深入浅出的讲清楚有限元法

深入浅出的讲清楚有限元法
深入浅出的讲清楚有限元法

“有限元法基础及应用”补充讲义(一)

顾克秋 (2005年3月)

一、引子——弹簧单元与弹簧系统

目标:掌握离散结构直接刚度法分析的原理和形式。了解有限元位移法列式的形

式和基本概念。

1、典型弹簧单元分析

写成矩阵符号形式:

?

=k F

j

i

i

j

j

ku

ku u u k F f +-=-==)(?

??

?????????--=??????j i j i u u k k

k k

f f 写成矩阵形式:

kd

f =(1-1)

(1-2)

(1-3)

1-2

式(1-2)、(1-3)为弹簧单元的刚度方程,反映了单元特性:节点力与节点位移之间的关系。式中:

(注意:单元节点力是节点对单元的作用力)

f

d k ——单元节点力列阵

——单元节点位移列阵 ——弹簧单元的刚度矩阵 弹簧单元刚度方程讨论: 1)

有何特点?

对称、奇异、主对角元素恒正

2)

中元素代表什么含义?

刚度系数大小等于弹簧刚度;每列元素代表一端固定、另一端产生单位

位移时加在弹簧单元上的节点力。

3)上面单元刚度方程可以求解吗?为什么?

不可以。刚度方程仅仅表征一个典型单元的弹性特性,单元水平上无法确定单元节点位移。只有把系统中所有单元特性集成后,在系统水平上才可能求出所有未知位移和反力。单元水平上,若已知单元的节点位移,可由刚

度方程求出所有单元节点力分量。若节点力已知,单元节点位移不能确定,

单元可作刚体运动(小位移)

。这也是单元刚度矩阵奇异性的物理解释。 k

k 2、弹簧系统整体分析原理

以右图的一个弹簧系统为例,研究如何由单元特性集成系统特性并建立对系统进行求解的控制方程。

由前面得到的弹簧单元的刚度方程公式(1-2),分别写出2个弹簧单元的特性方程如下: 单元1 单元2

(注:右端节点力分量的下标1,2为单元节点的局部编号,上标是单元号)

下面按两个方法完成系统特性的装配和控制方程的建立。并在特定条件下求解。

1)由节点平衡方程导出:

系统处于平衡时,考虑各节点(1,2,3节点)的平衡条件:

节点受到的外载荷与节点受到与其连接的所有单元对其作用力(单元节点力

的反作用力)之和等于零。因此有下列(节点)平衡方程(组): 把单元特性(1-4),(1-5)代入(1-6)得到:

写成矩阵形式:

2

2

32

11

2211

1f

F f f F f F =+==(1-4)

(1-5)

(1-6)

3

2223322211122

1111)(u k u k F u k u k k u k F u k u k F +-=-++-=-=(1-7)

(1-8) 图 1-3

或矩阵符号形式:

式(1-8),(1-9)就是系统平衡方程,该方程建立了离散系统的外载荷与节点位移之间的关系,是求解节点位移的控制方程。

2)由单元刚度方程叠加导出

将单元1,2的刚度方程(1-4),(1-5)进行增广(扩大到系统规模):

上述两个矩阵方程叠加,得:

F

KD (1-9)

K

—— 弹簧系统的结构总刚度矩阵

F

—— 系统节点载荷列阵

D

—— 系统节点位移列阵 讨论:(1)K 有那些特点和性质?

(2)上述方程能求解吗?

(1-10)

(1-11)

上式中代入节点力平衡关系(1-6),就得到与(1-8)相同的节点平衡方程。 上述两种方法都必须考虑1)单元特性集成;2)离散结构的节点上外载荷(系统外力)与节点力(系统内力)的平衡。因此方程(1-8)的本质是节点的力平衡关系,左边是由节点位移表示的(总)节点力,右边是节点所受外载荷。

3)给定载荷和约束条件下的求解

设边界条件为:

则节点平衡方程(1-8)变化为:

该方程组展开后分为2个部分: 第2,3个方程变化为:

第1个方程变化为:

先后解方程(1-15)、(1-16)得到:

(1-12)

P

F F u ===3210(1-13)

(1-14)

(1-15)

(1-16)

(1-17)

从而解出了系统的未知位移和未知反力,并可以进一步求弹簧力。

3、例题

图1-4所示一个3个弹簧的系统。

求: (a ) 系统总刚度矩阵 (b ) 节点2,3的位移 (c ) 节点1、4的反力 (d ) 弹簧2中的力 解: (a ):

