变频恒压供水一拖二PLC解析.doc

变频恒压供水一拖二PLC解析.doc
变频恒压供水一拖二PLC解析.doc

变频恒压供水一拖二PLC 程序解析

——PLC 步进指令应用实例之一

一、变频恒压供水系统主电路和控制线路图:

PE

L3L2L1源电压指示

作电流指示

泵变频运行

泵变频运行

泵工频运行

泵工频运行

制电源

体散热风机

此系统是2000年前后,由上海博源自动化有限公司制作的(很想念他们,多年未联系了)。主电路结构为变频一拖二形式。控制原理简述如下:

系统由变频器、PLC 和两台水泵构成。利用了变频器控制电路的PID 等相关功能,和PLC 配合实施变频一拖二自动恒压力供水。具有自动/手动切换功能。变频故障时,可切换到手动控制水泵运行。

控制过程:水路管网压力低时,变频器启动1#泵,至全速运行一段时间后,由远传压力表来的压力信号仍未到达设定值时,PLC 控制1#泵由变频切换到工运行,然后变频启动2#泵运行,据管网压力情况随机调整2#泵的转速,来达到恒压供水的目的。当用水量变小,管网压力变高时,2#泵降为零速时,管网压力仍高,则PLC 控制停掉1#工频泵,由2#泵实施恒压供水。至管网压力又低时,将2#泵由变频切为工频运行,变频器启动1#泵,调整1#泵的转速,维修恒

压供水。如此循环不已。

需要说明一下的是:变频器必须设置好PID 运行的相关参数,和配合PLC 控制的相关工作状态触点输出。详细调整,参见东元M7200的说明书。在本例中,须大致调整以下几个参数。1、设置变频器启/停控制为外部端子运行;2、设置为自由停车方式,以避免变频/工频切换时造成对变频器输出端的冲击;3、设置PID 运行方式,压力设定值由AUX 端子进入。反馈信号由VIN 端子进入;4、对变频器控制端子——输出端子的设置。设定RA 、RC 为变频故障时,触点动作输出;设定R2A 、R2C 为变频零速时,触点动作输出;设定DO1、DOG 为变频器全速(频率到达)时,触点动作输出。

变频器零速信号

变频器频率到达信手动/

自动

自动启动自动停止

1#

泵变频运行2#

泵变频运行

故障信号输入

R200

变频器故障信号

1#

泵工频故障2#

泵工频故障

变频器运转指令

1#

泵变频自动运行控制自动/

手动控制

1#

泵工频手动运行控制2#

泵变频自动运行控制

2#

泵工频手动运行控制1#

泵变频自动运行2#

泵变频自动运行1#

泵变频自动运行2#

泵变频自动运行

1#

泵工频运行指示2#

泵工频运行指示故障指示

上图为PLC 控制接线图。水泵和变频器的故障信号未经PLC 处理,而是汇总给继电器KA2。其手动/自动的切换控制继电器KA1来切换。变频/工频的运

行由接触器触点来互锁,以提高运行安全性。可以看出,R2A和DO1是PLC的两个关键输入信号。在PLC的控制动作输出中,对变频到工频的切换是通过DO1(变频器零速信号)来进行的;对工频到变频的切换是通过R2A(变频器频率到达信号)来进行的。

二、PLC的步进程序图:

因为一拖二形式,控制上相对比较简单。实际上经S20到S23四个步骤,就完成了一个循环。变频切换工频和工频切换变频的时间是可调的,由FX1S型的PLC外附两只电位器D8030、D8031来调节的。两只电位器的值是直接放入上述两只寄存器的。这样方便了对切换时间的调整。另外,对变频器的启/停控制,是将输出端连接的交流接触器是先接通,然后再给出变频器运转命令;须变频切换工频,变频器需停机时,是先给出变频器停止命令,变频器停掉后,再断开接触器的。其中有的时间间隙,较好地避免了对变频器的冲击。

程序是用步进指令配合着置位、复位指令来做的。步进控制实际上只有两个指令的。STL,步控制开始。所有的步进控制都结束后,用一个返回指令RET,返回到开始步S0,再往下循环。从一个STL开始,到下一个STL之间,是一个“步”;SET是置位指令,将线圈置1状态——“得电吸合”,RST为复位指令,将线圈复位为0状态——“失电释放”;ZRST是批次复位指令,如将Y0—Y5等五个输出线圈一下子全部复位;M8002是一个特殊继电器,其触点上电时瞬间得电闭合(相当于一个上升沿脉冲),以后即为常开了。用在这里是对程序进行上电时的初始化处理。程序执行到S23步时,又回到S20步,如此循环。

因程序本身较简单,编写得又很流畅,配合着接线图与注释,具体流程一看便懂,在此不须多言了。

又及:随着技术的进步,变频器的功能日益强大,很多变频器本身已具备一

拖三,甚至于一拖六的功能,这类程序很快要成为“文物”了;从配置上来说,用一块自动化仪表承担PID功能,变频器只是“被动地干活”,也是一个好的方案;变频器只固定地拖动一个水泵,不作变频/工频的投、切,需补水时,可直接从工频投第二台泵,因变频器的调压(调速)及时,运行中,管网压力会更稳定一些。其实恒压供水,是有多种方案的,并不局限于本文中的结构。

