数学建模 用幂法 和法 根法求特征值特征向量

数学建模 用幂法 和法 根法求特征值特征向量
数学建模 用幂法 和法 根法求特征值特征向量

数学建模作业

计算机学院信计1102班姜圣涛

(1)幂法求矩阵最大特征值及特征向量:

程序为:

#include

#include

using namespace std;

#define n 3 //三阶矩阵

#define N 20

#define err 0.0001

//幂法求特征值特征向量

void main(){

cout<<"**********幂法求矩阵最大特征值及特征向量***********"<

double A[n][n],X[n],u,y[n],max;

cout<<"请输入矩阵:\n";

for(i=0;i

for(j=0;j

cin>>A[i][j]; //输入矩阵

cout<<"请输入初始向量:\n";

for(i=0;i

cin>>X[i]; //输入初始向量

k=1;

u=0;

while(1){

max=X[0];

for(i=0;i

{

if(max

for(i=0;i

y[i]=X[i]/max;

for(i=0;i

{

X[i]=0;

for(j=0;j

X[i]+=A[i][j]*y[j]; //矩阵相乘}

if(fabs(max-u)

{

cout<<"A的特征值是 :"<

cout<

cout<<"A的特征向量为:"<

for(i=0;i

cout<

cout<

break;

}

else

{

if(k

else {

cout<<"运行错误\n";

break;

}

}

}

}

程序结果为:

(2)和法求矩阵最大特征值及特征向量

程序为:

#include

#include

#include

using namespace std;

#define n 3 //三阶矩阵#define N 20

void main(){

int i,j,k;

double A[n][n],w[n],M[n],u[n],W[n][n],max;

cout<<"********和法求矩阵的特征根及特征向量*******"<

for(i=0;i

for(j=0;j

cin>>A[i][j]; //输入矩阵

//计算每一列的元素和

M[0]=0;M[1]=0;M[2]=0;

for(i=0;i

for(j=0;j

{

M[i]+=A[j][i];

}

//将每一列向量归一化

for(i=0;i

for(j=0;j

{

W[j][i]=A[j][i]/M[i];

}

//输出按列归一化之后的矩阵W

cout<<"按列归一化后的矩阵为:"<

for(i=0;i

for(j=0;j

{

cout<

if(j==2)

cout<

}

//求特征向量

w[0]=0;w[1]=0;w[2]=0;

for(i=0;i

for(j=0;j

{

w[i]+=W[i][j];

}

cout<<"特征向量为:"<

for(i=0;i

{

u[i]=w[i]/(w[0]+w[1]+w[2]); cout<

}

//求最大特征值

max=0;

for(i=0;i

{

w[i] = 0;

for(j=0;j

{

w[i] += A[i][j]*u[j];

}

}

for(i = 0;i < n;i++)

{

max += w[i]/u[i];

}

cout<<"最大特征根为:"<

cout<

}

运行结果为:

(3)根法求矩阵最大特征值及特征向量:

程序为:

#include

#include

#include

using namespace std;

#define n 3 //三阶矩阵

#define N 20

void main(){

int i,j;

double A[n][n],w[n],M[n],u[n],W[n][n],max;

cout<<"********根法求矩阵的特征根及特征向量*******"<

for(i=0;i

for(j=0;j

cin>>A[i][j]; //输入矩阵

//计算每一列的元素和

M[0]=0;M[1]=0;M[2]=0;

for(i=0;i

for(j=0;j

{

M[i]+=A[j][i];

}

//将每一列向量归一化

for(i=0;i

for(j=0;j

{

W[j][i]=A[j][i]/M[i];

}

//输出按列归一化之后的矩阵W

cout<<"按列归一化后的矩阵为:"<

for(i=0;i

for(j=0;j

{

cout<

if(j==2)

cout<

}

//求特征向量

//w[0]=A[0][0];w[1]=A[0][1];w[2]=A[0][2]; w[0]=1;w[1]=1;w[2]=1;

for(i=0;i

for(j=0;j

{

w[i]=w[i]*W[i][j];

}

w[i]=pow(w[i], 1.0/3);

}

cout<<"特征向量为:"<

for(i=0;i

{

u[i]=w[i]/(w[0]+w[1]+w[2]); cout<

}

//求最大特征值

max=0;

for(i=0;i

{

w[i] = 0;

for(j=0;j

{

w[i] += A[i][j]*u[j];

}

}

for(i = 0;i < n;i++)

{

max += w[i]/u[i];

}

cout<<"最大特征值为:"<

}

运行结果为:

幂法,反幂法求解矩阵最大最小特征值及其对应的特征向量

数值计算解矩阵的按模最大最小特征值及对应的特征向量 —一 .幂法 1. 幕法简介: 当矩阵A 满足一定条件时,在工程中可用幕法计算其主特征值 (按模最大) 及其特征向量。矩阵A 需要满足的条件为: ⑴I 1 I I 2|n |- 0, i 为A 的特征值 (2)存在n 个线性无关的特征向量,设为 X i ,X 2,…,X n 1.1计算过程: n 对任意向量x (0),有x (0)八:-M —不全为0,则有 i 4 X (k 岀)=Ax (k)= = A k 岀乂。) n n A k 1 aq a 扌1 5 i =1 i =1 ■k 1 2 可见,当 1 — 1 越小时,收敛越快;且当k 充分大时,有 ? "1 2算法实现 ⑶.计算x Ay,… max(x); ⑷若| ?一十:;,输出-,y,否则,转(5) (5)若N ,置k 「k 1^ -,转3,否则输出失败信息,停机. 3 matlab 程序代码 (冲1 %叫 x (k 1) [x (k) k 二 u x (k) > (k+1) 1,对应的特征向量即是 x (1).输入矩阵A ,初始向量X ,误差限 最大迭代次数N (k) 0; y (k) max(abs(x (k ))

k=1; z=0; y=x0./max(abs(x0)); x=A*y; % z相当于■ %规范化初始向量%迭代格式 b=max(x); % b相当于: if abs(z-b)eps && k> y]=lpower (A, xO, eps, X)

关于特征值与特征向量的求解方法与技巧

关于特征值与特征向量的求解方法与技巧 摘 要:矩阵的初等变换是高等代数中运用最广泛的运算工具,对矩阵的特征值与特征向量的求解研究具有一定意义。本文对矩阵特征值与特征向量相关问题进行了系统的归纳,得出了通过对矩阵进行行列互逆变换就可同时求出特征值及特征向量的结论。文章给出求解矩阵特征值与特征向量的两种简易方法: 列行互逆变换方法与列初等变换方法。 关键词: 特征值,特征向量; 互逆变换; 初等变换。 1 引言 物理、力学、工程技术的许多问题在数学上都归结为求矩阵的特征值与特征向量问题,直接由特征方程求特征值是比较困难的,而在现有的教材和参考资料上由特征方程求特征值总要解带参数的行列式,且只有先求出特征值才可由方程组求特征向量。一些文章给出了只需通过行变换即可同步求出特征值及特征向量的新方法,但仍未摆脱带参数行列式的计算问题。本文对此问题进行 了系统的归纳,给出了两种简易方法。 一般教科书介绍的求矩阵的特征值和特征向量的方法是先求矩阵A 的特征方程()0A f I A λλ=-=的全部特征根(互异) ,而求相应的特征向量的方法则是对每个i λ 求齐次线性方程组()0i I A X λ-=的基础解系,两者的计算是分离的,一个是计算行列式,另一个是解齐次线性方程组, 求解过程比较繁琐,计算量都较大。

本文介绍求矩阵的特征值与特征向量的两种简易方法, 只用一种运算 ——矩阵运算, 其中的列行互逆变换法是一种可同步求出特征值与特征向量的方法, 而且不需要考虑带参数的特征矩阵。而矩阵的列初等变换法, 在求出特征值的同时, 已经进行了大部分求相应特征向量的运算, 有时碰巧已完成了求特征向量的全部运算。两种方法计算量少, 且运算规范,不易出错。 2 方法之一: 列行互逆变换法 定义1 把矩阵的下列三种变换称为列行互逆变换: 1. 互换i 、j 两列()i j c c ?,同时互换j 、i 两行()j i r r ? ; 2. 第i 列乘以非零数()i k kc , 同时第i 行乘11i c k k ?? ?? ? ; 3. 第i 列k 倍加到第j 列()j i c kc +, 同时第j 行- k 倍加到第i 行 ()i j r kr -。 定理1 复数域C 上任一n 阶矩阵A 都与一个Jordan 标准形矩阵 1212,,....r k k kr J diag J J J λλλ? ? ???????? ??? ? ?? ?? ? ? ? ?? ? ?=相似, 其中 111110...0001...00..................000...1000...0ki ki J λλλλ?? ?? ?? ??=????????称为Jordan 块, 12r k k k n ++ +=并且 这个Jordan 标准形矩阵除去其中Jordan 块的排列次序外被矩阵A 唯一确定, J 称为A 的Jordan 标准形。 定理2 A 为任意n 阶方阵, 若T A J I P ?? ????????→ ? ????? 一系列列行互逆变换其中

