结构设计荷载计算(模板)

结构设计荷载计算(模板)
结构设计荷载计算(模板)

第三医院荷载计算

面层荷载

一、屋面荷载:(上人屋面)

25厚水泥花砖0.60(kN/m2) 20厚水泥砂浆20×0.020=0.40(kN/m2) 防水层0.40(kN/m2) 20厚水泥砂浆找平层20×0.020=0.40(kN/m2) 水泥焦渣找坡层 1.60(kN/m2) 60厚高密度聚苯板保温层2×0.06=0.12(kN/m2) 水泥砂浆找平层0.40(kN/m2) 120厚钢筋混凝土屋面板25×0.12=3.00(kN/m2)

170厚钢筋混凝土屋面板2) 吊顶0.50(kN/m2)

静荷载总计2) 活荷载总计(上人屋面) 2.00(kN/m2)

二、首层楼面荷载:

隔墙折算板面荷载 2.50(kN/m2) 100厚面层25×0.100=2.50(kN/m2)

结构层200厚钢筋混凝土板25×0.200=5.00(kN/m2)

吊顶0.50(kN/m2)

静荷载总计10.50(kN/m2)

活荷载(考虑施工堆载)总计 5.00(kN/m2)

三、首层(CT、MRI有地沟)楼面荷载

100厚面层25×0.100=2.50(kN/m2)

结构层200厚钢筋混凝土板25×0.200=5.00(kN/m2)

吊顶0.50(kN/m2)

静荷载总计8.00(kN/m2)

活荷载总计8.00(kN/m2) CT、MRI围护墙恒荷载30.00(kN/m2)

四、四层以下楼面荷载:(生化、免疫、试验室、护士站等) 隔墙折算板面荷载 2.50(kN/m2) 100厚面层25×0.100=2.50(kN/m2)

结构层120厚钢筋混凝土板25×0.120=3.00(kN/m2)

结构层170厚钢筋混凝土板2)

吊顶0.50(kN/m2)

静荷载总计2)

活荷载总计 2.50(kN/m2)

五、楼面荷载:(多功能厅)

100厚面层25×0.100=2.50(kN/m2) 结构层120厚钢筋混凝土板25×0.120=3.00(kN/m2)

结构层170厚钢筋混凝土板2) 吊顶0.50(kN/m2)

静荷载总计2) 活荷载总计 4.0(kN/m2)

六、楼面荷载:(设备层)

20厚面层20×0.020=0.40(kN/m2) 结构层120厚钢筋混凝土板25×0.120=3.00(kN/m2)

结构层170厚钢筋混凝土板2) 设备重量 3.00(kN/m2) 吊顶0.50(kN/m2)

静荷载总计2) 活荷载总计 2.0(kN/m2)

七、楼面荷载:(标准层病房)

隔墙折算板面荷载(1.20)1.50(kN/m2) 50厚面层25×0.05=1.25(kN/m2)

100厚面层

2)

结构层120厚钢筋混凝土板25×0.120=3.00(kN/m2)

结构层170厚钢筋混凝土板

2)

吊顶0.50(kN/m2)

静荷载

总计2)

活荷载总计 2.0(kN/m2) 病房卫生间活荷载总计 2.0(kN/m2) 病房走廊活荷载总计 2.0(kN/m2)

八、电梯机房

20厚面层20×0.020=0.40(kN/m2) 结构层200厚钢筋混凝土板25×0.200=5.00(kN/m2) 吊顶0.50(kN/m2) 静荷载总计 5.9(kN/m2) 活荷载总计7.0(kN/m2)

九、消防疏散楼梯间

折算板厚:160(踏步高)/2+

120(梯板厚)

/0.8682=218mm

25×0.218=5.455(kN/m2)

50厚面层25×0.050=1.25(kN/m2) 栏杆荷载0.20(kN/m2)

静荷载总计 6.9(kN/m2) 活荷载总计 3.5(kN/m2)

十一、其他功能房间活荷载

通风机房(每层)活荷载 4.0(kN/m2) 超市(一层)活荷载 3.5(kN/m2) 手术室(四层)活荷载 3.0(kN/m2) 消毒室活荷载 6.0/5.0(kN/m2) 产房(五层)活荷载 2.5(kN/m2) 血库(三层)活荷载 5.0(kN/m2) 浴室、厕所、盥洗室活荷载 2.5(kN/m2) 注:框数值为空心板上恒荷载