因程序图是采取“屏幕截图”手段合成的,不够清晰,可放大一些再看。

旷野之雪

2008年11月7日

变频器可以实现一拖二甚至一拖多

1、设备选型 A. 变频器选型 在选型的时候,首先要考虑运行工况——其中一台或多台电机是否要在变频器运行过程中随时启停。 如果在变频器的运行过程中,电机不需要随时启动,只是停止或者停止都不用,那么在变频器容量选型的时候只需要注意变频器的额定功率大于所有电机的总功率,然后再放大一级选型即可。在这种情况下,进行电气设计的时候,就必须保证一个原则:变频器处于停止状态才能切换接触器,投入或者变频电机的运行状态;在变频器运行过程中,严禁单独启停某台设备或者多台设备。 如果在变频器的运行过程中,电机需要随时启动停止,那么在变频器容量选型的时候需要特别注意!首先统计可能要随时启停电机的总功率,然后把这个功率乘以5~7(在变频器运行过程中,随时启动的电机相当于直接启动,电机启动电流差不多为额定电流的5~7倍),最后把这个结果与不需要随时启停的电机总功率相加,得到的和就是所需变频器的理论功率。如果需要启停的设备很多,那么这个功率就可以作为变频器的选型功率,不需要再放大一级了——因为平常很难可能多个电机在同时启动。如果需要启停的设备很少,那么这个功率需要再放大一级,才能作为变频器的选型功率。 B. 交流接触器选型 对于需要随时启停的电机,需要配置交流接触器。对于交流接触器的选型,遵循一般选型原则即可——电机的额定电流再放大一级选型即可。 C. 热继电器或电动机保护器选型 对于变频器一拖多的情况,为保护每个电机以及变频器的设备安全,原则上必须在电机主回路安装热过载继电器或电动机保护器。对于热继电器的选型,遵循一般选型原则即可——电机的额定电流在热继电器的整定范围以内。 2. 其它注意事项 在一台变频器驱动N台电机的情况下,如果线路过长,可能存在比较大的分布电容,造成较大的高频电流而导致变频器过流、漏电流增加、电流显示精度变低等。如果线路过长,需要采用输出滤波器。以下以富士变频器为例来进行说明。 3.7kW以下电机连线不得超过50米,3.7kW以上电机连线不得超过100米。驱动多台电机时,应按至个电动机配线总长来计算。 变频器和电机之间有热继电器时,尤其是400V系列的话,即使连线小于50也可能发生热继电器的无动作。此时请使用输出滤波器,或者降低变频器的载波频率。 驱动多台电机时,如果配置了输出滤波器,电机连线总长应当不得高于400米。 3. 应用举例

西门子S7-200PLC+变频一拖三恒压供水全套工艺图

西门子S7-200型PLC 一拖三变频恒压供水电气图 设计:彭作珩 版权所有人:彭作珩

系统控制工艺要求 1.供水压力恒定,波动要小,尤其是在换泵时. 2.三台泵根据压力的设定采用先开先停的原则. 3.能实行自动按时轮换切换泵,防止某一台泵长时间运行而烧坏及防止某一台泵长时间不 用而锈死. 4.要保护和报警功能 5..为了检修方便,设手动功能. 6.要水池防抽空功能. 7.为防止系统给变频器反送电,造成变频器烧毁,KM1与KM2,KM3与KM4,KM5与KM6 必须进行机械互锁. 选型 1.PLC: 采用西门子S7-200型,CPU224, 2.变频器:ABB/ACS400型7.5KW, 3.PID:选具有压力显示的PID调节器. 工作原理: 1.利用变频器的两个可编程继电器输出端口,RO1和RO2进行功能设定,当变频器达到最 高频率时,RO1的常开触点RO1B-RO1C闭合, 当变频器达到最低频率时,RO2的常开触点RO2B-RO2C闭合,可以作为CPU224的输入信号,判断是否进行加泵和切泵 2.为了节省成本,不采用模拟模块EM235,而采用PID调节器,由于采用了PID调节器,而不 用变频器内部的PID,设置变频器时将FACTORY设置成0就可以了 3..变频器的运行要根据PLC输出Q1.0 (DCOMI-DI2) 是否闭合来确定,变频器的停止要根 据PLC输出Q0.7 (DCOMI-DI1) 是否闭合来确定,设置变频器时将变频器的内部继电器RO1,RO2设置成频率到达就可以了 PLC 1.201接变频器的DCOM1.202,203接变频器的DI1,DI 2.变频器的RO1的常开触点接到 PLC的I0.0,RO2 变频器的RO2的常开触点接到PLC的I0.1 2.KA为自动/手动中间继电器, 中间继电器KA的常开触点接I0. 3. 3.主程序含调节程序和电机切换程序,加机程序及减机程序, 4.子程序实际是清零程序,在PLC上电时,先将VD200,VD201,VD260赋值为零,作为中继 的M复位. 5.在主程序中T56,T57为变频器的频率上下限到达滤波时间继电器,用于稳定系 统,VB200为变频泵的泵号,VB201为工频泵运行的总台数,VD260为倒泵时间存储器. 版权所有人:彭作珩

变频器一拖二设计

变频器一拖二 必须具备仿真调试功能。变频器应具备仿真调试功能选相,当外部电机不具备连接和安装条件时,可以将变频器设定到仿真调试功能,模拟出电机的转速、转向、电流、输出电压等,但同时保证变频器无动力电输出,实现安全预调试。变频器调速范围:0-107%连续可调。变频器加/减速时间:0.1-3600秒(根据负载情况可设定)。变频器输出频率:0-75Hz(根据电机情况可设定)。变频器的平均无故障时间MTBF要高于50000小时。变频器可做为软启动器使用。用户可调用数字表,可显示速度、电流、电压、功率等。变频器能够报告参数、故障记录、故障分析。变频器具有浪涌吸收保护电路。变频器至少应配备以下设备l 输入侧的滤波器l 输出电抗器l 直流电抗器l 安装在开关柜面板上的操作面板及其连线整套变频控制装置等所有部件及内部连线一体化设计,用户只须连接输入/输出电缆,控制电源和控制信号线即可。变频器应有过电压,过电流,欠电压,缺相,变频器过载,变频器过热,电机过载,输出接地,输出短路等保护功能,并能联跳输入侧开关。变频器应设有标准的双RS485接口,内部要求可以配置多种标准通讯协议以便与电气监控管理系统(ECMS)进行通讯联系。具体协议型式待定。为便于用户现场维护,变频器的现场操作界面应为中文显示,能同时显示变频器母线电压值、电机电流、变频器输出频率、电机运行方向、变频器的速度给定方式(如自动/手动方式)、变频器当前状态(是否故障及故障时间),可以实现七行液晶显示。变频器的控制单元采用32位或以上CPU。控制面板可以安装在变频器本体上,也可以安装在变频器柜门上,而且控制面板可以在变频器运行时实现带电插拔并且不会引起变频器停机故障;变频器的操作面板可同时存储2套所有变频器参数和通讯卡参数,并可下载到新的变频器中。要求变频器本体具有24V直流电源,开关量I/O端子具备多种组态功能。变频器的频率输出信号应为4~20mA.变频器的指令接受信号(来自DCS)也应为4~20mA。变频器的状态信号、故障信号等应能上传到DCS。变频器选用与主厂房相同厂家北京合康亿盛HID300A产品。4.8.3变频器就地控制柜变频器柜的柜架为垂直地面安装的自撑组装式结构,柜体具有足够的机械和电气强度,完全能够承受长途运输,安装外力和事故短路时电动力的影响而不损坏。变频器柜室内安装,采用厚度2mm 的316不锈钢拉丝板喷塑制作,柜架采用双叠边工艺加工的型材;结构合理匀称,