实验6反幂法求矩阵按模最小特征值

西华数学与计算机学院上机实践报告 课程名称:计算方法A 年级:2010级 上机实践成绩: 指导教师:严常龙 姓名:李国强 上机实践名称:反幂法求矩阵按模最小特征值 学号:362011********* 上机实践日期:2013.12.18 上机实践编号:6 上机实践时间:14:00 一、目的 1.通过本实验加深对反幂法的构造过程的理解; 2.能对反幂法提出正确的算法描述编程实现,得到计算结果。 二、内容与设计思想 自选方阵,用反幂法求解其按模最小特征值。 可使用实例: ????? ??---=90688465441356133A 三、使用环境 操作系统:Win 8 软件平台:Visual C++ 6.0 四、核心代码及调试过程 #include #include #define MAX_N 20 //矩阵最大维数 #define MAXREPT 100 #define epsilon 0.00001 //求解精度 int main() { int n; int i,j,k; double xmax,oxmax; static double a[MAX_N][MAX_N]; static double l[MAX_N][MAX_N],u[MAX_N][MAX_N]; static double x[MAX_N],nx[MAX_N]; printf("\n 请输入矩阵阶数n:"); //输入矩阵维数 scanf("%d",&n); if(n>MAX_N)

{ printf("the input n is larger than MAX_N,please redefine the MAX_N.\n"); return 1; } if(n<=0) { printf("please input a number between 1 and %d.\n",MAX_N); return 1; } //输入A矩阵 printf("请输入矩阵的值a[i][j] i,j=0...%d;\n",n-1); for(i=0;ixmax) xmax=fabs(nx[j]); for(j=0;j

幂法求矩阵主特征值

!程序说明:幂法求矩阵主特征值 !日期:2010年11月30日 PROGRAM Matrix_EigenValue PARAMETER(N=3) REAL ARR(N,N) CALL INPUT(ARR,N) CALL MATEV(ARR,N) END PROGRAM SUBROUTINE INPUT(ARR,N) REAL ARR(N,N) OPEN(1,FILE='MAT.TXT') READ(1,*)((ARR(I,J),J=1,N),I=1,N) END SUBROUTINE SUBROUTINE MATEV(ARR,N) PARAMETER(EPS=1E-7) REAL :: ARR(N,N),X(N),X1(N),MAX=0 INTEGER :: K=0,P=0 X=RESHAPE((/1,1,1/),(/3/)) WRITE(1,*) ' 迭代次数 U(规范化向量) & & MAX(V)(主特征值)' DO WHILE(P/=N) WRITE(1,'(I6,A,F12.6,A,F12.6)') K,' (',X,' )',MAX P=0 MAX=0 DO I=1,N X1(I)=0 DO J=1,N X1(I)=X1(I)+ARR(I,J)*X(J) !迭代过程 ENDDO ENDDO DO I=1,N IF(ABS(X1(I))>ABS(MAX)) MAX=X1(I) !选取主特征值 ENDDO DO I=1,N IF(ABS(X(I)-X1(I)/MAX)

ENDDO K=K+1 ENDDO END SUBROUTINE 输出结果: 1 1 0.5 1 1 0.25 0.5 0.25 2 迭代次数 U(规范化向量) MAX(V)(主特征值) 0 ( 1.000000 1.000000 1.000000 ) 0.000000 1 ( 0.909091 0.81818 2 1.000000 ) 2.750000 2 ( 0.837607 0.743590 1.000000 ) 2.659091 3 ( 0.799016 0.703035 1.000000 ) 2.604701 4 ( 0.77741 5 0.680338 1.000000 ) 2.575267 5 ( 0.765108 0.66740 6 1.000000 ) 2.558792 6 ( 0.758025 0.659963 1.000000 ) 2.549406 7 ( 0.753925 0.655655 1.000000 ) 2.544003 8 ( 0.751544 0.653153 1.000000 ) 2.540876 9 ( 0.750158 0.651697 1.000000 ) 2.539060 10 ( 0.749351 0.650848 1.000000 ) 2.538003 11 ( 0.748880 0.650354 1.000000 ) 2.537387 12 ( 0.748606 0.650065 1.000000 ) 2.537028 13 ( 0.748445 0.649897 1.000000 ) 2.536819 14 ( 0.748352 0.649799 1.000000 ) 2.536697 15 ( 0.748298 0.649741 1.000000 ) 2.536626 16 ( 0.748266 0.649708 1.000000 ) 2.536584 17 ( 0.748247 0.649688 1.000000 ) 2.536560 18 ( 0.748236 0.649677 1.000000 ) 2.536546 19 ( 0.748230 0.649670 1.000000 ) 2.536537 20 ( 0.748226 0.649667 1.000000 ) 2.536533 21 ( 0.748224 0.649664 1.000000 ) 2.536530 22 ( 0.748223 0.649663 1.000000 ) 2.536528 23 ( 0.748222 0.649662 1.000000 ) 2.536527 24 ( 0.748222 0.649662 1.000000 ) 2.536527 25 ( 0.748222 0.649662 1.000000 ) 2.536526 26 ( 0.748221 0.649661 1.000000 ) 2.536526