写出各单元刚度矩阵:

应用叠加法直接得到系统总刚度矩阵:

1-4

,500,/100,/200,/10041321======u u N P mm N k mm N k mm N

k (1-18)

或:

该总刚度矩阵特点:对称性、奇异性、稀疏、非零元素沿主对角线呈带状分布。 (b ):

参考前面的做法((1-8)式)和求出的总刚度矩阵,写出系统节点平衡方程:

考虑到位移边界条件:041==u u 则平衡方程组(1-19)第2,3方程化为:

求解上式得:

(1-19)

(c ):

由(1-19)的方程1,4得: (d ):

弹簧2内力为:

4、练习题

二、杆单元

目标:通过杆单元特性方程的建立,初步掌握有限元法单元分析的过程和原理。

了解杆系结构分析的原理。

())

(20023200)

(2322

22

N u u k k F

=-?=-=?=(拉力)

图 1-5

对图示弹簧系统,试用叠加法

求其总刚度矩阵。并根据节点平衡

方程的含义,尝试由各单元刚度矩阵的元素直接写出总刚度矩阵的非零元素。

1、等截面杆单元及其刚度矩阵

研究2节点等截面杆单元:

单元上的力学量和基本关系如下:

下面研究杆单元的单元特性。 1)直接法导出杆单元特性

采用材料力学基本知识对单元进行力学分析:

图 2-1

L — 杆长 A — 截面积 E — 弹性模量

)

()()

(x x x u u σσεε===——

杆单元位移

——杆单元应变 ——杆单元应力

应变

—位移关系: 应力—应变关系: εσE =(2-1)

(2-2)

单元

节点位移: 单元节点力: ?

?

?

???=j i u u d ??????=j i f f f i

j u u -=?杆单元伸长量:

(2-3)

由于轴向变形模式下,杆单元的行为与弹簧单元相同,因此可比照弹簧单元的刚度方程(1-2),考虑到(2-7),直接写出杆单元的刚度方程:

写成符号形式:

杆单元刚度矩阵为:

2)公式法导出杆单元特性 步骤如下:

(1)在单元上定义近似位移场

把一个单元上的位移分布假设为简单多项式函数。有限元法中用插值法通过节点位移分量作为待定参数来构造单元位移函数。 对图2-1的杆单元,方便起见引入局部坐标

杆应变:

杆应力:

杆内力:

杆的轴向刚度:

(2-4)

(2-5)

(2-6)

(2-7)

2-8kd

f

=(2-9)

(2-10)

由于该杆单元只有2个未知位移分量,因此单元上假设的简单位移函数采用一次多项式。故对单元的节点位移进行线性插值。 则容易定义出节点的插值函数如下:

因此单元上近似位移函数的插值形式为:

该位移函数也称为单元的位移模式,这里是线性位移模式。 式(2-11)中的插值函数又称为形状函数,简称形函数。 式(2-12)写成矩阵形式为:上式中N 称为单元的形函数矩阵。

式(2-13)是有限元法中最重要的关系式之一,通过该式把单元上的近似位移分布函数用节点位移来表示,为进行单元层次上的分析打下了基础。 (2)单元应变和单元应力

由杆一维变形的应变——位移方程(2-1)和单元的位移函数(2-13)求出单元的应变分布和节点位移的关系:

式中:

B

称为单元的位移——应变转换矩阵,简称应变矩阵。

由一维杆的应力——应变关系(2-2),得单元应力和单元节点位移的关系:

(3)用弹性体的虚位移原理导出杆单元刚度方程

(2-11)

(2-12) [

]

Nd

=?

??

???=j i j i

u u N N u (2-13)

(2-14)

(2-15)

Bd

E E ==εσ(2-16)

变形体的虚位移:

假想在弹性体上发生的,满足位移许可条件(内部连续,边界协调)的微小、任意位移场。

可以理解为某个位移场的微小扰动(变分)。 虚位移的特征:

1)假想的,与真实位移无关; 2)几何上是许可的:连续、协调; 3)微小、任意大小。 虚位移原理:

弹性体受力平衡时,若发生虚位移,则外力虚功等于弹性体内的虚应变能(应力在虚应变上做的虚功)。下面把虚位移原理应用在所研究的杆单元上。

定义杆单元的虚位移:节点虚位移→单元虚位移→单元虚应变 对杆单元应用虚功原理,那么上述节点力(外力)虚功等于虚应变能,因此有下列关系:

考虑到d δ的任意性,从上式可以得到:

?