变频恒压供水一拖二PLC解析.doc

变频恒压供水一拖二P L C解析.d o c -CAL-FENGHAI.-(YICAI)-Company One1

变频恒压供水一拖二PLC 程序解析 ——PLC 步进指令应用实例之一 一、变频恒压供水系统主电路和控制线路图: PE L3L2L1源电压指示 作电流指示 泵变频运行 泵变频运行 泵工频运行 泵工频运行 制电源 体散热风机 此系统是2000年前后,由上海博源自动化有限公司制作的(很想念他们,多年未联系了)。主电路结构为变频一拖二形式。控制原理简述如下: 系统由变频器、PLC 和两台水泵构成。利用了变频器控制电路的PID 等相关功能,和PLC 配合实施变频一拖二自动恒压力供水。具有自动/手动切换功能。变频故障时,可切换到手动控制水泵运行。 控制过程:水路管网压力低时,变频器启动1#泵,至全速运行一段时间后,由远传压力表来的压力信号仍未到达设定值时,PLC 控制1#泵由变频切换到工运行,然后变频启动2#泵运行,据管网压力情况随机调整2#泵的转速,来达到恒压供水的目的。当用水量变小,管网压力变高时,2#泵降为零速时,管网压力仍高,则PLC 控制停掉1#工频泵,由2#泵实施恒压供水。至管网压力又低

时,将2#泵由变频切为工频运行,变频器启动1#泵,调整1#泵的转速,维修恒压供水。如此循环不已。 需要说明一下的是:变频器必须设置好PID 运行的相关参数,和配合PLC 控制的相关工作状态触点输出。详细调整,参见东元M7200的说明书。在本例中,须大致调整以下几个参数。1、设置变频器启/停控制为外部端子运行;2、设置为自由停车方式,以避免变频/工频切换时造成对变频器输出端的冲击;3、设置PID 运行方式,压力设定值由AUX 端子进入。反馈信号由VIN 端子进入;4、对变频器控制端子——输出端子的设置。设定RA 、RC 为变频故障时,触点动作输出;设定R2A 、R2C 为变频零速时,触点动作输出;设定DO1、DOG 为变频器全速(频率到达)时,触点动作输出。 变频器零速信号 变频器频率到达信手动/ 自动 自动启动自动停止 1# 泵变频运行2# 泵变频运行 故障信号输入 R200 变频器故障信号 1# 泵工频故障2# 泵工频故障 变频器运转指令 1# 泵变频自动运行控制自动/ 手动控制 1# 泵工频手动运行控制2# 泵变频自动运行控制 2# 泵工频手动运行控制1# 泵变频自动运行2# 泵变频自动运行1# 泵变频自动运行2# 泵变频自动运行 1# 泵工频运行指示2# 泵工频运行指示故障指示

凝结水泵变频器操作说明

凝结水泵变频器操作说明 一、凝结水泵变频器控制元件说明 1.QF21:模块柜A冷却风扇电源开关; 2.QF22:模块柜B冷却风扇电源开关; 3.QF23:模块柜C冷却风扇电源开关; 4.QF31:变压器柜A冷却风扇电源开关; 5.QF32:变压器柜B冷却风扇电源开关; 6.FAN11:控制柜A冷却风扇; 7.FAN12:控制柜B冷却风扇; 8.FAN21:模块柜A冷却风扇; 9.FAN22:模块柜B冷却风扇; 10.FAN23:模块柜C冷却风扇; 11.FAN31:变压器柜A冷却风扇; 12.FAN32:变压器柜B冷却风扇; 13.FU1:旁通柜供电保护熔断器; 14.FU2:变压器柜照明保护熔断器; 15.FU3:控制柜照明保护熔断器; 16.FU4:检修用电保护熔断器; 17.FU5:控制柜冷却风扇保护熔断器; 18.FU6:主控箱用电熔断器; 19.FU7:PLC电源保护熔断器; 20.FU8:PW1电源开关保护熔断器; 21.FU9:PW2电源开关保护熔断器; 22.主电源开关:电源从#1机汽机MCC1A段来。 23.备用电源开关:电源从#1机汽机MCC1B段来。 24.主控电源开关:AC220V控制电源。 二、凝结水泵变频器送电步骤 1、凝泵变频器低压回路送电 1)在主厂房#1机直流110V1 A 、1B段母线上分别合上凝结水泵变频器直流电源一、 二开关; 2)在汽机MCC1A 、MCC1B段母线上分别送上凝结水泵变频器控制柜电源; 3)装上凝泵变频器控制柜内的FU2~FU9熔断器; 4)合上凝泵变频器控制柜内主电源开关; 5)合上凝泵变频器控制柜内备用电源开关; 6)按下凝泵变频器控制柜内UPS电源开关2秒,UPS灯亮; 7)合上凝泵变频器控制柜内主控电源开关; 8)分别合上凝泵变频器控制柜后的风扇电源小开关(QF21,QF22,QF23,QF31,QF32)。 2、凝泵变频器高压回路送电 1)将凝泵变频器电源开关转热备用; 2)将凝泵变频开关转热备用。

恒压供水系统(多泵)

目录 1 变频器恒压供水系统简介 (1) 1.1 变频恒压供水系统理论分析 (1) 1.1.1变频恒压供水系统节能原理 (1) 1.1.2 变频恒压控制理论模型 (2) 1.2 恒压供水控制系统构成 (3) 1.3 变频器恒压供水产生的背景和意义 (3) 2 变频恒压供水系统设计 (4) 2.1 设计任务及要求 (5) 2.2 恒压供水系统主电路设计 (6) 2.3 系统工作过程 (7) 3 器件的选型及介绍 (9) 3.1 变频器简介 (9) 3.1.1 变频器的基本结构与分类 (9) 3.1.2 变频器的控制方式 (9) 3.2 变频器选型 (10) 3.2.1 变频器的控制方式 (10) 3.2.2 变频器容量的选择 (11) 3.2.3 变频器主电路外围设备选择 (13) 3.3 可编程控制器(PLC) (15) 3.3.1 PLC的定义及特点 (15) 3.3.2 PLC的工作原理 (16) 3.3.3 PLC及压力传感器的选择 (16) 4 PLC编程及变频器参数设置 (18) 4.1 PLC的I/O接线图 (18) 4.2 PLC程序 (18) 4.3 变频器参数的设置 (22) 4.3.1 参数复位 (22) 4.3.2 电机参数设置 (22) 总结 (23) 参考文献 (24)