幂法求矩阵A按模最大的特征值及其特征向量

数值分析 幂法求矩阵A按模最大的特征值及其 特征向量

幂法的主要思想 设 n n ij R a A ?∈=)( ,其特征值为i λ ,对应特征向量为),,,1(n i x i =即 i i i x Ax λ= ),,1(n i =,且 x 1,······,x n 线性无关。求矩阵A 的主特征值及对应的特征向量。 幂法的基本思想: 任取一个非零初始向量 v 0 ∈R n 且v 0≠0, 由矩阵A 的乘幂构造一向量序列: 称{ v k }为迭代向量, A 特征值中 λ1为强占优,即▕ λ1▕>▏λ2 ▏>······>▏λn ▏, {x 1,x 2,······,x n }线性无关,即{x 1,x 2,······,x n }为R n 中的一 个基,于是对任意的初始向量v 0 ∈R n 且 v 0≠0有展开式。 (v 0 用{x i } 的线性组合表示) (且设01≠α) 则 当k =2,3,… 时,v k = A v k-1 = A k v ? ?? 1Av v =0 212v A Av v ==01 1 v A Av v k k k ++==) ,,1,0(n k =∑==n i i i x v 1 α)(221101n n x x x A v A v ααα+++==n n x A x A x A ααα+++=2211n n n x x x λαλαλα+++=222111) (111 +≡x k αλk ε

其中 由假设▕ λ1▕>▏λ2 ▏>······>▏λn ▏,得 ,从而 即,0lim =∞→k k ε且收敛速度由比值||12λλ=r 确定。 所以有 说明,当k 充分大时,有1 11 x v k k αλ≈,或 k k v 1λ 越来越接近特征 向量 规范化幂法的算法 ①输入矩阵 A 、初始向量v (0),误差 eps ,实用中一般取 v (0)=(1,1,···,1)T ; ②k ←1; ③计算 v (k) ←Au (k-1); ④m k ←max{ v (k) },m k-1 ←{ v (k-1) }; ⑤u (k) ←v (k)/ m k ; ⑥如果▕ m k - m k-1▕<eps ,则显示特征值λ1←和对应的特征 向量x (1),终止; ⑦k=k+1,转③。 n k n n k k x x )()(1 2122λλαλλαε++=),,2(1||1 n i i =<λλ ),,,2(0)(lim 1n i k i k ==∞→λλ111 lim x v k k k αλ=∞ →。 11x α

特征值解法

《结构动力学》大作业 结构大型特征值问题的求解 0810020035 吴亮秦 1振动系统的特征值问题 1.1实特征值问题 n 自由度无阻尼线性振动系统的运动微分方程可表示为: []{}[]{}()M u K u F t += (1.1) 其中,{}u 是位移向量,[]M 和[]K 分别是系统的质量矩阵和刚度矩阵,都是n 阶正定矩阵,()F t 是激励向量。 此系统的自由振动微分方程为 []{}[]{}0M u K u += (1.2) 设其主振型为: {}{}sin()u v t ω?=+ (1.3) 其中,{}v 为振幅向量,ω为圆频率,?为初相位。将(1.3)代入自由振动微分方程(1.2), 得: []{}[]{}K v M v λ= (1.4) 其中2 λω=,(1.4)具有非零解的条件是 ()[][]det 0M K λ-= (1.5) 式(1.4)称为系统的特征方程,由此可以确定方程的n 个正实根1{}n i i λ=,称为系统的特征值,1{}n i i ω=称为系统的固有频率,{}i v (i=1,2,…..n )为对应于特征值的特征向量或称为系统的振型或模态。 因为[]M 矩阵正定,则[]M 有Cholesky 分解: [][][]T M L L = (1.6) 其中,[]L 是下三角矩阵。引入向量{}x 满足:{}[]{}T x L v =,则: 1 {}([]){}T v L x -= (1.7) 代入(1.4),得: ([][]){}0I P x λ-= (1.8) 其中,( ) 1 1 [][][][] T P L K L --=,式(1.8)称为标准实特征值问题。 1.2复特征值问题 多自由度阻尼自由振动系统的运动方程为如下二阶常系数微分方程组: []{()}[]{()}[]{()}0 M x t C x t K x t ++= (1.9) 其中 []M ,[]C ,[]K 分别是n 阶的质量、阻尼和刚度矩阵,{()}q t 是n 维可微向量函数。用分离变量法,设{()}{}t x t e λφ=,其中{}φ是与时间t 无关的常向量,λ为待定参数。将

matlab求矩阵特征值特征向量 乘幂法

摘 要 根据现代控制理论课程的特点, 提出并利用MATLAB 设计了现代控制理论课程的实验, 给出了设计的每个实验的主要内容及使用到的MATLAB 函数, 并对其中的一个实验作了详细说明。通过这些实验, 将有助于学生理解理论知识, 学习利用MATLAB 解决现代控制理论问题。 关键词:现代控制理论、MATLAB 、仿真。 1设计目的、内容及要求 1.1设计目的 本课程设计以自动控制理论、现代控制理论、MATLAB 及应用等知识为基础,求连续系统对应的离散化的系统,并用计算系数阵按模最大的特征根法判别离散系统的稳定性,目的是使学生在现有的控制理论的基础上,学会用MATLAB 语言编写控制系统设计与分析的程序,通过上机实习加深对课堂所学知识的理解,掌握一种能方便地对系统进行离散化的实现和分析系统的稳定性的设计的工具。 1.2设计内容及要求 1 在理论上对连续系统离散化推导出算法和计算公式 2 画出计算机实现算法的框图 3 编写程序并调试和运行 4 以下面的系统为例,进行计算 ??????????----=041020122A ,?? ?? ? ?????=100B ,[]111-=c 5 分析运算结果