?

?

???=j i u u δδδd 节点虚位移: 单元虚位移:

d

N δδ=u f

d T

δd B B d Bd B d T

???

?

??==???dV E dV E dV V

V V T

T

T

T

δδσδε单元虚应变:

那么,节点力虚功: 单元虚应变能:

d B B d f d T

???

? ??=?dV

E V

T T

δδ(2-17) (2-18)

上式就是杆单元的刚度方程,杆单元的刚度矩阵为:

这就是单元刚度矩阵的通式,其导出原理和计算方法可推广到其他类型的单元。具体计算如下:

显然,与前面直接法得到的单元刚度矩阵(2-8)式相同。

3)杆单元讨论

a. 只有拉伸、压缩变形的杆单元在局部坐标系下是一维问题,2节点单元只有2个节点位移分量——单元有2个自由度,单元刚度方程、刚度矩阵为2阶。

b. 单元刚度矩阵元素的物理意义: 设单元刚度方程为:

令:

带入(2-21)得到:

上式表明,单元刚度矩阵第一列元素就是当单元节点位移满足式(2-22)时的单元节点力分量。如果能设法求出此时的节点力,就得到第一列的刚度系数。

kd d B B f T

=???

?

??=?dV

E V ?=

V

dV

E B B k T

(2-19)

(2-20)

?

???????????=??????j i j i u u k k k k f f 2221

1211?

?????=??????01j i u u (2-21)

?

?????=??????2111k k f f j i (2-22)

(2-23)

因此,一般地,单元刚度矩阵的第i (i=1,2)列元素表示当维持单元的第i 个自由度位移为1,其它自由度位移为0时,施加在单元上的节点力分量。(也可以用此方法直接导出杆单元的刚度矩阵元素,试练习) c. 单元刚度矩阵对称、奇异、主元恒正。 4)例题

例1求图示杆中的应力。

考虑图2-2中的约束031==u u 和载荷情况后,方程(2-24)变化为:

则上式的第2个方程为:

图 2-2

解:结构划分为2个杆单元,单元之间在节点2铰接。根据杆单元刚度矩阵的公式分别写出两个单元的刚度矩阵为:

参照前面弹簧系统的分析方法,装配2杆系统的有限元方程(平衡方程)如下:

(2-24)

(2-25)

(2-26)

求解该方程后得到系统的位移解:

计算应力: 单元1

单元2

例2 已知: 求:杆两端的支反力。单元、节点的定义如图2-3。先检查杆右端(节点3)与墙壁是否接触。

(2-27)

提示:

1) 本例中单元应力的计算采用了材料力学中的方法,与采用有限元单元应力公式Bd E E ==εσ的结果相同,请验证。

2) 对锥形杆,单元截面积可以用平均值,从而转化为类似本题的问题求解。

3) 求应力之前需要先求出节点位移,因此本方法称为有限元位移法。 4) 如果杆上受连续分布的轴向载荷或节点之间受轴向集中载荷,分析时可以按照虚功相等的原则先把单元上的载荷等效移置到节点上。

图 2-3

计算右端的自由伸长:

所以,右端间隙将闭合。 系统平衡方程为:

引入下列载荷和位移边界条件:

则有限元平衡方程(2-28)成为:

分离出第二个方程: 即: 解得:

全部位移解为:

(2-28)

(2-29)

(2-30)

(2-31)

根据上式位移解,从系统平衡方程(2-28)的第1,3个方程分别求出支反力如下:

解毕。

2、2-D 和3-D 空间中的杆单元(平面和空间桁架单元)1)2-D 空间中

的杆单元2-D 空间中建立杆单元的基本思路是根据前面在杆的一维局部坐标系下建立的单元特性方程通过坐标变换,转换为2-D 总体坐标系下的方程,同时得到坐标变换后的单元刚度矩阵。而系统整体分析的原理和方法与一维情况相同。

(1)变换

图2-4为一个杆单元及其局部坐标系与2-D 总体坐标的关系。

(2-32)

节点的位移分量和节点力分量在2-D 局部坐标系x-y 下描述,杆节点i 具有2个自由度:

位移分量为'i u ,'i v ;

节点力分量为'xi f ,'

yi f

其中只有x 方向的位移分量和节点力分量用来描述单元特性。

节点上的位移和节点力向量在2-D 局部坐标系与2-D 总体坐标系下的变换如下:

上述变换的矩阵形式:

符号形式:

其中

T

~称为向量的坐标变换矩阵,是单元特性坐标变换的基本元素。显然T ~

是正

交矩阵,即:

因此,由(2-33)可得单元节点位移向量的坐标变换式如下:

(2-33)

i i

d T d ~

='(2-34)

??

