的空间矢量,所以这样通过坐标变换实现的控制系统就称为矢量控制系统,简称VC 系统。VC 系统的原理结构如图2.1所示。图中的给定和反馈信号经过类似于直流调速系统所用的控制器,产生励磁电流的给定信号*m i 和电枢电流的给定信号*t i ,经过反旋转变换1 -VR 一得到*αi 和* βi ,再经过2/3变换得到*A i 、*B i 和*C i 。把这三个电流控制信号和由控制器得到的频率信号1ω加到电流控制的变频器上,所输出的是异步电动机调速所需的三相变频电流。 图2.1矢量控制系统原理结构图 在设计VC 系统时,如果忽略变频器可能产生的滞后,并认为在控制器后面的反旋转变换器1-VR 与电机内部的旋转变换环节VR 相抵消,2/3变换器与电机内部的3/2变换环节相抵消,则图2.1中虚线框内的部分可以删去,剩下的就是直流调速系统了。可以想象,这样的矢量控制交流变压变频调速系统在静、动态性能上完全能够与直流调速系统相媲美。 2、坐标变换的基本思路 坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。以产生同样的旋转磁动势为准则,在三相坐标系上的定子交流电流A i 、B i 、C i ,通过三相——两相变换可以等效成两相静止坐标系上的交流电流αi 和βi ,再通过同步旋转变换,可以等效成同步旋转坐标系上的直流电流d i 和q i 。如果观察者站到铁心上与坐标系一起旋

异步电机的矢量控制系统

电力拖动课程结题报告 题目:异步电机的矢量控制系统 班级:K0312417 姓名:罗开元 学号:K031241723 老师:郎建勋老师 2015年 6月 22 日

前言 异步电机的矢量控制设计及仿真在矢量控制技术出现之前,交流调速系统多为V / f 比值恒定控制方法,又常称为标量控制。采用这种方法在低速及动态(如加减速)、加减负载等情况时,系统表现出明显的缺陷,所以交流调速系统的稳定性、启动、低速时的转矩动态相应都不如直流调速系统。随着电力电子技术的发展,交流异步电机控制技术全面从标量控制转向了矢量控制,采用矢量控制的交流电机完全可以和直流电机的控制效果相媲美,甚至超过直流调速系统。 矢量变换控制(以下简称VC)技术的诞生和发展为现代交流调速技术的发展提供了理论基础。交流电动机是一个多变量、非线性、强耦合的被控对象,采用了参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程。这就使得交流调速系统的动态性能得到了显著的改善和提高,从而使交流调速最终取代直流调速系统成为可能。实践证明,采用矢量控制方法的交流调速系统的优越性高于直流调速系统。矢量控制原理的出现也促进了其它控制方法的产生,如多变量解耦控制等方法。 七十年代初期,西门子公司的F .Blashke 和W .Flotor 提出了“感应电机磁场定向的控制原理”,通过矢量旋转变换和转子磁场定向,将定子电流按转子磁链空间方向分解成为励磁分量和转矩分量,这样就可以达到对交流电机的磁链和电流分别控制的目的,得到了类似于直流电机的模型,然后模拟直流电机进行控制,可以获得良好的静、动态调速性能。本文分析异步电机的数学模型及矢量控制原理的基础上, 利Matlab/Simulink 中SimPowerSystems 模块,采用模块化的思想分别建立了交流异步电机模块、矢量控制器模块、坐标变换模块、磁链调节器模块、速度调节模块, 再进行功能模块的有机整合, 构成了按转子磁场定向的异步 电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强, 验证了交流电机矢量控制的可行性、有效性。 1.异步电机的 VC 原理 1.1 坐标变换 坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。以产生同样的旋转磁动势为准则,在三相坐标 系上的定子交流电机A i 、B i 、C i ,通过3/2变换可以等效成两相静止坐标系上的交流电流 α i 和 β i ,再通过同步旋转变换,可以等效成同步旋转坐标系上的直流电流 d i 和q i 。如果观察 者站到铁心上与坐标系一起旋转,他所看到的就好像是一台直流电动机。 把上述等效关系用结构图的形式画出来,得到图l 。从整体上看,输人为A ,B ,C 三相电压,输出为转速ω,是一台异步电动机。从结构图内部看,经过3/2变换和按转子磁链