梁上荷载

隔墙(FGC五防墙体)重量取值:

100-120kg/m2(200厚)= 1.20kN/m2

60-70kg/m2(100厚)= 0.7kN/m2

浮混凝土砌块重量取值:10.00kN/m3

1-1.标准层外墙(浮混凝土砌块)梁上荷载:

采用浮混凝土砌块,墙厚300,层高3.7米,梁高600

(10×0.30+20×0.04)×(3.70-0.60)=11.78kN/m 考虑到开窗的原因,取折减系数0.85,

外墙荷载取:11.78×0.85=10.013 kN/m≈10.0 kN/m 1-2.标准层墙(浮混凝土砌块)梁上荷载:

采用浮混凝土砌块,墙厚200,层高3.7米,梁高500

(10×0.20+20×0.04)×(3.70-0.50)=8.96kN/m 考虑到开洞的原因,取折减系数0.75,

墙荷载取:8.96×0.75=6.72 kN/m≈7.00 kN/m

1-3.标准层墙(FGC五防墙体)梁上荷载:

采用FGC五防墙体,墙厚100

(0.7+20×0.04)×(3.70-0.60)=4.65kN/m

考虑到开洞的原因,取折减系数0.85,

墙荷载取:4.65×0.85=3.95 kN/m≈4.00 kN/m

2-1.二、三、四层外墙(浮混凝土砌块)梁上荷载:

采用浮混凝土砌块,墙厚300,层高4.5米,梁高600

(10×0.30+20×0.04)×(4.50-0.60)=14.82kN/m 考虑到开窗的原因,取折减系数0.85,

外墙荷载取:14.82×0.85=12.597 kN/m≈12.60 kN/m 2-2.二、三、四层墙(浮混凝土砌块)梁上荷载:

采用浮混凝土砌块,墙厚200,层高4.5米,梁高500

(10×0.20+20×0.04)×(4.50-0.50)=11.20kN/m

考虑到开洞的原因,取折减系数0.75,

外墙荷载取:11.20×0.75=8.40 kN/m≈8.40 kN/m

2-3.二、三、四层墙(FGC五防墙体)梁上荷载:

采用FGC五防墙体,墙厚200, 层高4.5米,梁高600 (1.2+20×0.04)×(4.50-0.60)=7.80kN/m

墙荷载取:7.80kN/m

3-1.一层外墙梁上荷载:

采用浮混凝土砌块,墙厚300,层高4.8米,梁高600

(10×0.30+20×0.04)×(4.80-0.60)=15.96kN/m 考虑到开窗的原因,取折减系数0.85,

外墙荷载取:15.96×0.85=13.566 kN/m≈13.60 kN/m 3-2.一层墙(浮混凝土砌块)梁上荷载:

采用浮混凝土砌块,墙厚200,层高4.8米,梁高500

(10×0.20+20×0.04)×(4.80-0.50)=12.04kN/m 考虑到开洞的原因,取折减系数0.75,

外墙荷载取:12.04×0.75=9.03 kN/m≈9.00 kN/m

3-3.一层墙(FGC五防墙体)梁上荷载:

采用FGC五防墙体,墙厚200, 层高4.8米,梁高600 (1.2+20×0.04)×(4.80-0.60)=8.40kN/m

墙荷载取:8.40kN/m

4-1.屋面梁上女儿墙荷载:

(25×0.15+20×0.04)×1.2=5.46kN/m

5-1.电梯井道围护墙荷载:(240机红砖墙)