6 幂法迭代精度为ep=0.001,离散系统展开项数为20 7 程序应具有一定的通用性,对不同参数能有兼容性。 2算法选择及推导 2.1连续系统离散化算法 书P67离散化意义 已知被控对象的状态方程为: ()()()()()()t t u t y t t u t =+=+ x Ax B Cx D 对方程求解,得: 0()()0()()()o t t t t t t e t e u d τττ --=+?A A x x B 设0t kT =,(1)t k T =+,代入上式,得: H 公式 若省略T 则为{ ? +-++Φ=+T k kT d kT Bu T k kt x T T k x )1()(])1[()()(])1([(τ τφ不改变与离散后时刻,即得连续离散化方程则:相当于)+=(上限相当于下限设令D C kT Du kT Cx kT y kT t kT u T H kT x T G T k x Bdt t Bdt e T H t T k T t kT d dt T k t Bd e T H e T T G T T AT T k kT T k A AT )()()()()()()(])1([(: )()(0 ,1,,)1()()()(0 )1(])1[(+==+=+Φ=====-=-+=?==Φ=???+-+τττττ τ

数学建模 用幂法 和法 根法求特征值特征向量

数学建模作业 计算机学院信计1102班姜圣涛 (1)幂法求矩阵最大特征值及特征向量: 程序为: #include #include using namespace std; #define n 3 //三阶矩阵 #define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){ cout<<"**********幂法求矩阵最大特征值及特征向量***********"<>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i>X[i]; //输入初始向量 k=1; u=0;

while(1){ max=X[0]; for(i=0;i

幂法反幂法求解矩阵大小特征值及其对应的特征向量

幂法反幂法求解矩阵大小特征值及其对应的特征向量

————————————————————————————————作者:————————————————————————————————日期:

数值计算解矩阵的按模最大最小特征值及对应的特征向量 一.幂法 1. 幂法简介: 当矩阵A 满足一定条件时,在工程中可用幂法计算其主特征值(按模最大)及其特征向量。矩阵A 需要满足的条件为: (1) 的特征值为A i n λλλλ,0||...||||21 ≥≥≥> (2) 存在n 个线性无关的特征向量,设为n x x x ,...,,21 1.1计算过程: i n i i i u x x αα,1 ) 0()0(∑==,有对任意向量不全为0,则有 1 11111221 12111 1 1 11 1 011)()(...u u a u a u λu λαu αA x A Ax x k n n k n k k n i i k i i n i i i k )(k (k))(k αλλλλλα++++=+=+++≈? ? ????+++======∑∑ 可见,当||1 2 λλ越小时,收敛越快;且当k 充分大时,有1)11 11)11111λαλαλ=??????==+++(k )(k k (k k )(k x x u x u x ,对应的特征向量即是)(k x 1+。 2 算法实现 . ,, 3,,1 , ).5() 5(,,,,||).4();max(,).3() (max(;0,1).2(,).1()() () (停机否则输出失败信息转置若转否则输出若计算最大迭代次数,误差限,初始向量输入矩阵βλβεβλβλε←+←<<-←←= ←←k k N k y x Ay x x abs x y k N x A k k k 3 matlab 程序代码

北航数值分析1-Jacobi法计算矩阵特征值

准备工作 ?算法设计 矩阵特征值的求法有幂法、Jacobi法、QR法等,其中幂法可求得矩阵按模最大的特征值(反幂法可求得按模最小特征值),Jacobi法则可以求得对称阵的所有特征值。 分析一:由题目中所给条件λ1≤λ2≤…≤λn,可得出λ1、λn按模并不一定严格小于或大于其他特征值,且即使按模严格小于或大于其他特征值,也极有可能出现|λs|<λ1|<|λn |或|λs|<λn|<|λ1 |的情况,导致按幂法和反幂法无法求解λ1或λn二者中的一者; 分析二:题目要求求解与数μk =λ1+k(λn-λ1)/40最接近的特征值λik(k=1,2,3…39),这个问题其实可以转换为求A-μk 按模最小的特征值的问题,但因为在第一个问题中无法确定能肯定的求得λ1和λn,所以第二个问题暂先搁浅; 分析三:cond(A) 2 = ||A|| * ||A-1|| =|λ|max * |λ|min,这可以用幂法和反幂法求得,det(A) =λ1 *λ2 * … *λn,这需要求得矩阵A的所有特征值。 由以上分析可知,用幂法和反幂法无法完成所有问题的求解,而用Jacobi法求得矩阵所有特征值后可以求解题目中所给的各个问题。所以该题可以用Jacobi法求解。 ?模块设计 由 ?数据结构设计 由于矩阵是对称阵,上下带宽均为2,所以可以考虑用二维数组压缩存储矩阵上半带或下半带。但由于Jacobi法在迭代过程中会破坏矩阵的形态,所以原来为零的元素可能会变为非零,这就导致原来的二维数组无法存储迭代后的矩阵。基于此的考虑,决定采用一维数组存储整个下三角阵,以此保证迭代的正确进行。 完整代码如下(编译环境windows10 + visual studio2010):