异步电机矢量控制Matlab仿真实验

基于Matlab/Simulink异步电机矢量控制系统仿真 一.理论基础 矢量控制系统的基本思路是以产生相同的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流通过坐标变换等效成同步旋转坐标系上的直流电流,并分别加以控制,从而实现磁通和转矩的解耦控制,以达到直流电机的控制效果。所谓矢量控制,就是通过矢量变换和按转子磁链定向,得到等效直流电动机模型,在按转子磁链定向坐标系中,用直流电动机的方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量经变换得到三相坐标系的对应量,以实施控制。其中等效的直流电动机模型如图1-1所示,在三相坐标系上的定子交流电流iA、iB、iC ,通过3/2变换可以等效成两相静止正交坐标系上的交流isα和isβ,再通过与转子磁链同步的旋转变换,可以等效成同步旋转正交坐标系上的直流电流ism和ist。 图1-1 异步电动机矢量变换及等效直流电动机模型 从图1-1的输入输出端口看进去,输入为A、B、C三相电流,输出为转速ω,是一台异步电动机。从内部看,经过3/2变换和旋转变换2s/2r,变成一台以ism和ist为输入、ω为输出的直流电动机。m绕组相当于直流电动机的励磁绕组,ism相当于励磁电流,t绕组相当于电枢绕组,ist相当于与转矩成正比的电枢电流。 按转子磁链定向仅仅实现了定子电流两个分量的解耦,电流的微分方程中仍存在非线性和交叉耦合。采用电流闭环控制,可有效抑制这一现象,使实际电流快速跟随给定值,图1-2是基于电流跟随控制变频器的矢量控制系统示意图。

图1-2矢量控制系统原理结构图 通过转子磁链定向,将定子电流分量分解为励磁分量i sm 和转矩分量i st ,转子磁链r ψ仅由定子电流分量i sm 产生,而电磁转矩e T 正比与转子磁链和定子电流转矩分量的乘积,实现了定子电流的两个分量的解耦。简化后的等效直流调速系统如图1-3所示。 图1-3简化后的等效直流调速系统 二.设计方法 1.电流模型设计 转子磁链在实用的系统中多采用按模型计算的方法,即利用容易测得的电压、电流或转速等信号,借助于转子磁链模型,实时计算磁链的幅值与空间位置。转子磁链模型可以从电动机数学模型中推导出来,也可以利用专题观测器或状态估计理论得到闭环的观测模型。在计算模型中,由于主要实测信号的不同,又分为电流模型和电压模型两种。本设计采用在αβ坐标系上计算转子磁链的电流模型。 由实测的三相定子电流通过3/2变换得到静止两相正交坐标系上的电流i sα和i sβ,在利用αβ坐标系中的数学模型式计算转子磁链在αβ轴上的分量 ?? ? ?? ?? ++-=+--=β αβχαβααωψψψωψψψs r r r s r r r i Tr Lm Tr dt d i Tr Lm Tr dt d 11 (2-1-1) 也可表述为:

(完整版)无刷直流电机经典换相方式

1、引言 你希望在你的新产品中使用无刷伺服电机吗?平时,我们可能也常碰到一些关键词,例如“梯形波式”,“正弦波式”和“矢量控制”。只有当你了解了他们的真正含义,才能在你的新设计中选择正确的产品。 在过去的十年甚至二十年中,伺服电机市场已经从有刷伺服转变成无刷伺服的市场,这主要是由无刷伺服的低维修率和高稳定性所决定的。在这十几年中,驱动部分在电路和系统方面的技术已发展的非常完善。控制方式也已经完全可以实现那些关键词所描述的功能。 大部分的高性能的伺服系统都采用一个内部控制环来控制力矩。这个内部的力矩环通过和外部的速度环和位置环的配合以达到不同的控制效果。外部控制环的设计是与匹配的电机没有关系的,而内部的力矩环的设计则与所匹配的电机的性能息息相关。 有刷电机的力矩控制是非常简单的,因为有刷电机自身可完成换相工作。所输出的力矩是和有刷电机两极输入的直流电压成正比的。力矩也可通过P-I控制回路轻松地得到控制。P-I控制回路的主要功能就是通过检测电机实际电流和控制电流之间的偏差,实时地调整电机的输入电压。 图1 由于无刷电机自身没有换相功能,所以相对应的控制方式就比较复杂。无刷电机有三组线圈,有别于有刷电机的两组线圈。为了获得有效的力矩,无刷电机的三组线圈必须根据转子的实际位置进行相互独立的控制。这种驱动方式就充分地说明了对无刷电机控制的复杂性。 2、无刷电机基础 简单来说,无刷电机主要由旋转的永磁体(转子)和三组均匀分布的线圈(定子)组成,线圈包围着定子被固定在外部。电流流经线圈产生磁场,三组磁场相互叠加形成一个矢量磁场。通过分别控制三组线圈上的电流大小,我们可以使定子产生任意方向和大小的磁场。同时,通过定子和转子磁场之间的相互吸引和排斥,力矩便可自由地得到控制。