一层单面摸灰:4.9×(4.8-0.5)= 21.00kN/m

二、三、四层单面摸灰:4.9×(4.5-0.5)= 19.6kN/m 标准层单面摸灰:4.9×(3.7-0.5)= 15.70kN/m

6-1.玻璃幕墙荷载:1.50kN/m

混凝土强度登记明细表

高层建筑结构方案设计荷载估算

高层建筑结构方案设计荷载估算 1.2 高层建筑结构作用效应的特点 1.2.1 高层建筑结构的受力特点 建筑结构所受的外力(作用)主要来自垂直方向和水平方向。在低、多层建筑中,由于结构高度低、平面尺寸较大,其高宽比很小,而结构的风荷载和地震作用也很小,故结构以抵抗竖向荷载为主。也就是说,竖向荷载往往是结构设计的主要控制因素。 建筑结构的这种受力特点随着高度的增大而逐渐发生变化。 在高层建筑中,首先,在竖向荷载作用下,由图1.2.1-1所示的框架可知,各楼层竖向荷载所产生的框架柱轴力为: 边柱 N=wlH/2h 中柱 N=wlH/h 即框架柱的轴力和建筑结构的层数成正比;边柱轴力较中柱小,基本上与其受荷面积成正比。就是说,由各楼层竖向荷载所产生的累积效应很大,建筑物层数越多,底层柱轴力越大;顶、底层柱轴力差异越大;中柱、边柱轴力差异也越大。 其次,在水平荷载作用下,作为整体受力分析,如果将高层建筑结构简化为一根竖向悬臂梁,那么由图1.2.1-2、图1.2.1-3所示其底部产生的倾复弯矩为: 水平均布荷载 Mmax=qH2/2 倒三角形水平荷载 Mmax= Qh3/3 即结构底部产生的倾复弯矩与楼层总高度的平方成正比。就是说,建筑结构的高度越大,由水平作用对结构产生的弯矩就更大,较竖向荷载对结构所产生的累积效应增加更快,其产生的结构内力占总结构内力的比重越大,从而成为结构强度设计的主要控制因素。 1.2.2 高层建筑结构的变形特点 在竖向荷载作用下,高层建筑结构的变形主要是竖向构件的压缩变形。由于各竖向构件的应力大小不同,因而其压缩变形大小也不同。在钢筋混凝土结构中,由于在施工过程中的找平, 同时由于各竖向构件的基底轴力大小不同,若不对基底应力进行调整,也可能导致基础产生不均匀沉降。 在水平荷载作用下,高层建筑结构最大的顶点位移为: 水平均布荷载△max=qH4/8EI 倒三角形水平荷载△max= 11qH4/120EI 式中EI为结构的 从以上可看出,结构顶点位移与其总高度的四次方成正比。则又比水平荷载作用下的内力累积效应增加更快,这就说明,高层建筑结构对结构

结构设计基本荷载计算

荷载 1.墙体荷载: 1). 外墙(烧结页岩多孔砖容重14.0 kN/m3):(卫生间除外) 外墙面砖:0.5 kN/m2 20厚水泥砂浆:20×0.020=0.4 kN/m2 200厚墙体:14.0×0.20=2.80 kN/m2 20厚混合砂浆:17×0.020=0.34 kN/m2 ∑: 4.04 kN/m2 考虑建筑节能0.6kN/m2取∑: 4.64kN/m2 考虑装修抹灰取∑: 4.7kN/m2 G=4.7kN/m2×(H--梁高)×0.8= 内墙(加气混凝土砌块8.0 kN/m3):(卫生间除外) 20厚混合砂浆:17×0.020=0.34 kN/m2 200厚墙体:8.0×0.20=1.60 kN/m2 20厚混合砂浆:17×0.020=0.34 kN/m2 ∑: 2.24 kN/m2 考虑装修抹灰取∑: 2.3kN/m2 G=2.3kN/m2×(H--梁高)= 女儿墙(烧结页岩多孔砖容重14.0 kN/m3): 外墙面砖:0.5 kN/m2 20厚水泥砂浆:20×0.020=0.4 kN/m2 200厚墙体:14.0×0.20=2.80 kN/m2 20厚混合砂浆:17×0.020=0.34 kN/m2 ∑: 4.04 kN/m2 G=4.04kN/m2×H+压顶自重= 2). 卫生间外墙(烧结页岩多孔砖容重14.0 kN/m3):