1 变频器恒压供水系统简介 1.1变频恒压供水系统理论分析 1.1.1变频恒压供水系统节能原理 供水系统的基本特性和工作点扬程特性是以供水系统管路中的阀门开度不 变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线f(Q),如图1-1 所示。 图1-1供水系统的基本特征 由图可以看出,流量Q越大,扬程H越小。由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量Q(u)间的关系。而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下,扬程H与流量Q之间的关系H J (Qu )。管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图可知,在同一阀门开度下,扬程H越大,流量Q也越大。由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。因此,管阻特性所反映的是扬程与供水流量Qc之间的关系H f (Qc )。扬程特性曲线和管阻特性曲线的交点,称为供水系统的工作点,如图中A点。在这一点,用户的用水流量Qu和供水系统的供水流量Qc处于平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。图1-1为供水系统的基本特征。 变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。通

变频恒压供水一拖二PLC解析.doc

变频恒压供水一拖二PLC 程序解析 ——PLC 步进指令应用实例之一 一、变频恒压供水系统主电路和控制线路图: PE L3L2L1源电压指示 作电流指示 泵变频运行 泵变频运行 泵工频运行 泵工频运行 制电源 体散热风机 此系统是2000年前后,由上海博源自动化有限公司制作的(很想念他们,多年未联系了)。主电路结构为变频一拖二形式。控制原理简述如下: 系统由变频器、PLC 和两台水泵构成。利用了变频器控制电路的PID 等相关功能,和PLC 配合实施变频一拖二自动恒压力供水。具有自动/手动切换功能。变频故障时,可切换到手动控制水泵运行。 控制过程:水路管网压力低时,变频器启动1#泵,至全速运行一段时间后,由远传压力表来的压力信号仍未到达设定值时,PLC 控制1#泵由变频切换到工运行,然后变频启动2#泵运行,据管网压力情况随机调整2#泵的转速,来达到恒压供水的目的。当用水量变小,管网压力变高时,2#泵降为零速时,管网压力仍高,则PLC 控制停掉1#工频泵,由2#泵实施恒压供水。至管网压力又低时,将2#泵由变频切为工频运行,变频器启动1#泵,调整1#泵的转速,维修恒

压供水。如此循环不已。 需要说明一下的是:变频器必须设置好PID 运行的相关参数,和配合PLC 控制的相关工作状态触点输出。详细调整,参见东元M7200的说明书。在本例中,须大致调整以下几个参数。1、设置变频器启/停控制为外部端子运行;2、设置为自由停车方式,以避免变频/工频切换时造成对变频器输出端的冲击;3、设置PID 运行方式,压力设定值由AUX 端子进入。反馈信号由VIN 端子进入;4、对变频器控制端子——输出端子的设置。设定RA 、RC 为变频故障时,触点动作输出;设定R2A 、R2C 为变频零速时,触点动作输出;设定DO1、DOG 为变频器全速(频率到达)时,触点动作输出。 变频器零速信号 变频器频率到达信手动/ 自动 自动启动自动停止 1# 泵变频运行2# 泵变频运行 故障信号输入 R200 变频器故障信号 1# 泵工频故障2# 泵工频故障 变频器运转指令 1# 泵变频自动运行控制自动/ 手动控制 1# 泵工频手动运行控制2# 泵变频自动运行控制 2# 泵工频手动运行控制1# 泵变频自动运行2# 泵变频自动运行1# 泵变频自动运行2# 泵变频自动运行 1# 泵工频运行指示2# 泵工频运行指示故障指示 上图为PLC 控制接线图。水泵和变频器的故障信号未经PLC 处理,而是汇总给继电器KA2。其手动/自动的切换控制继电器KA1来切换。变频/工频的运

一个最简单的变频恒压供水实例

恒压供水 接线: 按图五所示的电路,连接空气开关、漏电开关、电源,检查接线无误后,合上空气开关,变频器上电,数码管显示0.0。 关掉电源,电源指示灯熄灭后,再连接电机、起停开关、远程压力表、限流电阻等,变频器和电动机接地端子可靠接地,并仔细检查。 压力表选用YTZ-150电位器式远程压力表,安装在水泵的出水管上,该压力表适用于一般压力表适用的工作环境场所,既可直观测出压力值,又可以输出相应的电信号,输出的电信号传至远端的控制器。压力表有红、黄、蓝三根引出线。 压力表电气技术参数: 电阻满量程:400?(蓝、红) 零压力起始电阻值:≤20?(黄、红) 满量程压力上限电阻值:≤360?(黄、红) 接线端外加电压:≤6V(蓝、红) 图五 恒压供水接线图 开环调试: 检查接线无误后,合上空气开关和漏电开关,变频器上电,数码管显示0.0,按JOG键,检查水泵的转向,若反向,改变电机相序。 按运行键RUN,运行指示灯亮(绿色),顺时针方向旋转键盘旋钮,输出频率上升,观察压力表的压力指示,同时用万用表直流电压档测量变频器端子VF和GND之间电压值,随着变频器输出频率升高,压力增加,VF和GND之间的反馈电压上升,记录下将要设定的恒定压力(比如5公斤)对应的反馈电压值(比如3.1V)。按停车键STOP,变频器减速停车。

参数设定: F1.01出厂值为0.0,设定为1 F1.23出厂值为0,设定为30.0 F2.05出厂值为0,设定为1 F2.19出厂值为0,设定为1 F4.00出厂值为0,设定为1 F4.06出厂值为0,设定为3.10 按电机名牌设定电机参数:F1.21、F5.00~F5.04 闭环变频恒压运行: 合上起停开关,变频器运行指示灯亮,输出频率从0.0Hz到达30.0Hz后,根据用水情况自动调节,保证出水口的压力恒定为5KG。增大F4.06的参数设定值,出水口的压力增加,减小F4.06的参数设定值,出水口的压力降低。