永磁同步电动机及控制策略综述

永磁同步电动机及控制策略综述 点击数:401 王毅兰,徐艳平 西安理工大学自动化学院电气工程系,陕西西安710048 摘要综述了永磁同步电动机的发展,阐释了永磁同步电动机的控制策略,提出了最新进展与研究热点,展望了永磁同步电机的应用前景。 关键字永磁同步电动机;控制策略;综述 Overviews of Permanent Magnet Synchronous Motor and Its Control Strategies WANG Yilan,XU Yanping Xi’an University of Technology,Xi'an Shaanxi 710048 China Abstract The development of permanent magnet synchronous is overviewed,the control strategies of permanent magnet synchronous is introduced,the applied foreground of permanent magnet synchronous is prospected. Keywords permanent magnet synchronous motor(PMSM);control strategies;overviews

材料技术的发展,特别是稀土永磁材料,磁性复合材料的出现,加之我国拥有—铁—硼)的储量,使得永磁电机活跃在各个工业生产中。永磁同步电机(PM 的电机,具有转子转动惯量小、效率高、功率密度大、可靠性高的优点,因此例如在数控机床等场合,永磁同步电动机正在逐步取代直流电机和感应电机。,明显地减小了体积,减轻了重量,降低了损耗,避免了电机发热,从而提高效果。 MSM 运动控制系统中,它比异步电动机更便于实现磁场定向控制,可以获得特性,使控制系统具有十分优良的动、静态特性。 机的种类和基本结构 ,永磁同步电机分凸装式、嵌入式和内埋式三种基本形式,如图1 所示,前两种阻与交轴磁阻相等,因此交、直轴电感相等,即Ld=Lq,表现为隐极性质;另,因此Ld

异步电机矢量控制设计

异步电机的矢量控制设计及仿真

前言 异步电机的矢量控制设计及仿真在矢量控制技术出现之前,交流调速系统多为V / f 比值恒定控制方法,又常称为标量控制。采用这种方法在低速及动态(如加减速)、加减负载等情况时,系统表现出明显的缺陷,所以交流调速系统的稳定性、启动、低速时的转矩动态相应都不如直流调速系统。随着电力电子技术的发展,交流异步电机控制技术全面从标量控制转向了矢量控制,采用矢量控制的交流电机完全可以和直流电机的控制效果相媲美,甚至超过直流调速系统。 矢量变换控制(以下简称VC)技术的诞生和发展为现代交流调速技术的发展提供了理论基础。交流电动机是一个多变量、非线性、强耦合的被控对象,采用了参数重构和状态重构的现代控制理论概念可以实现交流电动机定子电流的励磁分量和转矩分量之间的解耦,实现了将交流电动机的控制过程等效为直流电动机的控制过程。这就使得交流调速系统的动态性能得到了显著的改善和提高,从而使交流调速最终取代直流调速系统成为可能。实践证明,采用矢量控制方法的交流调速系统的优越性高于直流调速系统。矢量控制原理的出现也促进了其它控制方法的产生,如多变量解耦控制等方法。 七十年代初期,西门子公司的F .Blashke和W .Flotor提出了“感应电机磁场定向的控制原理”,通过矢量旋转变换和转子磁场定向,将定子电流按转子磁链空间方向分解成为励磁分量和转矩分量,这样就可以达到对交流电机的磁链和电流分别控制的目的,得到了类似于直流电机的模型,然后模拟直流电机进行控制,可以获得良好的静、动态调速性能。本文分析异步电机的数学模型及矢量控制原理的基础上, 利Matlab/Simulink中SimPowerSystems模块,采用模块化的思想分别建立了交流异步电机模块、矢量控制器模块、坐标变换模块、磁链调节器模块、速度调节模块, 再进行功能模块的有机整合, 构成了按转子磁场定向的异步电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强, 验证了交流电机矢量控制的可行性、有效性。 1.异步电机的VC 原理 1.1 坐标变换 坐标变换的目的是将交流电动机的物理模型变换成类似直流电动机的模式,这样变换后,分析和控制交流电动机就可以大大简化。以产生同样的旋转磁动势 为准则,在三相坐标系上的定子交流电机A i、B i、C i,通过3/2变换可以等效成