外墙面砖:0.5 kN/m2 20厚水泥砂浆:20×0.020=0.4 kN/m2 200厚墙体:14.0×0.20=2.80 kN/m2 20厚混合砂浆:17×0.020=0.34 kN/m2 内墙面砖:0.5 kN/m2 ∑: 4.54 kN/m2 考虑建筑节能0.6kN/m2取∑: 5.14kN/m2 G=5.14kN/m2×(H--梁高)= ). 卫生间内隔墙(烧结页岩多孔砖容重14.0 kN/m3): 单面面砖:0.5 kN/m2 20厚水泥砂浆:20×0.020=0.4 kN/m2 100厚墙体:14.0×0.20=1.40 kN/m2 20厚混合砂浆:17×0.020=0.34 kN/m2 ∑: 2.64 kN/m2 G=3.14kN/m2×(H--梁高)= 2.屋面荷载: 1). 种植屋面:(从上到下) 300厚种植土:16×0.3=4.8 kN/m2 干铺聚酯纤维无纺布一层:0.10 kN/m2 (3+3)双层SBS改性沥青防水卷材:0.35 kN/m2 20厚憎水膨胀珍珠岩找坡:4×(0.02+10×2%)=0.88 kN/m2 60厚岩棉板: 2.5×0.06=0.15 kN/m2 20厚水泥砂浆:20×0.020=0.4 kN/m2 150厚结构板:27×0.15=4.05kN/m2 10厚板底抹灰:10×0.020=0.2 kN/m2 ∑:10.88kN/m2

模板计算例子

例1、一块1.500*0.300m的组合钢模板,其截面模量W=4.40cm 3 ,惯性距I=13.90cm 4 ,钢材容许应力为2100kg/cm 2 ,E=2.1*106kg/cm 2 ,拟用于浇筑150mm厚的楼板,试验算其能否满足施工要求。已知荷载: 1)新浇混凝土容重2500kg/M 3 ;2)钢筋重量110kg/M 3 混凝土;3)模板自重75kg/M 2 ;4)施工活荷:均布250kg/M 2 或集中荷载130kg; 5)若采用木模板,试计算木模板所需得最小厚度。已知:[σ木]=11.7Mpa,自重500Kg/m 3 。 模板支承形式为简支,楼板底表面外露(即不做抹灰)。 解:(1)均布荷载q 1 ( 考虑均布施工荷载) q 1 = 2500 ′ 0.15 ′ 0.3 ′ 1.2 + 75 ′ 0.3 ′ 1.2 + 110 ′ 0.15 ′ 0.3 ′ 1.2 + 250 ′ 0.3 ′ 1.4 = 272.94(Kg/m) 均布荷载q 2 ( 不考虑均布施工荷载) q 2 = 2500 ′ 0.15 ′ 0.3 ′ 1.2 + 75 ′ 0.3′ 1.2 + 110 ′ 0.15 ′ 0.3 ′ 1.2= 167.94(Kg/m) 集中力P = 130 ′ 1.4 = 182 Kg M 1 = 1/8q 1 l 2 = 1/8 ′ 272.94 ′ 1.5 2 = 76.76 (Kg · m) M 2 = 1/8q 2 l 2 + 1/4Pl = 115.48(Kg · m) M = max(M 1 ,M 2 ) = 115.48(Kg · m) ? = M/w = 115.48 ′ 100/4.4 = 2624.5(Kg/c m 2 ) > 2100(Kg/cm 2 ) 承载力不满足,刚度不必验算。 (2)设此木模板最小厚度为h 米 均布荷载q 1 ( 考虑均布施工荷载) q 1 = 2500 ′ 0.15 ′ 0.3 ′ 1.2 + 500 ′ 0.3 ′ h ′ 1.2 + 110 ′ 0.15 ′ 0.3 ′ 1.2 + 250 ′ 0.3 ′ 1.4 = (245.94 + 180h)(Kg/m) 均布荷载q 2 ( 不考虑均布施工荷载) q 2 = 2500 ′ 0.15 ′ 0.3 ′ 1.2 + 500′ 0.3 ′ h ′ 1.2 + 110 ′ 0.15 ′ 0.3 ′ 1.2 = (140.94 + 180h) (Kg/m) 集中力P = 130 ′ 1.4 = 182 Kg M 1 = 1/8q 1 l 2 M 2 = 1/8q 2 l 2 + 1/4Pl w = 1/6bh 由? 1 = M 1 /w = [?] 解得h 1 = 0.034m 由? 2 = M 2 /w = [?] 解得h 2 = 0.043m 故该木模板得最小厚度为h = max(h 1 ,h 2 ) =0.043m ,实际取h = 4.5cm 。