??

??-=l m

m l T ~(2-35)

T ~~T T 1=-(2-36)

(2-36)

称为方向余弦。

或:

其中

比照(2-37)得到单元节点力的坐标变换式:

(2)2-D 空间刚度矩阵

下面可以导出单元刚度方程和单元刚度矩阵的坐标变换式。 已经知道杆的一维局部坐标系下的刚度方程为:

把该方程扩充到2-D 局部坐标系x-y 下的4阶形式:

符号形式:

引入单元列阵变换式(2-37),(2-39)得:

考虑到变换矩阵T 的正交性,得到:

或:

Td

d ='(2-37)

??

??

??=T 0

0T T ~~(2-38)

Tf

f ='(2-39)

(2-40)

(2-41)

f d k '

=''(2-42)

Tf

Td k ='(2-43)

f

T d k T ='T

(2-44)

其中:

式(2-45)就是2-D 总体坐标系下刚单元的刚度方程,k 就是二维空间杆单

元刚度矩阵,其计算式如下:

其中方向余弦由杆节点整体坐标求得。 (3)单元应力

由单元应力计算公式(2-16)和位移向量变换得: 即:

(4)思考与讨论

如何从二维空间总体坐标系下杆单元刚度方程(2-45),根据刚度矩阵元素的物理意义,直接导出总体坐标系下杆单元刚度矩阵计算式(2-47)? 2)例题

T

k T k '=T

(2-46)

(2-47)

平面桁架由2根相同的杆组成(E ,A ,L )。求: 1)节点2位移

(2-48)

有限元基础知识归纳

有限元知识点归纳 1.、有限元解的特点、原因? 答:有限元解一般偏小,即位移解下限性 原因:单元原是连续体的一部分,具有无限多个自由度。在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。 2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49 (1)在节点i处N i=1,其它节点N i=0; (2)在单元之间,必须使由其定义的未知量连续; (3)应包含完全一次多项式; (4)应满足∑Ni=1 以上条件是使单元满足收敛条件所必须得。可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。 4、等参元的概念、特点、用时注意什么?(王勖成P131) 答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。即: 为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即: 其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。称前者为母单元,后者为子单元。 还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。 5、单元离散?P42 答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。每个部分称为一个单元,连接点称为结点。对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。这种单元称为常应变三角形单元。常用的单元离散有三节点三角形单元、六节点三角形单元、四节点四边形单元、八节点四边形单元以及等参元。 6、数值积分,阶次选择的基本要求? 答:通常是选用高斯积分 积分阶次的选择—采用数值积分代替精确积分时,积分阶数的选取应适当,因为它直接影响计算精度,计算工作量。选择时主要从两方面考虑。一是要保证积分的精度,不损失收敛性;二是要避免引起结构总刚度矩阵的奇异性,导致计算的失败。

有限差分法、有限单元和有限体积法简介

有限差分法、有限单元法和有限体积法的简介 1.有限差分方法 有限差分方法(Finite Difference Method,FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2.有限元方法 有限元方法(Finite Element Method,FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 在数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的