变频恒压供水工作原理

变频恒压供水工作原理 变频恒压供水设备工作原理 恒压自动供水设备是采用水泵与用数字式变频调速器西门子V20变频器开发的具有内置PID控制的变频设备。本型号变频器是由控制性能强大,功能齐全、操作简单易上手,无需附加其它的控制单元,大大提高啦设备的工作效率,降低啦运行成本。变频恒压供水设备利用与门为风机、泵类、空气压缩机等流量和压力控制特点而研制的与用变频控制器。利用变频器的一拖三功能,而不采用昂贵的PLC就可以自动控制泵的启停,而丏内置PID功能不现场进传压力表连用,同而完成供水压力的闭环控制,使供水压力维持在设定的压力附近。工作原理: 变频恒压供水系统采用变频器设定压力,也可采用面板内部设定压力,,采用一个压力传感器,反馈为0~10V,检测管网压力,压力传感器将信号送入变频器PID 回路,PID回路处理之后,增加或减少变频器的输出频率。如在一定延时时间内,压力还是不足或过大,则通过变频器作工频/变频切换起动另一台水泵,使实际管网压力不设定压力相一致。另外,随着用水量的减少,变频器自动减少输出频率,达到了节能的目的。 变频恒压供水系统控制图,以一台变频器控制一台水泵为例,: 例:使用进传压力表,量程0-10kg,反馈0-10v,要求5kg压力供水,上限6kg,下限4kg,面板起动停止,电位器给定目标值。 现场管网压力反馈至变频器,频率由0HZ开始逐渐上升,内置PID功能可以通过调节参数来控制频率变化的速率,当达到指定5Kg压力时,频率恒定输出,当压力超过5kg时,频率会下降,直至5kg保持,当频率小于5HZ时,延时 10分钟,变频器会进入休眠状态,当压力再次发生变化时再唤醒变频器各项功能,这样可以有效的节约能源的同时满足管网供水要求。

一拖二全自动恒压供水变频柜说明书

变频恒压供水控制柜 使用说明

1.概述 本变频恒压供水自动控制柜主件由高性能风机水泵专用变频器和西门子可编程控制器组成,具有运行稳定可靠、操作灵活方便(双泵可独立或混合操作运行)、调试简单、中文显示运行信息和故障信息、全自动运行无人值守、功能强大(可根据用户需求添加控制程序)等特点。 控制柜以系统管网的瞬时变化的压力为稳定参数(比较定位)通过微机控制变频器的输出频率。自动跟踪调节水泵的转速;实现对系统水压的PID 闭环调节,从而保证管网的末端的压力恒定,使整个供水系统持续高效运行。当用水量增大时,变频器输出频率变大,水泵转速加快,供水量增大; 用水量减小时,变频器输出频率变小,水泵转速减慢、供水量减小,保证用户对水的压力和流量的需要。 优点 1、选用高性能风机水泵专用变频器; 2、数字PID调节,键盘操作、数字显示、全自动运行无人值守; 3、选用西门子可编程控制器; 4、性能优良、控制方式灵活、抗干扰能力强、工作稳定可靠; 5、运行状态、故障信息中文提示; 6、 自动状态下,水泵电机实现自动启动。对电网和管网无冲击,大大延 长水泵、电机、管道系统、电气控制系统的使用寿命; 7、每台泵均设手动、停、自动三挡转换功能,控制灵活方便; 8、控制程序化、可根据用户的要求实现多种控制方式。 9、 2台泵定时自动切换交替运行,均衡各台泵的平均工作时间延长水泵 的使用寿命,从而避免备用泵的长期不运行而锈蚀; 10、可选择附加功能丰富。如:时控、温控、温差控等。 2.主要功能 2.1 双泵运行功能 将2台供水泵运行选择转换开关“手动停自动”全部转至“自动” 位置,当管网压力低于设定值时,A泵开始变频运行,B泵进入备用状态,

变频器一拖二方式下凝结水泵定期试启过程的研究

发电技术O〕POWER GENERATION TECHNOLOGY 变频器一拖二方式下凝结水泵定期试启过程的研究 赵振锐I,朱忠芳2 (1.华能瑞金电厂,江西赣州341108;2,江西应用技术职业学院,江西赣州341000) 摘要:变频器一拖二方式下凝结水泵的定期试启与普通互为备用的凝结水泵切换过程有所不同,显得更为复杂,如操作不当,将引起凝结水中断,甚至机组跳闸的后果,对电力生产安全影响较大。通过对华能瑞金电厂变频器一拖二方式下凝结水泵的试启过程进行了深入地分析,指出了其中的危险点及有关操作要领,对变频器一拖二方式下凝结水泵的安全切换具有现实的指导意义。 关键词:凝结水泵;一拖二;变频器;试启;切换 中图分类号:TM621文献标志码:B文章编号:1006-348X(2019)02-0056-03 0引言 随着火力发电厂节能降耗技术的广泛应用,目前火力发电厂凝结水泵普遍采用变频器一拖二的方式.即一台变频器供两台凝结水泵电机使用,正常运行时一台变频运行,一台工频备用。在这种运行方式下,为了保证备用泵的可靠备用,需定期试启备用凝结水泵:与以往凝结水泵的切换不同,此运行方式下的凝泵试启操作更为复杂,如操作不当,将造成机组非计划停运的后果:2015年华能井冈山电厂在执行凝结水泵试启定期工作的过程中.发生了凝结水泵全停引起机组跳闸的事故,原因为试启过程中原变频运行凝结水泵变频器过载跳闸以及备用凝泵工频启动后其岀口电动门开启失败:因此,对变频器一拖二方式下凝结水泵的定期试启过程进行深入地分析就显得很有必要二 1系统概述 华能瑞金发电厂两台汽轮机采用哈尔滨有限责任公司制造的CLN350-24.2/566/566型超临界、一次中间再热、单轴、双缸双排汽、反动凝汽式。凝结水系统将凝汽器中的凝结水加热并输送至除氧器,同时向轴封系统、旁路减温器、疏水扩容器、汽泵密封水等提供减温水和杂用水系统设两台100%容量的变频立式凝结水泵,四台低压加热器(5号、6号、7号、8号),一台轴封冷却器,一台除氧器:凝结水采用中压精处理装置。5、6号低压加热器、凝结水中压精处理装置、轴封冷却器均设有各自的凝结水旁路:7、8号低压加热器设有大旁路凝结水泵最小流量阀控制逻辑:当凝结水流量由正常范围降到215t/h,自动开启;当凝结水流量由低流量增加到400t/h,自动关闭; 凝结水泵的运行技术参数如表1 表1NLT350-400x7立式凝结水泵技术规范 供电分区 项目单位 经济运行工况(THA)铭牌工况流量m'/h761.53922 扬程m342316 效率%80.581.3必须汽蚀余量m 3.0 3.3转速r/min14801480 出水压力MPa 3.34 3.09 轴功率kW8811120 旋转方向从联轴器方向看为逆时针 2变频器一拖二方式下凝结水泵试启过程的危险点分析 2.1工频备用凝结水泵启动后原变频运行凝结水泵憋泵或出力低于最小流量 两台性能相近的水泵并列运行时各泵的出力小于各泵单独运行下的出力且出力相同卩当变频运 收稿日期:2018-10-15 作者简介:赵振锐(1984-),男,工程师,主要从事电力生产集控运行工作 56