结构设计计算书荷载统计

XX项目 一、自然条件 1、基本风压 本项目建筑高度均大于60m,承载力设计时取基本风压的1.1倍(ω0=0.3KN/m2)。 地面粗糙度类别:B类 2、地震设防:6度,0.05g,第一组,丙类设防 场地类别:Ⅱ类 二、结构抗震等级 结构体系:剪力墙结构 剪力墙三级 一般墙轴压比限值:0.6 短肢剪力墙:0.55 一字形短肢剪力墙:0.45 注:1、一般剪力墙hw/bw>8; 短肢剪力墙4≤hw/bw≤8,全部纵筋配筋率:底部加强区≥1.0%,一般部位≥0.8%。 2、底部加强区部位高度:剪力墙墙肢总高度的1/10和底部两层二者较大值。 三、材料 1、混凝土强度等级 剪力墙:-1~7层 C45 8~11层 C40 12~15层 C35 16~19层 C30 20层以上 C25 梁、板:商业屋面以下C30(含商业屋面),以上为C25 2、钢筋 a.Ⅰ级(HRB300)用于梁箍筋、柱及非约束构件楼层边缘构件箍筋、剪力墙水平、竖向分 布筋(当直径D≥12时使用Ⅲ级钢), b.Ⅲ级(HRB400)用于梁纵筋,柱及剪力墙边缘构件纵筋,板受力钢筋,底部约束边缘构件楼层边缘构件箍筋,大样受力钢筋。 c.分布钢筋均采用Ⅰ级(HRB300) 荷载取值 1、主要设计活载(标准值) 类别标准值(KN/m2) 1 商业楼面 3.5 2 住宅楼面 2.0 3 卫生间 2.5 4 厨房 2.0 5 消防楼梯 3.5 6 阳台 2.5 7 电梯机房 9.0 8 地下室顶板 5.0 9 商业顶板靠近主楼3跨内 4.0

2、主要恒载 墙体材料 外墙计算按100厚烧结页岩多孔砖+100厚钢筋混凝土 (施工工艺:铝模)厨房、卫生间、楼电梯间墙体计算按烧结页岩多孔砖(25%≤孔洞率≤28%):允许容重≤16.5 KN/m3 其余内隔墙计算按加气混凝土砌块:允许容重≤7.0 KN/m3 1)标准层线荷载 层高3000: 外墙:100厚烧结页岩多孔砖+100厚钢筋混凝土 0.1x16.5++0.1x25+0.02x20x2=4.95 KN/m2 550梁高:4.95x(3.0-0.55)=12.13 KN/m取12.50 KN/m 厨房、卫生间、楼电梯间: 200厚烧结页岩多孔砖:0.2x16.5+0.02x20x2=4.1 KN/m2 550梁高:4.1x(3.0-0.55)=10.05 KN/m取10.50 KN/m 400梁高:4.1x(3.0-0.40)=10.66 KN/m取11.00 KN/m 300梁高:4.1x(3.0-0.30)=11.07 KN/m取11.50 KN/m 100厚烧结页岩多孔砖:0.1x16.5+0.02x20x2=2.45 KN/m2 400梁高:2.45x(3.0-0.40)=6.37 KN/m取6.50 KN/m 300梁高:2.45x(3.0-0.30)=6.62 KN/m取7.00 KN/m 内墙:200厚加气混凝土砌块 0.2x7.0+0.02x20x2=2.2 KN/m2 600梁高:2.2x(3.0-0.6)=5.28 KN/m取5.50 KN/m 500梁高:2.2x(3.0-0.5)=5.50 KN/m取5.50 KN/m 400梁高:2.2x(3.0-0.4)=5.72 KN/m取6.00 KN/m 300梁高:2.2x(3.0-0.3)=5.94 KN/m取6.00 KN/m 内墙:100厚加气混凝土砌块 0.1x7.0+0.02x20x2=1.5 KN/m2 600梁高:1.5x(3.0-0.6)=3.60 KN/m取4.00 KN/m 500梁高:1.5x(3.0-0.5)=3.75 KN/m取4.00 KN/m 400梁高:1.5x(3.0-0.4)=3.90 KN/m取4.00KN/m 300梁高:1.5x(3.0-0.3)=4.05 KN/m取4.50 KN/m 层高2950: 外墙:100厚烧结页岩多孔砖+100厚钢筋混凝土 0.1x16.5++0.1x25+0.02x20x2=4.95 KN/m2 550梁高:4.95x(2.95-0.55)=11.88 KN/m取12.00 KN/m 厨房、卫生间、楼电梯间: 200厚烧结页岩多孔砖:0.2x16.5+0.02x20x2=4.1 KN/m2 550梁高:4.1x(2.95-0.55)=9.84 KN/m取10.00 KN/m