异步电动机矢量控制的研究

1 绪论 (2) 1.1交流电机调速系统发展的现状 (2) 1.2矢量控制的现状 (5) 1.3课题的研究背景及其意义 (5) 1.4本课题的主要内容 (6) 2 异步电动机数学模型建立 (7) 2.1矢量控制中的坐标变换 (7) 2.2三相异步电动机的数学模型 (9) 2.3转子磁场定向异步电动机矢量控制基本原理 (14) 2.4脉宽调制技术 (14) 3 矢量控制的基本原理 (18) 3.1异步电动机的电磁转矩 (18) 3.2 矢量控制方法思路的演变过程 (18) 3.3 矢量变换的原理及实现方法 (21) 3.4 三相异步电动机数学模型的解耦 (24) 3.5 矢量控制的磁场定向 (30) 3.6 三相异步电动机的状态方程及传递函数 (32) 3.7 转子磁链观测器 (35) 4矢量控制系统仿真研究 (37) 4.1 MATLAB/SIMULINK简介 (37) 4.2 系统仿真模型的建立及仿真结果分析 (38) 5 结论 (44) 参考文献 (45) 致谢 (47)

1 绪论 1.1交流电机调速系统发展的现状 在当今用电系统中,电动机作为主要的动力设备而广泛地应用于工农业生产、防、科技及社会生活的方方面面[1] [2] [3] [4]。电动机负荷约占总发电量的60%~70%,成为电量最多的电气设备。根据采用的电流制式不同,电动机分为直流电动机和交电动机两大类,交流电动机分为同步电动机和异步电动机两种。电动机作为把能转换为机械能的主要设备,在实际的应用中,一是要使电动机具有较高的机能量转换效率:二是要根据生产机械的工艺要求控制并调节电动机的转速。电动的调速性能直接影响着产品质量、劳动生产效率和节电性能。 但是直到20世纪70年代,凡是要求调速范围广、速度控制精度高和动态响性能好的场合,几乎全都采用直流电动机调速系统。其原因主要是:(1)不论异步电动机还是同步电动机,唯有改变定子供电频率调速是最为方便的,而且以获得优异的调速特性。但大容量的变频电源却在长时期内没有得到很好的解;(2)异步电动机和直流电动机不同,它只有一个供电回路—定子绕阻,致其速度控制比较困难,不像直流电动机那样通过控制电枢电压或控制励磁电流可方便地控制电动机的转速。但交流电机,特别是笼式异步电动机,拥有结构单、坚固耐用、价格便宜且不需要经常维修等优点,正是这些突出的优点使得气工程师们没有放弃对电力牵引交流传动技术的探索和发展。进入20世纪70代,由于电力电子器件制造技术和微电子技术的突破和发展,先进的控制理论矢量控制、直接转矩控制等具有高动态控制性能的新技术开始被采用,使得交传动进入一个崭新的阶段。 交流电动机的诞生已有一百多年的历史,时至今日已经研制出了形式、用途容量等各种不同的品种。交流电动机分为同步电动机和异步电动机两大类。同电动机的转子转速与定子电流的频率保持严格不变的关系:异步电动机则不保这种关系。其中交流异步电动机拥有量最多,提供给工业生产的电量多半是通交流电动机加以利用的。据统计,交流电动机用电量约占电机总用电量的85%。 1.1.2交流调速方式的发展及现状 上个世纪前半期,由于科技的发展限制,交流调速系统的发展长期处于调速性