变频恒压供水原理说明

变频恒压供水原理说明 变频恒压供水设备利用专门为风机、泵类、空气压缩机等流量和压力控制特点而研制的专用变频调速器。利用变频器的一拖三功能,而不采用昂贵的PLC就可以自动控制泵组的运行与退出台数,而且内置PID功能与我司开发的专门处理恒压供水的控制板,可以方便地与远传压力表连用,同而完成供水压力的闭环控制,在管网流量变化时达到稳定供水压力和节约电能的目的。为客户节省成本,具有较高的经济性和实用性。 一、变频恒压供水特点: 1、恒压供水能自动24小时维持恒定压力,并根据压力信号自动启动备用泵,无级调整压力,供水质量好,与传统供水比较,不会造成管网破裂及水龙头共振现象。 2、动平滑,减少电机水泵的冲击,延长了电机及水泵的使用寿命,避免了传统供水中的水锤现象。 3、采用变频恒压供水保护功能齐全,运行可靠,具有欠压、过压、过流、过热等保护功能。 4、系统配置可实现全自动定时供水,彻底实现无人值守自动供水.控制系统具有故障报警和显示功能,并可进行工变频转换,应急供水。 5、系统根据用户用水量的变化来调节水泵转速,使水泵始终工作在高效区,当系统零流量时,机组进入休眠状态,水泵停止,流量增加后才进行工作,节电效果明显,比恒速水泵节电23%-55%。 6、变频恒压供水设备不设楼顶水池,既减少建筑物的造价,又克服了水源二次污染,气压波动大,水泵启动频繁和建造水塔一次性投资大,施工周期长,费用高等缺点。 7、整套设备只需一组控制柜和水泵机组,安装非常方便,占地面积少。 8、本设备采用全自动控制,操作人员只需转换电控柜开关,就可以实现用户所需工况,操作简单。 二、工作原理: 变频恒压供水系统采用一电位器设定压力(也可采用面板内部设定压力),采用一个压力传感器(反馈为4~20mA)检测管网中压力,压力传感器将信号送入变频器PID回路,PID回路处理之后,送出一个水量增加或减少信号,控制马达转速。如在一定延时时间内,压力还是不足或过大,则通过变频器作工频/变频切换起动另一台水泵,使实际管网压力与设定压力相一致。另外,随着用水量的减少,变频器自动减少输出频率,达到了节能的目的。 三、变频恒压供水系统控制图(以一台变频器控制一台马达为例): 例:使用远传压力表,量程0-10kg,反馈4-20mA,要求5kg压力供水,上限6kg,下限4kg,面板起动停止,电位器给定目标值。 四、适用范围:

ACS510恒压供水一拖三系统图及参数表

ACS510/550恒压供水一拖三接线及调试一、变频器接线图 系统图参见ACS510手册P126、P127 二、参数设置及说明 此图的给定信号来自变频器内部 9902=> 15(SPFC控制宏)

9905=>电机额定电压 9906=>电机额定电流(选取三电机中最大值) 9907=>电机额定频率 9908=>电机额定转速 9907=>电机额定功率(选取三电机中最大值) 1002=>6(DI6) 1003=>1(FORW ARD) 1102=>7(EXT2) 1304=>如压力表是4~20mA,应设为4 1401、1402、1403=>31(PFC) 1601=>2(DI2) 4010=>19 4011=>定义内部给值 8117=>2(辅机数量) 8718=>自动切换间隔(>0才有效) 8120=>3 8123=>2(循环软启) 8127=>3(电机数量) 8109(起动频率)、8112(停止频率)、8115(辅机起动延时时间)8115(辅机停止延时时间)=>说明:f最小 <8112<81097(内部) 4023=>说明:f最小<4023 4024、4026=>睡眠延时、唤醒延时 4025=>唤醒偏差 三、循环工作时序: 1、ROI(继电器1)吸合,这样接触器K1也吸合,M1变频起动。 2、如果压力不够,准备将M2投入。于是: ●变频器暂时停机,RO1断开,K1断开; ●RO2吸合,因此K2吸合,M2投入变频; ●RO1吸合,因此K1.1吸合保持,M1投入工频。 3、如果压力还不够,准备将M3投入,于是: ●变频器暂时停机,RO2断开,因此K2断开,K1.1保持,M1继续工频运行 ●RO3吸合,因此K3吸合,M3变频 ●RO2吸合,因此K2.1吸合并保持,M2投入工频 4、如果此时M1、M2工频运行,M3变频,实际压力高于给定压力 ●RO1断开,这时K1.1掉电,M1停止工频运行 5、如果实际压力仍高于给定压力 ●RO2断开,这时K2.1掉电,M2停止工频运行,只有M3变频运行 6、如果此时压力又不够,这时: ●RO3断开,K3断开停止变频器运行 ●RO1闭合,K1吸合,M1变频运行 ●RO闭合,K3.1吸合并保持,M3工频运行 7、注意:在电机起动之前,可以随意将S1、S2和S3开关拨动零位和手动位,这 样变频器就找不到该位的电机。

一拖多恒压供水参数设置

Vm06 + SC-WS使用案例 一拖四变频泵循环方式 1、PID有效选择 F3201=1 PID1控制 2、工作模式选择(设置F8007,必须先设定F3201使PID有效) F8007=9 变频泵循环方式 F8008=1 M1有效 F8009=1 M2有效 3、PID给定 F8022=0.5 客户目标压力 F8023=0 模拟反馈0V对应的偏置压力 F8024=1(兆帕)模拟反馈5V或10V对应的增益压力 如果客户满量程压力为 1.6 兆帕时,修改F8024=1.6 4、PID反馈 F3002=1 压力表接VIF1反馈电压为 0~5V时 如果压力表接VIF1反馈压力为0~10V时,修改F3002=2 5、PI调节 F3003=0.5 P增益 F3004=1.5 I增益(积分时间值越小变化越迅速。如果系统变化 过快,请调大此值) 6、休眠及唤醒功能 F1104=1 设定运转开始频率不为0,在压力高时,在下限频率持 续F8017时间后,变频器在0.00HZ待机待机变为唤醒状态 F8018(出厂默认)辅助泵切换比率(借助辅助泵参数) F8019=1分钟辅助泵回复判断时间(借助辅助泵参数) 7、定时切泵功能 F8032=48小时 在系统供水和用水达到平衡的场合,系统可能很长时间不进行加、减泵动作,客户为了防止系统一直运行在一台变频泵时,需要定时切换变频泵功能,让每个泵处于轮换运转状态。 在系统经常进行加、减泵动作时,定时时间会被清零。此功能作用不显著。 8、其他(客户根据需要自行调整) F1101=2 运行方式选择:外部端子运行 F1007=50 上限频率 F1008=15 下限频率 F8016=0.2 上限频率持续时间(时间单位:分) F8017=0.2 下限频率持续时间(时间单位:分)