有限元分析及其应用思考题附答案2012

有限元分析及其应用-2010 思考题: 1、有限元法的基本思想是什么?有限元法的基本步骤有那些?其中“离散”的含义是什 么?是如何将无限自由度问题转化为有限自由度问题的? 答:基本思想:几何离散和分片插值。 基本步骤:结构离散、单元分析和整体分析。 离散的含义:用假想的线或面将连续物体分割成由有限个单元组成的集合,且单元之间仅在节点处连接,单元之间的作用仅由节点传递。当单元趋近无限小,节点无限多,则这种离散结构将趋近于实际的连续结构。 2、有限元法与经典的差分法、里兹法有何区别? 区别:差分法:均匀离散求解域,差分代替微分,要求规则边界,几何形状复杂精度较低; 里兹法:根据描述问题的微分方程和相应的定解构造等价的泛函表达式,求得近似解; 有限元:基于变分法,采用分片近似进而逼近总体的求解微分方程的数值计算方法。 3、一根单位长度重量为q的悬挂直杆,上端固定,下端受垂直向下的外力P,试 1)建立其受拉伸的微分方程及边界条件; 2)构造其泛函形式; 3)基于有限元基本思想和泛函求极值构造其有限元的计算格式(即最小势能原理)。4、以简单实例为对象,分别按虚功原理和变分原理导出有限元法的基本格式(单元刚度矩 阵)。 5、什么是节点力和节点载荷?两者有何区别? 答:节点力:单元与单元之间通过节点相互作用 节点载荷:作用于节点上的外载 6、单元刚度矩阵和整体刚度矩阵各有何特点?其中每个矩阵元素的物理意义是什么(按自 由度和节点解释)? 答:单元刚度矩阵:对称性、奇异性、主对角线恒为正 整体刚度矩阵:对称性、奇异性、主对角线恒为正、稀疏性、带状性。 Kij,表示j节点产生单位位移、其他节点位移为零时作用i节点的力,节点力等于节点位移与单元刚度元素乘积之和。 7、单元的形函数具有什么特点?有哪些性质? 答:形函数的特点:Ni为x,y的坐标函数,与位移函数有相同的阶次。 形函数Ni在i节点的值为1,而在其他节点上的值为0; 单元内任一点的形函数之和恒等于1; 形函数的值在0~1间变化。 8、描述弹性体的基本变量是什么?基本方程有哪些组成? 答:基本变量:外力、应力、应变、位移 基本方程:平衡方程、几何方程、物理方程、几何条件 9、何谓应力、应变、位移的概念?应力与强度是什么关系? 答:应力:lim△Q/△A=S △A→0 应变:物体形状的改变 位移:弹性体内质点位置的变化 10、问题的微分方程提法、等效积分提法和泛函变分提法之间有何关系?何谓“强形 式”?何谓“弱形式”,两者有何区别?建立弱形式的关键步骤是什么?

有限元素法有限体积法有限差分法有限容积法的区别

1.1 概念 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 1.2 差分格式 (1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。 (2)从差分的空间形式来考虑,可分为中心格式和逆风格式。 (3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。 目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 1.3 构造差分的方法 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2. FEM 2.1 概述 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 2.2 原理 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。 (1)从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法; (2)从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格; (3)从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。 不同的组合同样构成不同的有限元计算格式。

有限元法基本原理与应用

有限元法基本原理与应用 班级机械2081 姓名方志平 指导老师钟相强 摘要:有限元法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 关键词:有限元法;变分原理;加权余量法;函数。 Abstract:Finite element method is based on the variational principle and the weighted residual method, the basic idea is to solve the computational domain is divided into a finite number of non-overlapping units, each unit, select some appropriate function for solving the interpolation node points as , the differential variables rewritten or its derivative by the variable value of the selected node interpolation functions consisting of linear expressions, by means of variational principle or weighted residual method, the discrete differential equations to solve. Different forms of weight functions and interpolation functions, it constitutes a different finite element method. Keywords:Finite element method; variational principle; weighted residual method; function。 引言 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计

有限元复习要点

有限元分析重点 1. 诉述有限元法的定义P1 答:有限元法是近似求解一般连续场问题的数值方法 2. 有限元法的基本思想是什么P3 答:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。 3. 有限元法的分类和基本步骤有哪些P3 答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。 4. 有限元法有哪些优缺点P4 答:优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。 缺点:有限元计算,尤其是复杂问题的分析计算,所耗费的计算时间、内存和磁盘空间等计算资源是相当惊人的。对无限求解域问题没有较好的处理办法。尽管现有的有限元软件多数使用了网络自适应技术,但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验。 5. 梁单元和平面钢架结构单元的自由度由什么确定 答:每个节点上有几个节点位移分量,就称每个节点有几个自由度 6. 简述单元刚度矩阵的性质和矩阵元素的物理意义P9 答:单元刚度矩阵是描述单元节点力和节点位移之间关系的矩阵 单元刚度矩阵中元素aml的物理意义为单元第L个节点位移分量等于1,其他节点位移分量等于0时,对应的第m 个节点力分量。 7. 有限元法基本方程中的每一项的意义是什么P14 答:整个结构的节点载荷列阵(外载荷、约束力),:整个结构的节点位移列阵,:结构的整体刚度矩阵,又称总刚度矩阵。 8. 位移边界条件和载荷边界条件的意义是什么 答:由于刚度矩阵的线性相关性不能得到解,从而引入边界条件。 9. 简述整体刚度矩阵的性质和特点P14 答:对称性;奇异性;稀疏性;对角线上的元素恒为正。 10. 写出面钢架问题中单元刚度矩阵的坐标变换式P27 答:手写. 11. 简述整体坐标的概念P25 答:单元刚度矩阵的坐标变换式把平面刚架的所有单元在局部坐标系X'Y'Z'下的单元刚度矩阵变换到一个统一的坐标系xOy下,这个统一的坐标系xOy称为整体坐标系。 12. 平面钢架局部坐标系下的单元刚度矩阵与整体坐标系的下单元刚度矩阵的关系P31 答: 13. 简述平面钢架问题有限元法的基本过程 答:力学模型的确定,结构的离散化,计算载荷的等效节点力,计算各单元的刚度矩阵,组集整体刚度矩阵,施加边界约束条件,求解降价的有限元基本方程,求解单元应力,计算结果的输出。 14. 弹性力学的基本假设是什么。P36