什么是无刷电机的矢量控制技术

什么是矢量控制?它有什么优点? 你希望在你的新产品中使用无刷伺服电机吗?平时,我们可能也常碰到一些关键词,例如“梯形波式”,“弦波式”和“矢量控制”。只有当你了解了他们的真正含义,才能在你的新设计中选择正确的产品。 在过去的十年甚至二十年中,伺服电机市场已经从有刷伺服转变成无刷伺服的市场,这主要是由无刷伺服的低维修率和高稳定性所决定的。在这十几年中,驱动部分在电路和系统方面的技术已发展的非常完善。控制方式也已经完全可以实现那些关键词所描述的功能。 大部分的高性能的伺服系统都采用一个内部控制环来控制力矩。这个内部的力矩环通过和外部的速度环和位置环的配合以达到不同的控制效果。外部控制环的设计是与匹配的电机没有关系的,而内部的力矩环的设计则与所匹配的电机的性能息息相关。 有刷电机的力矩控制是非常简单的,因为有刷电机自身可完成换相工作。所输出的力矩是和有刷电机两极输入的直流电压成正比的。力矩也可通过P-I控制回路轻松地得到控制。P-I 控制回路的主要功能就是通过检测电机实际电流和控制电流之间的偏差,实时地调整电机的输入电压。 图一 由于无刷电机自身没有换相功能,所以相对应的控制方式就比较复杂。无刷电机有三组线圈,有别于有刷电机的两组线圈。为了获得有效的力矩,无刷电机的三组线圈必须根据转子的实际位置进行相互独立的控制。这种驱动方式就充分地说明了对无刷电机控制的复杂性。 无刷电机基础 简单来说,无刷电机主要由旋转的永磁体(转子)和三组均匀分布的线圈(定子)组成,线圈包围着定子被固定在外部。电流流经线圈产生磁场,三组磁场相互叠加形成一个矢量磁场。通过分别控制三组线圈上的电流大小,我们可以使定子产生任意方向和大小的磁场。同时,通过定子和转子磁场之间的相互吸引和排斥,力矩便可自由地得到控制。

基于Matlab的交流电机矢量控制系统仿真..

基于MATLAB交流异步电机矢量控制系统建 模与仿真 摘要:在分析异步电机的数学模型及矢量控制原理的基础上,利用MATLAB,采用模块化的思想分别建立了交流异步电机模块、逆变器模块、矢量控制器模块、坐标变换模块、磁链观测器模块、速度调节模块、电流滞环PWM调节器,再进行功能模块的有机整合,构成了按转子磁场定向的异步电机矢量控制系统仿真模型。仿真结果表明该系统转速动态响应快、稳态静差小、抗负载扰动能力强,验证了交流电机矢量控制的可行性、有效性。 关键词:交流异步电机,矢量控制,MATLAB 一、引言 交流电动机由于动态数学模型的复杂性,其静态和动态性能并不是很理想。因此在上世纪前期需要调速的场合下采用的都是直流电动机,但是直流电动机结构上存在着自身难以克服的缺点,导致人们对交流调速越来越重视。从最初的恒压频比控制到现在的直接转矩控制和矢量控制,性能越来越优良,甚至可以和直流电机的性能相媲美。 本文研究交流异步电机矢量控制调速系统的建模与仿真。利用MATLAB中的电气系统模块构建异步电机矢量控制仿真模型,并对其动、静态性能进行仿真试验。仿真试验结果验证了矢量控制方法的有效性、可行性。 二、交流异步电机的矢量控制原理 矢量控制基本思想是根据坐标变换理论将交流电机两个在时间相位上正交 的交流分量,转换为空间上正交的两个直流分量,从而把交流电机定子电流分解成励磁分量和转矩分量两个独立的直流控制量,分别实现对电机磁通和转矩的控制,然后再通过坐标变换将两个独立的直流控制量还原为交流时变量来控制交流电机,实现了像直流电机那样独立控制磁通和转矩的目的。 由于交流异步电机在A-B-C坐标系下的数学模型比较复杂,需要通过两次坐标变换来简化交流异步电机的数学模型。一次是三相静止坐标系和两相静止坐标系

无刷直流电机控制系统的设计(一)

1 引言 无刷直流电机最本质的特征就是没有机械换向器与电刷所构成的机械接触式换 向机构。现在,无刷直流电机定义有俩种:一种就是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为就是永磁同步电机。另一种就是方波/梯形波直流电机与正弦波直流电机都就是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以就是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高与现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1、1 无刷直流电机的发展概况 无刷直流电动机就是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D、Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器与电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水 平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子与博世两公司展出了永磁自同步伺服系统与驱动器,引起了我国有关学者的注意,自此我国开始了研制与开发电机控制系统与驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料与驱动 控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停留在实验阶段,无法推广到实际中使用,1970年以后,半导体的快速发展,许多新型的全控型半导体功率