幂法和反幂法的matlab实现

幂法和反幂法的matlab实现

幂法求矩阵主特征值及对应特征向量 摘要 矩阵特征值的数值算法,在科学和工程技术中很多问题在数学上都归结为矩阵的特征值问题,所以说研究利用数学软件解决求特征值的问题是非常必要的。实际问题中,有时需要的并不是所有的特征根,而是最大最小的实特征根。称模最大的特征根为主特征值。 幂法是一种计算矩阵主特征值(矩阵按模最大的特征值)及对应特征向量的迭代方法,它最大的优点是方法简单,特别适用于大型稀疏矩阵,但有时收敛速度很慢。 用java来编写算法。这个程序主要分成了四个大部分:第一部分为将矩阵转化为线性方程组;第二部分为求特征向量的极大值;第三部分为求幂法函数块;第四部分为页面设计及事件处理。其基本流程为幂法函数块通过调用将矩阵转化为线性方程组的方法,再经过一系列的验证和迭代得到结果。

关键字:主特征值;特征向量;线性方程组;幂法函数块 POWER METHOD FOR FINDING THE EIGENVALUES AND CORRESPONDING EIGENVECTORS OF THE MATRIX ABSTRACT Numerical algorithm for the eigenvalue of matrix, in science and engineering technology, a

lot of problems in mathematics are attributed matrix characteristic value problem, so that studies using mathematical software to solve the eigenvalue problem is very necessary. In practical problems, sometimes need not all eigenvalues, but the maximum and minimum eigenvalue of real. The characteristic value of the largest eigenvalue of the modulus maximum. Power method is a calculation of main features of the matrix values (matrix according to the characteristics of the largest value) and the corresponding eigenvector of iterative method. It is the biggest advantage is simple method, especially for large sparse matrix, but sometimes the convergence speed is very slow. Using java to write algorithms. This program is divided into three parts: the first part is the matrix is transformed into linear equations; the second part for the sake of feature vector of the maximum; the third part is

带原点平移的反幂法解特征值

书P65 5、已知矩阵???? ??????----=43033101 3A 的一个特征值为5≈λ,试用反幂法求λ和相应的特征向量,要求.104 11 11-----≤-k k k βββ 解:根据原点平移的反幂法,先分解矩阵: LU I A =???? ? ??-----=-1303810185 L = 1.0000 0 0 -0.1250 1.0000 0 0 0.3810 1.0000 U = -8.0000 1.0000 0 0 -7.8750 -3.0000 0 0 0.1429 (1)取初始向量T u )0,0,1(0= 解方程组001)5(u y u I A ==- 解得=1u (-0.1111 0.1111 -0.3333)T

T u u y) 9045 .0 , 3015 .0 , 3015 .0 ( 2 1 1 1 - - = = (2)再解方程组 1 2 ) 5 (y u I A= - 解得= 2 u(0.3685 2.6465 -7.0350)T T u u y) 93484 .0 , 35168 .0 , 04896 .0( 2 2 2 2 - = = (3)再解方程组 2 3 ) 5 (y u I A= - 解得= 3 u(0.3452 2.8110 -7.4980)T T u u y) 93549 .0 , 35072 .0 , 04307 .0( 2 3 3 3 - = = (4)再解方程组 3 4 ) 5 (y u I A= - 解得= 4 u(0.3460 2.8112 -7.4980)T T u u y) 93548 .0 , 3507 .0 , 04317 .0( 2 4 4 4 - = = 所以 015150 .8 ) 4980 .7 , 8112 .2, 3460 .0( ) 93549 .0 , 35072 .0, 04307 .0( 4 3 4 = - ? - = = T T u y β 特征值12476 .5 5 1 4 = + ≈-β λ 特征向量 T u u y x) 93549 .0 , 35072 .0 , 04307 .0( 2 3 3 3 - = = ≈