有限差分和有限体积的 有限元等

有限差分和有限体积的有限元等 有限元法、有限差分法和有限体积法的区别 标签:函数有限元插值差分格式 有限差分方法(Finite Differential Method)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以泰勒级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限元法(Finite Element Method)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法。从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函

有限元法及其在工程中的应用

机械与汽车学院 曹国强 主要内容: 1、有限元法的基本思想。 2、结构力学模型的简化和结构离散化。 3、有限元法的实施过程。 一、有限元法的基本思想 有限元法是随着计算机的发展而发展起来的一种有效的数值方法。其基本思想是:将连续的结构分割成数目有限的小单元体(称为单元),这些小单元体彼此之间只在数目有限的指定点(称为节点)上相互连接。用这些小单元体组成的集合体来代替原来的连续结构。再把每个小单元体上实际作用的外载荷按弹性力学中的虚功等效原理分配到单元的节点上,构成等效节点力,并按结构实际约束情况决定受约束节点的约束。这一过程称为结构的离散化。其次,对每个小单元体选择一个简单的函数来近似地表示其位移分量的分布规律,并按弹性力学中的变分原理建立起单元节点力和节点位移之间的关系(单元刚度方程),最后,把全部单元的节点力和节点位移之间的关系组集起来,就得到了一组以结构节点位移为未知量的代数方程组(总体刚度方程),同时考虑结构的约束情况,消去那些结构节点位移为零的方程,再由最后的代数方程组就可求得结构上有限个离散节点的各位移分量。求得了结构上各节点的位移分量之后,即可按单元的几何方程和物理方程求得各单元的应变和应力分量。 有限元法的实质就是把具有无限个自由度的连续体,理想化为有限个自由度的单元的集合体,使问题简化为适合于数值解法的结构型问题。 经典解法(解析法)与有限元法的区别 解析法 { } 建立一个描述连续体性质的偏微分方程组 有限元解法 连续体 数目增加到∞ 大小趋于0 微元 有限元 离散化 (单元分析)集合 总体分析 求得近似解

二、结构力学模型的简化和结构离散化 (一)结构力学模型的简化 用有限元法研究实际工程结构问题时,首先要从工程实际问题中抽象出力学模型,即要对实际问题的边界条件、约束条件和外载荷进行简化,这种简化应尽可能地反映实际情况,不至于使简化后的解答与实际差别过大,但也不要带来计算上的过分复杂,在力学模型的简化过程中,必须判断实际结构的问题类型,是二维问题还是三维问题。如果是平面问题,是平面应力问题,还是平面应变问题。同时还要搞清楚结构是否对称,外载荷大小和作用位置,结构的几何尺寸和力学参数(弹性模量E、波松比μ等)。 (二)结构的离散化 将已经简化好的结构力学模型划分成只在一些节点连续的有限个单元,把每个单元看成是一个连续的小单元体,各单元之间只在一些点上互相联结,这些点称作节点,每个单元体称为一个单元。用只在节点处连接的单元的集合体代替原来的连续结构,把外载荷按虚功等效原理移置到有关受载的节点上,构成节点载荷,把连续结构进行这样分割的过程称为结构的离散化。现举例说明。 设一平面薄板,中间有一个园孔,其左端固定,右端受面力载荷q,试对其进行有限元分割和力学模型简化。