无刷直流电机经典换相方式

经典换相方式——矢量控制 1、引言 你希望在你的新产品中使用无刷伺服电机吗?平时,我们可能也常碰到一些关键词,例如“梯形波式”,“正弦波式”和“矢量控制”。只有当你了解了他们的真正含义,才能在你的新设计中选择正确的产品。 在过去的十年甚至二十年中,伺服电机市场已经从有刷伺服转变成无刷伺服的市场,这主要是由无刷伺服的低维修率和高稳定性所决定的。在这十几年中,驱动部分在电路和系统方面的技术已发展的非常完善。控制方式也已经完全可以实现那些关键词所描述的功能。 大部分的高性能的伺服系统都采用一个内部控制环来控制力矩。这个内部的力矩环通过和外部的速度环和位置环的配合以达到不同的控制效果。外部控制环的设计是与匹配的电机没有关系的,而内部的力矩环的设计则与所匹配的电机的性能息息相关。 有刷电机的力矩控制是非常简单的,因为有刷电机自身可完成换相工作。所输出的力矩是和有刷电机两极输入的直流电压成正比的。力矩也可通过P-I控制回路轻松地得到控制。P-I控制回路的主要功能就是通过检测电机实际电流和控制电流之间的偏差,实时地调整电机的输入电压。 图1 由于无刷电机自身没有换相功能,所以相对应的控制方式就比较复杂。无刷电机有三组线圈,有别于有刷电机的两组线圈。为了获得有效的力矩,无刷电机的三组线圈必须根据转子的实际位置进行相互独立的控制。这种驱动方式就充分地说明了对无刷电机控制的复杂性。 2、无刷电机基础 简单来说,无刷电机主要由旋转的永磁体(转子)和三组均匀分布的线圈(定子)组成,线圈包围着定子被固定在外部。电流流经线圈产生磁场,三组磁场相互叠加形成一个矢量磁场。通过分别控制三组线圈上的电流大小,我们可以使定子产生任意方向和大小的磁场。同时,通过定子和转子磁场之间的相互吸引和排斥,力矩便可自由地得到控制。

交流异步电动机的矢量控制系统设计原理

交流异步电动机的矢量控制系统设计原理 本文主要利用电机矢量控制系统原理,提出了一种异步电机矢量控制系统及其控制策略总体设计方案,采用Simulink工具构建了矢量变频调速系统数学模型,详细介绍了各个子模块的构建方法和功能。通过仿真可得系统的动态及稳态性能,表明系统具有较高的响应能力和鲁棒性,为矢量控制技术提供了一种前期检验方法和研究手段。 0引言 异步电动机的动态数学模型是一个高阶、非线性、强耦合的多变量系统,矢量控制是电机控制系统的一种先进控制方法,由于其交流调速时的优越性被广泛应用到异步电机调速系统中。基于Simulink的交流异步电机仿真可以验证系统设计方案的有效性,在实验室应用过程中可能遇到系统设计难题。 本文以双闭环矢量控制系统为研究对象,在Simu-link中进行仿真来验证控制系统的有效性。通过分析仿真结果得到矢量控制系统的动静态特性,从而证实了本设计方案的可行性。 1矢量控制原理 矢量控制系统,简称VC系统,坐标变换是核心思想。矢量控制的基本思想是以产生同样的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流等效成两相静止坐标系上的交流电流,在通过坐标旋转变换将其等效成同步旋转坐标系上的直流电流,等效过程中实现磁通和转矩的解耦控制,达到直流电机的控制效果,得到直流电动机的控制量。便可将三相异步电动机等效为直流电动机来控制,获得与直流调速系统接近的动、静态性能。 矢量控制中矢量变换包括三相-两相变换和同步旋转变换,将d轴沿着转子总磁链矢量φr的方向称为M轴,将q轴逆时针转90°,即垂直于矢量φr的方向称为T轴,经过变换电压-电流方程改写为式(1),磁链方程为式(2):