梁模板计算实例(新)

模板计算实例 1、工程概况 柱网尺寸6m×9m,柱截面尺寸600mm×600mm 纵向梁截面尺寸300mm×600mm,横向梁截面尺寸600mm×800mm,无次梁,板厚150 mm,层高12m,支架高宽比小于3。 (采用泵送混凝土。) 2、工程参数(技术参数)

3计算 3.1梁侧模板计算 图3.1 梁侧模板受力简图 3.1.1梁侧模板荷载标准值计算 新浇筑的混凝土作用于模板的侧压力标准值,依据建筑施工模板安全技术规范,按下列公式计算,取其中的较小值: V F C 210t 22.0ββγ= 4.1.1-1 H F c γ= 4.1.1-2 式中 : γc -- 混凝土的重力密度,取24kN/m 3; t 0 -- 新浇混凝土的初凝时间,按200/(T+15)计算,取初凝时间为 5.7小时。 T :混凝土的入模温度,经现场测试,为20℃; V -- 混凝土的浇筑速度,取11m/h ; H -- 混凝土侧压力计算位置处至新浇混凝土顶面总高度,取0.8m ; β1-- 外加剂影响修正系数,取1.2; β2-- 混凝土坍落度影响修正系数,取1.15。 V F C 210t 22.0ββγ==0.22×24×5.7×1.2×1.15×3.32=138.13 kN/m 2

H F c γ==24×0.8=19.2 kN/m 2 根据以上两个公式计算,新浇筑混凝土对模板的侧压力标准值取较小值19.2kN/m 2。 3.1.2梁侧面板强度验算 面板采用木胶合板,厚度为18mm ,验算跨中最不利抗弯强度和挠度。计算宽度取1000mm 。(次楞平行于梁方向) 面板的截面抵抗矩W= 1000×18×18/6=54000mm 3; (W= 650×18×18/6=35100mm 3 ;)(次楞垂直于梁方向) 截面惯性矩I= 1000×18×18×18/12=486000mm 4; (I= 650×18×18×18/12=315900mm 4 ;) 1、面板按三跨连续板计算,其计算跨度取支承面板的次楞间距,L=0.15m 。 2、荷载计算 新浇筑混凝土对模板的侧压力标准值G 4k =19.2kN/m 2, 振捣砼对侧模板产生的荷载标准值Q 2K =4kN/m 2。 (规范:2振捣混凝土时产生的荷载标准值(k Q 2)(↓→)对水平面模板可采用2 kN/m 2,对垂直面模板可采用4 kN/m 2) 荷载基本组合 1) 由可变荷载效应控制的组合 k Q n i ik G Q r G r S 111+=∑= (4.3.1—2) ∑∑==+=n i ik Qi n i ik G Q r G r S 1 1 9.0 (4.3.1—3) 式中 G r ──永久荷载分项系数,应按表4.2.3采用;

模板荷载计算

本方案是以木模板、钢管脚手排架的模板支撑系统为研究对象,在泵送、预拌商品混凝土、机械振捣的施工工艺条件下,对施工荷载进行了计算,并应用了统计学原理,获得不同截面梁、板的施工荷载值,不仅减化了计算工作量,并能方便查找应用。 关键词:模板钢管支撑混凝土施工荷载分项系数侧压力荷载组合1施工荷载计算的计算依据 施工荷载的计算方法应符合《建筑结构荷载规范》GB50009-2001的规定。本文仅适用于木模板、钢管脚手排架、钢管顶撑、支撑托的模板支撑系统;采用泵送、预拌商品混凝土,机械振捣的施工工艺,并依据原《混凝土结构工程施工验收规范》GB50204-92,附录中有关“普通模板及其支架荷载标准值及分项系数”的取值标准。 2模板支撑系统及其新浇钢筋混凝土自重的计算参数: 模板及其支架的自重标准值应根据模板设计图确定,新浇混凝土自重标准值可根据实际重力密度确定,钢筋自重标准值可根据设计图纸确定,也可以按下表采用:钢筋混凝土和模板及其支架自重标准值和设计值统计表 材料名称单位标准值分项系数设计值备注 平板的模板KM/m2 0.3 1.2 0.36 包括小楞 梁的模板KN/m2 0.5 1.2 0.6 展开面积 普通混凝土KN/m3 24 1.2 28.8 楼板的钢筋KN 1.1 1.2 1.32 每立方米混 凝土的含量 梁的钢筋KN 1.5 1.2 1.8 模板及支架KN/m2 0.75 1.2 0.9 层高≤4m 3施工人员及设备荷载的取值标准: 施工活荷载的取值标准应根据不同的验算对象,对照下表选取,对于大型设备如上料平台、混凝土输送泵、配料机、集料斗等的施工荷载,应根据实际情况计算,并在大型设备的布置点,采取有针对性的加固措施。 施工活荷载标准值和设计值统计表 序号计算构件名 称 荷载类型单位标准值分项系数设计值备注