幂法求矩阵最大特征值

幂法求矩阵最大特征值 摘要 在物理、力学和工程技术中的很多问题在数学上都归结为求矩阵特征值的问题,而在某些工程、物理问题中,通常只需要求出矩阵的最大的特征值(即主特征值)和相应的特征向量,对于解这种特征值问题,运用幂法则可以有效的解决这个问题。 幂法是一种计算实矩阵A的最大特征值的一种迭代法,它最大的优点是方法简单。对于稀疏矩阵较合适,但有时收敛速度很慢。 用java来编写算法。这个程序主要分成了三个大部分:第一部分为将矩阵转化为线性方程组;第二部分为求特征向量的极大值;第三部分为求幂法函数块。其基本流程为幂法函数块通过调用将矩阵转化为线性方程组的方法,再经过一系列的验证和迭代得到结果。 关键词:幂法;矩阵最大特征值;j ava;迭代

POWER METHOD TO CALCULATE THE MAXIMUM EIGENV ALUE MATRIX ABSTRACT In physics, mechanics and engineering technology of a lot of problems in math boil down to matrix eigenvalue problem, and in some engineering, physical problems, usually only the largest eigenvalue of the matrix (i.e., the main characteristics of the value) and the corresponding eigenvectors, the eigenvalue problem for solution, using the power law can effectively solve the problem. Power method is A kind of computing the largest eigenvalue of real matrix A of an iterative method, its biggest advantage is simple.For sparse matrix is right, but sometimes very slow convergence speed. Using Java to write algorithms.This program is mainly divided into three most: the first part for matrix can be converted to linear equations;The second part is the eigenvector of the maximum;The third part is the exponentiation method of function block.Its basic process as a power law function block by calling the method of matrix can be converted to linear equations, then after a series of validation and iteration to get the results. Key words: Power method; Matrix eigenvalue; Java; The iteration

43多项式方法求特征值问题

4.3多项式方法求特征值问题 4.3.1 F-L 方法求多项式系数 我们知道,求n 阶方阵A 的特征值就是求代数方程 0||)(=-=I A λλ? (4.3.1) 的根。)(λ?称为A 的特征多项式。上式展开为 n n n n p p p ++++=--.....)(2211λλλλ? (4.3.2) 其中n p p p ,...,21为多项式)(λ?的系数。 从理论上讲,求A 的特征值可分为两步: 第一步 直接展开行列式|I A λ-|求出多项式)(λ?; 第二步 求代数方程0)(=x ?的根,即特征值。 《 对于低阶矩阵,这种方法是可行的。但对于高阶矩阵,计算量则很大,这种方法是不适用的。这里我们介绍用F-L (Faddeev-Leverrier )方法求特征方程(4.3.2)中多项式)(λ?的系数。由于代数方程求根问题在第2章中已经介绍,所以本节中解决特征值问题的关键是确定矩阵A 的特征多项式)(λ?,所以称这种方法为多项式方法求特征值问题。 记矩阵A=n n ij a ?)(的对角线元素之和为 nn a a a trA +++=...2211 (4.3.3) 利用递归的概念定义以下n 个矩阵:),....,2,1(n k B k = ???????????????-=-=-=-==----),(................),(...............),(),(,11112231121I p B A B I p B A B I p B A B I p B A B A B n n n k k k n n k k trB n p trB k p trB p trB p trB p 11312133221 1===== (4.3.4) 可以证明,(4.3.4)式中,,...,2,1,n k p k =即是所求A 的特征多项式)(λ?的各系数。用()式求矩阵的特征多项式系数的方法称为F-L 方法。相应特征方程为: 0).....()1(2211=-------n n n n n p p p λλλ (4.3.5) 而且可证矩阵A 的逆矩阵可表示为 )(1111I p B p A n n n ----= (4.3.6) ? 例1 求矩阵 ??????????=324202423A

数值方法课程设计幂法反幂法计算矩阵特征值和特征向量附Matlab程序

数值方法课程设计幂法反幂法计算矩阵特征值和特征向量附Matlab程序

矩阵的特征值与特征向量的计算 摘要 物理,力学,工程技术中的很多问题在数学上都归结于求矩阵特征值的问题,例如振动问题(桥梁的振动,机械的振动,电磁振动等)、物理学中某些临界值的确定问题以及理论物理中的一些问题。矩阵特征值的计算在矩阵计算中是一个很重要的部分,本文使用幂法和反幂法分别求矩阵的按模最大,按模最小特征向量及对应的特征值。 幂法是一种计算矩阵主特征值的一种迭代法,它最大的优点是方法简单,对于稀疏矩阵比较合适,但有时收敛速度很慢。其基本思想是任取一个非零的初始向量。由所求矩阵构造一向量序列。再经过所构造的向量序列求出特征值和特征向量。 反幂法用来计算矩阵按模最小特征向量及其特征值,及计算对应于一个给定近似特征值的特征向量。本文中主要使用反幂法计算一个矩阵的按模最小特征向量及其对应的特征值。计算矩阵按模最小特征向量的基本思想是将其转化为求逆矩阵的按模最大特征向量。然后经过这个按模最大的特征向量反推出原矩阵的按模最小特征向量。