有限单元法基本思想,原理,数值计算过程

有限单元法学习报告 在对力学问题分析求解过程中,方法可以概括为两种方法,一种为解析法,对具体问题具体分析,通过一定的推导用具体的表达式获得解答,由于实际工程中结构物的复杂性,此方法在处理工程问题是十分困难的;另一种是数值法,有限元法是其中一种方法,其数学逻辑严谨,物理概念清晰,又采用矩阵形式表达基本公式,便于计算机编程,因此在工程问题中获得广泛的应用。 有限元法基本原理是,将复杂的连续体划分为简单的单元体;将无限自由度问题化为有限自由度问题,因为单元体个数是有限的;将偏微分方程求解问题化为有限个代数方程组的求解问题。通常以位移为基本未知量,通过虚功原理和最小势能原理来求解。 基本思想是先化整为零,即离散化整体结构,把整体结构看作是由若干个通过结点相连的单元体组成的整体;再积零为整,通过结点的平衡来建立代数方程组,最后计算出结果。我将采用最简单的三结点三角形为基本单元体,解决弹性力学中的平面问题为例,解释有限单元法的基本原理、演示数值计算过程和一般性应用结论。 一、离散化 解决平面问题时,主要单元类型包括三角形单元(三结点、六结点)和四边形单元(四结点矩形、四结点四边形、八结点四边形)等。选用不同的单元会有不同的精度,划分的单元数越多,精度越高,但计算量也会越大。因此在边界曲折,应力集中处单元的尺寸要小些,但最大与最小单元的尺寸倍数不宜过大。在集中力作用点及分布力突变的点宜选为结点,不同厚度,不同材料不能划分在同一单元中。三角形单元以内角接近60°为最好。充分利用对称性与反对称性。 二、单元分析 将一个单元上的所有未知量用结点位移表示,并将分布在单元上的外力等效到结点上。 1、位移函数选取: 根据有限元法的基本思路,将连续体离散为有限的单元集合后,此时单元体满足连续性、均匀性、各向同性、完全线弹性假设。单元与单元之间通过结点连接并传递力,位移法(应用最广)以结点位移δi=(u i v i)T为基本未知量,以离散位移场代替连续位移场。单元体内的位移变化可以用位移函数(位移模式)来表示,因为有限元分析所得结果是近似结果,为了保证计算精度和收敛性,x位移函数应尽可能反应物体中的真实位移,即满足完备性和连续性的要求:

有限元方法理论及其应用

1 课程论文:弹性力学有限元位移法原理(30分) 撰写一篇论文,对有限元位移法的原理作一般性概括和论述。要求论文论及但不限于下列内容:1)弹性力学有限元位移法的基本思想和数学、力学基础;2)有限元法求解的原理和过程,推导计算列式;对基本概念和矩阵符号进行解释和讨论;3)等参单元的概念、原理和应用。 1.1 对一维杆单元有限元形式的理解 我对此提出了几点疑问: 1)为什么边界条件u1=0,就要划去刚度矩阵[K]中对应的行列再解方程? 2)为什么刚度矩阵[K]会奇异? 3)为什么平衡方程本身是矛盾的,而加上边界条件u1=0之后就能解出一 个唯一的近似解? 4)为什么刚度矩阵[K]是对称的? 下面我谈谈自己的理解:节点平衡方程是在u1不定的前提下,假设单元内位移都是线性变化推导出来的,由此u1相当于一个不确定的定值约束,再加上中间两个节点的连续性要求,系统实际上只有三个独立的自由度(广义坐标)。 对于第一个问题,其实刚度矩阵[K]中的元素不是一成不变的,相反它是伴随边界条件动态变化的。当u1=0时由刚度矩阵的推导过程可以知道,刚度矩阵的第一行和第一列都会变为0,所以此时第一行和第一列对于求解方程是没有作用的。 对于第二个问题,由于系统自由度(广义坐标)只有三个,而我们的方程却列出