变频器可以实现一拖二甚至一拖多

变频器可以实现一拖二甚至一拖多,但需要遵循一些原则,本文作下简要分析: 1、设备选型 A. 变频器选型 在选型的时候,首先要考虑运行工况——其中一台或多台电机是否要在变频器运行过程中随时启停。 如果在变频器的运行过程中,电机不需要随时启动,只是停止或者停止都不用,那么在变频器容量选型的时候只需要注意变频器的额定功率大于所有电机的总功率,然后再放大一级选型即可。在这种情况下,进行电气设计的时候,就必须保证一个原则:变频器处于停止状态才能切换接触器,投入或者变频电机的运行状态;在变频器运行过程中,严禁单独启停某台设备或者多台设备。 如果在变频器的运行过程中,电机需要随时启动停止,那么在变频器容量选型的时候需要特别注意!首先统计可能要随时启停电机的总功率,然后把这个功率乘以5~7(在变频器运行过程中,随时启动的电机相当于直接启动,电机启动电流差不多为额定电流的5~7倍),最后把这个结果与不需要随时启停的电机总功率相加,得到的和就是所需变频器的理论功率。如果需要启停的设备很多,那么这个功率就可以作为变频器的选型功率,不需要再放大一级了——因为平常很难可能多个电机在同时启动。如果需要启停的设备很少,那么这个功率需要再放大一级,才能作为变频器的选型功率。 B. 交流接触器选型 对于需要随时启停的电机,需要配置交流接触器。对于交流接触器的选型,遵循一般选型原则即可——电机的额定电流再放大一级选型即可。 C. 热继电器或电动机保护器选型 对于变频器一拖多的情况,为保护每个电机以及变频器的设备安全,原则上必须在电机主回路安装热过载继电器或电动机保护器。对于热继电器的选型,遵循一般选型原则即可——电机的额定电流在热继电器的整定范围以 内。

变频器运行模式说明

采煤机变频器模式更改 王 剑 峰

目录 第一章变频器工作原理简介 (4) 第一节变频器主从控制原理 (5) 第二节变频器控制方式分类 (6) 第三节更换变频器用一拖一模式运行的方法 (7) 第二章变频器运行模式修改 (8) 第一节变频器修改注意事项 (9) 第二节变频器参数更改 (9) 第三节动力线更改方式 (11) 第三章变频器控制盘操作说明 (12) 附件各机型变频器出厂设置参数表 (20)

采煤机变频器模式更改使用说明书 第一章变频器工作原理 简介

第一节变频器主从控制原理 通常左边为主变频器控制左牵引电机,右边为从变频器控制右牵引电机,如图1-1所示,可以通过变频器控制盘查看60.01参数来判断主从变频器。 采煤机主控箱将方向信号,加减速信号通过CANOPEN和IO两种方式给定主变频器,主变频器为速度控制模式,此时从变频器跟随主变频器输出的转矩运行,以确保两个变频器出力一样大,实现主从同步。 图1-1 变频器控制牵引电机示意图

第二节变频器控制方式分类 1、本地控制 使用ABB CDP312R控制盘按下本地控制按键“LOC”时,变频器显视屏左上方ID号右端显视“L”,则此时进入本地控制模式。 当更改变频器参数或将控制盘作为控制源控制变频器行走时,都要将变频器切到本地控制模式。用控制盘本地控制变频器行走的步骤为: (1).按下“LOC”键切换为本地控制; (2).按下REF键给定一个初始转速; (3).给定一个方向; (4).打开采煤机牵引抱闸(非常重要); (5).按启动按键,启动牵引变频器; (6).按停止按键,停牵引变频器。 2、远程控制 CAN通信控制:采煤机主控系统通过CAN线发送控制命令控制变频器。 IO端子控制:采煤机主控系统通过继电器给+24v信号来控制变频器。 实际上采煤机主控系统同时发送CAN信号和IO信号给变频器,接收哪种信号则要看变频器的参数设置情况。通过修改主变频器的10.01、11.02、11.03参数来切换总线和端子控制(详见变频器参数设置)。

PLC和变频器的一拖四恒压供水控制系统

PLC+变频器的一拖四恒压供水控制系统应用 摘要:本文介绍了变频器在某生活小区双恒压供水系统中的应用情况。 1.引言 本文是针对某生活小区实际情况,结合用户生活/消防双恒压供水控制的要求,我们进行改造的一些心得。现将其中的改造情况介绍如下。作为变频器在供水控制应用中的案例系列篇。 2.用户现场情况 如图1所示,市网自来水用高低水位控制器EQ来控制注水阀YV1,自动把水注满储水水池,只要水位低于高水位,则自动向水箱注水。水池的高低水位信号也直接送给PLC,作为水位报警。为了保持供水的连续性,水位上、下限传感器高低距离较少。生活用水和消防用水共用四台泵,平时电磁阀YV2处于失电状态,关闭消防管网,四台泵根据生活用水的多少,按一定的控制逻辑运行,维持生活用水低恒压。当有火灾发生时,电磁阀YV2得电,关闭生活用水管网,四台泵供消防用水使用,并维持消防用水的高恒压值。火灾结束后,四台泵改为生活供水使用。 图1 生活/消防双恒压供水系统示意图 现场设备参数如下:

型号 65-315(I)A 流量 50m3/h 扬程 90m 效率 56% 转速 2900r/min 电机功率 22KW 水泵台数 4台 3.系统控制要求 用户对四泵生活/消防双恒压供水系统的基本要求是: ⑴生活供水时,系统低恒压运行,消防供水时高恒压值运行。 ⑵四台泵根据恒压的需要,采取先开先停的原则接入和退出。 ⑶在用水量小的情况下,如果一台泵连续运行时间超过1天,则要切换下一台泵,系统具有倒泵功能,避免一台泵工作时间过长。 ⑷四台泵在启动时都要有软启动功能。 ⑸要有完善的报警功能。 ⑹对泵的操作要有手动控制功能;手动只在应急或检修时使用。 4设备选型 (1)JD-BP32-XF型供水变频器 JD-BP32-XF型是山东新电子公司推出的专用于供水变频器,使用空间电压矢量控制技术适用于各类自控场合。在恒压供水中可以采用这类变频器。JD-BP32-XF型变频器除具有变频器的一般特性外,还具有以下特性:水压高、水压低输出接口,变频器运行上限、下限频率(可

变频器恒压供水接线

、接线: 按图所示的电路,连接空气开关、漏电开关、电源,检查接线无误后,合上 空气开关,变频器上电,数码管显示 0.0 0 关掉电源,电源指示灯熄灭后,再连接电机、起停开关、远程压力表、限流 电阻等,变 频器和电动机接地端子可靠接地,并仔细检查。 压力表选用YTZ-150电位器式远程压力表,安装在水泵的出水管上,该压力 表适用于一般压力表适用的工作环境场所, 应的电信号,输出 的电信号传至远端的控制器。 二、开环调试: 检查接线无误后,合上空气开关和漏电开关,变频器上电,数码管显示0.0, 按JOG 键,检查水泵的转向,若反向,改变电机相序。 按运行键RUN 运行指示灯亮(绿色),顺时针方向旋转键盘旋钮,输出频 率上升,观察 压力表的压力指示,同时用万用表直流电压档测量变频器端子 和GND 之间电压值,随着变频器输出频率升高,压力增加, VF 和GND 之间的反 馈电压上升,记录下将要设定的恒定压力(比如 5Kg )对应的反馈电压值(比如 3.1V )。按停车键STOP 变频器减速停车。 第一篇 既可直观测出压力值,又可以输出相 压力 表有红、黄、蓝三根引出线。 压力表电气技术参数:电阻满量程:400Q < 20 Q (黄、红) ;满量程压力上限电阻值:W (蓝、红);零压力起始电阻值: 360Q (黄、红) ;接线端外加 电压:W 10V (蓝、 红) MCCB 三相 电源 运行/停止 开关 故障 复位,卜 按 钮 . R SINB005 打 倉咯5■地 接地 ~ 水泵 RUM RST ■XL1 01 712-150 远班力表 VF 进水口

三、闭环变频恒压运行: 合上起停开关,变频器运行指示灯亮,输出频率从0.0Hz 到达30.0Hz 后, 根据用水情况自动调节,保证出水口的压力恒定为5Kg。增大F4.06的参数设定值,出水口的压力增加,减小F4.06 的参数设定值,出水口的压力降低。 第二篇 、前言 目前,应用最广泛的变频恒压供水系统是水泵出口压力恒定系统,其工作原理是在水泵出水口安装压力传感器,将测定的压力值转换成电信号输入压力控制器,压力控制器根据设定压力值与测定压力之间的差值,通过PI 调节运算后,控制变频器,调节水泵的转速,使水泵出口压力保持恒定。 这种控制系统电控部分较简单,国内外采用广泛。缺点是仍有小量能量浪费且不能反映水流通过给水管网时,管网阻力持性的变化。所以当用水低峰时,虽然由于转速的改变水泵扬程能保持恒定不再升高,但管道最末端的出口水压将高于其所需的流出水头。 采用泵出口变压力控制系统,则可解决以上的不足,即泵出口的设定压力随用水量的变化而变化,使管道最末端的出口水压恒定在其所需的流出水头。 ABB公司的ACS510系列变频器是专为风机、水泵控制系统设计的,其中参 数“给定增量8103、8104和8105”可完成泵出口变压力控制功能。 二、ACS510中的变压力控制部分参数设置 在多台并联泵供水系统中,随着泵的运行数量的增加,流量会成倍的增大,管道阻力会迅速增高。如果随着流量的变化,增减恒压控制系统的设定压力,做到小流量小压力,大流量大压力,则可以最大限度的较少管道阻力对管道出口压 力的影响,并且提高了节能比例。ABB公司的ACS510系列变频器就提供了上述 功能。 在ACS510中,参数8103、8104、8105是给定增量参数,他们的作用是每多

基于PLC系列实现变频器一拖二控制电机改造

基于PLC系列实现变频器一拖二控制电机改造 [摘要]:本文针对我厂的机泵采用一备一主的运行方式,如果为了节能或进行自动控制在两台电机上都使用变频器必将造成设备闲置浪费的情况,基于上述综合考虑,本文提出了利用PLC搭建控制平台,实现一台变频器对互备的两台机泵进行拖动的目的。 [关键词]:PLC 变频器一拖二控制基于PLC实现变频器一拖二控制电机改造徐兴燕山石化炼油厂电工车间,PLC,低压变频器,石化 一、引言 风机、泵类等由电机拖动的设备,其耗电量占据了我厂总用电量的绝大多数,从目前我厂此类设备的运行情况来看,在节能方面有巨大的潜力可以挖掘。根据工艺流程特点和需要,我厂区各装置中泵类设计使用上,一般在同一工艺点中均采用两台同容量泵(一主泵、一备用泵)。为了节能和自控的目的,目前针对机泵一开一备的方式可以有两种解决方案:将主机加装变频器;或将主机和备机同时加装变频器。但是,上述两种方案都存在不同的弊端,前一种方案当备机运行时将不能实现节能和自控(备机运行时间基本等同与主机);后一种方案则造成设备的闲置浪费(两台变频器在同一时间内只有一台运行)。 二、解决方案 我们假设一下,如果能够用一台变频器带动两台电动机运行,并用控制设备对其操作进行控制,这样一来,即可发挥变频器的优势,又可以节省资金的投入。变频器的技术已经比较成熟,基本型的变频器都有一拖二甚至更高的功能,但是使用常规电器搭建控制部分则非常困难,同时因大量使用继电器、时间继电器又将造成控制部分的可靠度降低和故障率的升高,因此很少有这样的设计方案。可编程控制器(PLC)是近年来发展极为迅速,应用面极广,它具有功能齐全、使用方便、维护容易、通用性强、可靠性高、性能价格比高等优点,已在工业控制的各个领域得到了极为广泛的应用,成为

相关文档
最新文档