感应电机矢量控制江南大学

设计题目:感应电机矢量控制的仿真 设计要求: 1.分析感应电机矢量控制原理,对系统各个组成模块进行详细介绍; 2.在Matlab/Simulink 环境下建立感应电机矢量控制系统的仿真模型; 3.在不同给定、负载下进行仿真分析; 4.按规范撰写课程设计报告。 撰写规范: 1.报告由封面、设计要求、正文和设计心得体会组成; 2.封面包括:课程设计名称、学院、班级、、学号、日期、成绩; 3.正文报告格式请按照江南大学学报的要求。 摘要:本文从感应电动机的数学模型着手介绍一种基于matlab/simulink的感应电动机仿真模型,使用时只需要输入不同的电机参数即可。在此基础上设计一个典型的直接矢量控制系统,然后利用Simulink仿真软件对该控制系统运行情况进行仿真研究。 关键字:MA TLAB/SIMULINK;感应电机;矢量控制;仿真 引言: 异步电动机的动态数学模型是一个高阶,非线性,强耦合的多变量系统,虽然通过坐标变换可以使之降阶并化简,但并没有改变其非线性多变量的本质。因此,需要异步电动机调速系统具有高动态性能,必须面向这样一个动态模型。目前电机调速行业内有几种控制方案已经获得了成功的应用。动态模型按转子磁链定向的直接矢量控制系统就应用的很广泛!本文利用 matlab/simulink仿真软件建立一个通用的仿真模型。然后用到直接矢量控制系统中去,对该系统进行仿真研究。 一、各部分原理介绍 1、矢量控制系统原理 既然异步电动机经过坐标变换可以等效成直流电动机,那么,模仿直流电动机的控制策略,得到直流电动机的控制量,再经过相应的坐标反变换,就能够控制异步电动机了。由于进行坐标变换的是电流(代表磁动势)的空间矢量,所以这样通过坐标变换实现的控制系统就称为矢量控制系统,简称VC系统。VC系统的原理结构如图2.1所示。图中的给定和反馈信号经过类似于直流调速系统所用的控制器,产生励磁电流的给定信号* m i和 电枢电流的给定信号* t i,经过反旋转变换1- VR一得到* α i和* β i,再经过2/3 变换得到* A i、* B i和* C i。把这三个电流控制信号和由控制器得到的频率信号1 ω加到电流控制的变频器上,所输出的是异步电动机调速所需的三相变频电流。

感应电机矢量控制系统的仿真

《运动控制系统》课程设计 学院: 班级: 姓名: 学号: 日期: 成绩: 感应电机矢量控制系统的仿真 摘要:本文先分析了异步电机的数学模型和坐标变换以及矢量控制基本原理,然后利用Matlab /Simulink软件进行感应电机的矢量控制系统的仿真。采用模块化的思想分别建立了交流异步电机模块、逆变器模块、矢量控制器模块、坐标变换模块、磁链观测器模块、速度调节模块、电流滞环PWM调节器,再进行功能模块的有机整合,构成了按转子磁场定向的异步电机矢量控制系统仿真模型。仿真结果表明了该系统转速动态响应快、稳态静差小、抗负载扰动能力强,验证了交流电机矢量控制的可行性和有效性。 关键词:异步电机;坐标变换;矢量控制;Simulink仿真 一、异步电机的动态数学模型和坐标变换 异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统,异步电机的数学模型由下述电压方程、磁链方程、转矩方程和运动方程组成。 电压方程:

礠链方程: 转矩方程: 运动方程: 异步电机的数学模型比较复杂,坐标变换的目的就是要简化数学模型。异步电机数学模型是建立在三相静止的ABC坐标系上的,如果把它变换到两相坐标系上,由于两相坐标轴互相垂直,两相绕组之间没有磁的耦合,仅此一点,就会使数学模型简单了许多。 (1)三相--两相变换(3/2变换) 在三相静止绕组A、B、C和两相静止绕组、之间的变换,或称三相静止坐标系和两相静止坐标系间的变换,简称 3/2 变换。 (2)两相—两相旋转变换(2s/2r 变换) 从两相静止坐标系到两相旋转坐标系 M、T 变换称作两相—两相旋转变换,简称 2s/2r 变换,其中s 表示静止,r 表示旋转。 图1、异步电动机的坐标变换结构图 二、感应电机矢量控制原理 感应电机是指定转子之间靠作用,在转子内感应电流以实现机电能量转换的电机。感应电机是的一种,异步电机主要是指感应电机。以上所讲,异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统,通过坐标变换,可以使之降阶并化简,但并没有改变其非线性、多变量的本质。需要高动态性能的异步电机调速系统必须在其动态模型的基础上进行分析和设

相关文档
最新文档