结构设计原理知识点

第一章 钢筋混凝土结构基本概念及材料的物理力学性能 1.混凝土立方体抗压强度cu f :(基本强度指标)以边长150mm 立方体试件,按标准方法制作养护28d ,标准试验方法(不涂润滑剂,全截面受压,加载速度0.15~0.25MPa/s )测得的抗压强度作为混凝土立方体抗压强度 cu f 。 影响立方体强度主要因素为试件尺寸和试验方法。尺寸效应关系: cu f (150)=0.95cu f (100) cu f (150)=1.05cu f (200) 2.混凝土弹性模量和变形模量。 ①原点弹性模量:在混凝土受压应力—应变曲线图的原点作切线,该切线曲率即为原点弹性模量。表示为:E '=σ/ε=tan α0 ②变形模量:连接混凝土应力应变—曲线的原点及曲线上某一点K 作割线,K 点混凝土应力为σc (=0.5c f ),该割线(OK )的斜率即为变形模量,也称割线模量或弹塑性模量。 E c '''=tan α1=σc /εc 混凝土受拉弹性模量与受压弹性模量相等。 ③切线模量:混凝土应力应变—上某应力σc 处作一切线,该切线斜率即为相应于应力σc 时的切线模量''c E =d σ/d ε 3 . 徐变变形:在应力长期不变的作用下,混凝土的应变随时间增长的现象称为徐变。 影响徐变的因素:a. 内在因素,包括混凝土组成、龄期,龄期越早,徐变越大;b. 环境条件,指养护和使用时的温度、湿度,温度越高,湿度越低,徐变越大;c. 应力条件,压应力σ﹤0.5 c f ,徐变与应力呈线性关系;当压应力σ介于(0.5~0.8)c f 之间,徐变增长比应力快;当压应力σ﹥0.8 c f 时,混凝土的非线性徐变不收敛。 徐变对结构的影响:a.使结构变形增加;b.静定结构会使截面中产生应力重分布;c.超静定结构引起赘余力;d.在预应力混凝土结构中产生预 应力损失。 4.收缩变形:在混凝土中凝结和硬化的物理化学过程中体积随时间推移而减少的现象称为收缩。 混凝土收缩原因:a.硬化初期,化学性收缩,本身的体积收缩;b.后期,物理收缩,失水干燥。 影响混凝土收缩的主要因素:a.混凝土组成和配比;b.构件的养护条件、使用环境的温度和湿度,以及凡是影响混凝土中水分保持的因素;c.构件的体表比,比值越小收缩越大。 混凝土收缩对结构的影响:a.构件未受荷前可能产生裂缝;b.预应力构件中引起预应力损失;c.超静定结构产生次内力。 5.钢筋的基本概念 1.钢筋按化学成分分类,可分为碳素钢和普通低合金钢。 2钢筋按加工方法分类,可分为a.热轧钢筋;b.热处理钢筋;c.冷加工钢筋(冷拉钢筋、冷轧钢筋、冷轧带肋钢筋和冷轧扭钢筋。) 6.钢筋的力学性能 物理力学指标:(1)两个强度指标:屈服强度,结构设计计算中强度取值主要依据;极限抗拉强度,材料实际破坏强度,衡量钢筋屈服后的抗拉能力,不能作为计算依据。(2)两个塑性指标:伸长率和冷弯性能:钢材在冷加工过程和使用时不开裂、弯断或脆断的性能。 7.钢筋和混凝土共同工作的的原因:(1)混凝土和钢筋之间有着良好的黏结力;(2)二者具有相近的温度线膨胀系数;(3)在保护层足够的前提下,呈碱性的混凝土可以保护钢筋不易锈蚀,保证了钢筋与混凝土的共同作用。 第二章 结构按极限状态法设计计算的原则 1.结构概率设计的方法按发展进程划分为三个水准:a.水准Ⅰ,半概率设计法,只对影响结构可靠度的某些参数,用数理统计分析,并与经验结合,对结构的可靠度不能做出定量的估计;b.水准Ⅱ,近似概率设计法,用概率论和数理统计理论,对结构、构件、或截面设计的可靠概率做出近似估计,忽略了变量随时间的关系,非线性极限状态方程线性化;c.水准Ⅲ,全概略设计法,我国《公桥规》采用水准Ⅱ。 2.结构的可靠性:指结构在规定时间(设计基准期)、规定的条件下,完成预定功能的能力。 可靠性组成:安全性、适用性、耐久性。 可靠度:对结构的可靠性进行概率描述称为结构可靠度。 3.结构的极限状态:当整个结构或构件的一部分超过某一特定状态而不能满足设计规定的某一功能要求时,则此特定状态称为该功能的极限状态。 极限状态分为承载能力极限状态、正常使用极限状态和破坏—安全状态。 承载能力极限状态对应于结构或构件达到最大承载力或不适于继续承载的变形,具体表现:a.整个构件或结构的一部分作为刚体失去平衡;b.结构构件或连接处因超过材料强度而破坏;c.结构转变成机动体系;d.结构或构件丧失稳定;e.变形过大,不能继续承载和使用。 正常使用极限状态对应于结构或构件达到正常使用或耐久性能的某项规定限值,具体表现:a.由于外观变形影响正常使用;b.由于耐久性能的局部损坏影响正常使用;c.由于震动影响正常使用;d.由于其他特定状态影响正常使用。 破坏—安全状态是指偶然事件造成局部损坏后,其余部分不至于发生连续倒塌的状态。(破坏—安全极限状态归到承载能力极限状态中) 4.作用:使结构产生内力、变形、应力、应变的所有原因。 作用分为:永久作用、可变作用和偶然作用。 永久作用:在结构使用期内,其量值不随时间变化,或其变化与平均值相比可忽略不计的作用 可变作用:在结构试用期内,其量值随时间变化,且其变化值与平均值相比较不可忽略的作用。