了四个,显然

这四个方程不可能线性无关,所以刚度矩阵奇异。 对于第三个问题,首先我们应该明确方程区别于等式,虽然左右两边都是用“=”连接,但是方程只在特殊条件下取得定解。由于平衡方程是在没有约束的条件下推导出来的,显然它不可能满足等式要求。宏观上看,系统在没有外部约束,而又施加有外力,显然系统会产生加速度而绝不会平衡。所以平衡方程本身是矛盾的。而加上边界条件之后,不但满足了平衡的前提,还改变了矩阵的结构和性质,所以有解。但是,由于我们提前假设了位移线性变化,相当于人为对单元施加了额外约束,让位移按照我们假设的规律变化,所以得到的解是过刚的近似解。但对于方程本身而言是精确解。 对于第四个问题,其力学的作用机理类似于作用力与反作用力,由于刚度矩阵不表征方向,所以其大小是相等的。 1.2 有限元法的思想 有限元法是求解连续介质力学问题的数值方法,更一般意义是一种分析结构问题和连续场数学物理问题的数值方法。 有限元法的基本思想是离散化和分片插值。 即把连续的几何机构离散成有限个单元,并在每一个单元中设定有限个节点,从而将连续体看作仅在节点处相连接的一组单元的集合体,同时选定场函数的节点值作为基本未知量并在每一单元中假设一个近似插值函数以表示单元中场函数的分布规律,再建立用于求解节点未知量的有限元方程组,从而将一个连续域中的无限自由度问题转化为离散域中的有限自由度问题。 求解得到节点值后就可以通过设定的插值函数确定单元上以至个集合体上的场函数。对每个单元,选取适当的插值函数,使得该函数在子域内部、在子域分界面上以及子域与外界面上都满足一定的条件。单元组合体在已知外载荷作用下处于平衡状态时,列出一系列以节点、位移为未知量的线性方程组,利用计算机解出节点位移后,再用弹性力学的有关公式,计算出各单元的应力、应变,当各单元小到一定程度,那么它就代表连续体各处的真实情况。

有限差分、有限元区别

有限差分方法(Finite Differential Method)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以泰勒级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限元法(Finite Element Method)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法。从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。 有限体积法(Finite V olume Method)又称为控制体积法。其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积发的基本方法。

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式.考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等.目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成.在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等.根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0.插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La g range插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等.对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函

有限元法的基本思想及计算 步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列

有限差分,有限元,有限体积等的区别介绍

有限差分,有限元,有限体积等离散方法的区别介绍 1 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。 对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高

有限元法理论及应用参考答案分析

有限元法理论及应用大作业 1、试简要阐述有限元理论分析的基本步骤主要有哪些? 答:有限元分析的主要步骤主要有: (1)结构的离散化,即单元的划分; (2)单元分析,包括选择位移模式、根据几何方程建立应变与位移的关系、根据虚功原理建立节点力与节点位移的关系,最后得到单元刚度方程; (3)等效节点载荷计算; (4)整体分析,建立整体刚度方程; (5)引入约束,求解整体平衡方程。 2、有限元网格划分的基本原则是什么?指出图示网格划分中不合理的地方。 题2图 答:一般选用三角形或四边形单元,在满足一定精度情况,尽可能少一些单元。 有限元划分网格的基本原则: 1.拓扑正确性原则。即单元间是靠单元顶点、或单元边、或单元面连接 2.几何保持原则。即网络划分后,单元的集合为原结构近似 3.特性一致原则。即材料相同,厚度相同 4.单元形状优良原则。单元边、角相差尽可能小 5.密度可控原则。即在保证一定精度的前提下,网格尽可能的稀疏一些。(a)(b)中节点没有有效的连接,且(b)中单元边差相差很大。 (c)中没有考虑对称性,单元边差很大。 3、分别指出图示平面结构划分为什么单元?有多少个节点?多少个自由度?

题3图 答:(a )划分为杆单元, 8个节点,12个自由度。 (b )划分为平面梁单元,8个节点,15个自由度。 (c )平面四节点四边形单元,8个节点,13个自由度。 (d )平面三角形单元,29个节点,38个自由度。 4、什么是等参数单元?。 答:如果坐标变换和位移插值采用相同的节点,并且单元的形状变换函数与位移插值的形函数一样,则称这种变换为等参变换,这样的单元称为等参单元。 5、在平面三节点三角形单元中,能否选取如下的位移模式,为什么? (1). ?????++=++=2 65432 21),(),(y x y x v y x y x u αααααα (2). ?????++=++=2 65242 3221),(),(y xy x y x v y xy x y x u αααααα 答:(1)不能,因为位移函数要满足几何各向同性,即单元的位移分布不应与人为选取的 坐标方位有关,即位移函数中的坐标x,y 应该是能够互换的。所以位移多项式应按巴斯卡三角形来选择。 (2)不能,位移函数应该包括常数项和一次项。

相关文档
最新文档