关键词:矩阵;特征值;特征向量;冥法;反冥法 THE CALCULATIONS OF EIGENVALUE AND EIGENVECTOR OF MATRIX ABSTRACT Physics, mechanics, engineering technology in a lot of problems in mathematics are attributed to matrix eigenvalue problem, such as vibration (vibration of the bridge, mechanical vibration, electromagnetic vibration, etc.) in physics, some critical values determine problems and

特征值和特征向量的性质与求法

特征值和特征向量的性质与求法 方磊 (陕理工理工学院(数学系)数学与应用数学专业071班级,陕西汉中 723000)” 指导老师:周亚兰 [摘要] :本文主要给出了矩阵特征值与特征向量的几个性质及特征值、特征向量的几种简单求法。 [关键词]:矩阵线性变换特征值特征向量

1 特征值与特征向量的定义及性质 定义1:(ⅰ)设A 是数域p 上的n 阶矩阵,则多项式|λE-A|称A 的特征多项式,则它在 c 上的根称为A 的特征值。 (ⅱ)若λ是A 的特征值,则齐次线性方程组(λE-A) X =0的非零解,称为A 的属于特征值λ的特征向量。 定义2:设α是数域P 上线性空间v 的一个线性变换,如果对于数域P 中的一数0λ存在一个非零向量ξ,使得a ξ=0λξ,那么0λ 成为α的一个特征值而ξ称为α的属于特征值0λ的一个特征向量。 性质1: 若λ为A 的特征值,且A 可逆,则0≠λ、则1-λ 为1-A 的特征知值。 证明: 设n λλλ 21为A 的特征值,则A =n λλλ 21ο≠ ∴λi≠0(i=1、2…n) 设A 的属于λ的特征向量为ξ 则ξλξi =?A 则λ1 -A ξ=ξ即有 1 -A ξ=1 -λ ξ ∴1 -λ 为1 -A 的特征值,由于A 最多只有n 个特征值 ∴1 -λ 为1 -A ξ的特征值 性质2:若λ为A 的特征值,则()f λ为()f A 的特征值 ()χf =n n a χ +1 0111 1x a x a x a n n +++-- 证明:设ξ为A 的属于λ的特征向量,则A ξ=λξ ∴ ()A f ξ=(n n A a +E a A a A a n n 011 1+++-- )ξ = n n A a ξ+ 1 1--n n A a ξ+… +E a 0 ξ =n n a λξ+1 1--n n a λ+…+E 0a ξ =()λf ξ 又ξ≠0 ∴ ()λf 是()A f 的特征值 性质3:n 阶矩阵A 的每一行元素之和为a ,则a 一定是A 的特征值

数值方法课程设计报告幂法反幂法计算矩阵特征值和特征向量-附Matlab程序

矩阵的特征值与特征向量的计算 摘要 物理,力学,工程技术中的很多问题在数学上都归结于求矩阵特征值的问题,例如振动问题(桥梁的振动,机械的振动,电磁振动等)、物理学中某些临界值的确定问题以及理论物理中的一些问题。矩阵特征值的计算在矩阵计算中是一个很重要的部分,本文使用幂法和反幂法分别求矩阵的按模最大,按模最小特征向量及对应的特征值。 幂法是一种计算矩阵主特征值的一种迭代法,它最大的优点是方法简单,对于稀疏矩阵比较合适,但有时收敛速度很慢。其基本思想是任取一个非零的初始向量。由所求矩阵构造一向量序列。再通过所构造的向量序列求出特征值和特征向量。 反幂法用来计算矩阵按模最小特征向量及其特征值,及计算对应于一个给定近似特征值的特征向量。本文中主要使用反幂法计算一个矩阵的按模最小特征向量及其对应的特征值。计算矩阵按模最小特征向量的基本思想是将其转化为求逆矩阵的按模最大特征向量。然后通过这个按模最大的特征向量反推出原矩阵的按模最小特征向量。 关键词:矩阵;特征值;特征向量;冥法;反冥法

THE CALCULATIONS OF EIGENVALUE AND EIGENVECTOR OF MATRIX ABSTRACT Physics, mechanics, engineering technology in a lot of problems in mathematics are attributed to matrix eigenvalue problem, such as vibration (vibration of the bridge, mechanical vibration, electromagnetic vibration, etc.) in physics, some critical values determine problems and theoretical physics in some of the problems. Matrix eigenvalue calculation is a very important part in matrix putation. In this paper, we use the power method and inverse power method to calculate the maximum of the matrix, according to the minimum characteristic vector and the corresponding characteristic value. Power method is an iterative method to calculate the eigenvalues of a matrix. It has the advantage that the method is simple and suitable for sparse matrices, but sometimes the convergence rate is very slow. The basic idea is to take a non - zero initial vector. Construct a vector sequence from the matrix of the matrix. Then the eigenvalues and eigenvectors are obtained by using the constructed vector sequence. The inverse power method is used to calculate the minimum feature vectors and their eigenvalues of the matrix, and to calculate the eigenvalues of the matrix. In this paper, we use

相关文档
最新文档