(施工手册第四版)第二章常用结构计算2-1 荷载与结构静力计算表

2常用结构计算 2-1荷载与结构静力计算表 2-1-1荷载 1.结构上的荷载 结构上的荷载分为下列三类: (1)永久荷载如结构自重、土压力、预应力等。 (2)可变荷载如楼面活荷载、屋面活荷载和积灰荷载、吊车荷载、风荷载、雪活载等。 (3)偶然荷载如爆炸力、撞击力等。 建筑结构设计时,对不同荷载应采用不同的代表值。 对永久荷载应采用标准值作为代表值。 对可变荷载应根据设计要求,采用标准值、组合值、频遇值或准永久值作为代表值。 对偶然荷载应按建筑结构使用的特点确定其代表值。 2.荷载组合 建筑结构设计应根据使用过程中在结构上可能同时出现的荷载,按承载能力极限状态和正常使用极限状态分别进行荷载(效应)组合,并应取各自的最不利的效应组合进行设计。 对于承载能力极限状态,应按荷载效应的基本组合或偶然组合进行荷载(效应)组合。 γ0S≤R(2-1) 式中γ0——结构重要性系数; S——荷载效应组合的设计值; R——结构构件抗力的设计值。 对于基本组合,荷载效应组合的设计值S应从下列组合值中取最不利值确定: (1)由可变荷载效应控制的组合 (2-2)式中γG——永久荷载的分项系数;

γQi——第i个可变荷载的分项系数,其中Y Q1为可变荷载Q1的分项系数; S GK——按永久荷载标准值G K计算的荷载效应值; S QiK——按可变荷载标准值Q ik计算的荷载效应值,其中S Q1K为诸可变荷载效应中起控制作用者; ψci——可变荷载Q i的组合值系数; n——参与组合的可变荷载数。 (2)由永久荷载效应控制的组合 (2-3)(3)基本组合的荷载分项系数 1)永久荷载的分项系数 当其效应对结构不利时: 对由可变荷载效应控制的组合,应取1.2; 对由永久荷载效应控制的组合,应取1.35; 当其效应对结构有利时: 一般情况下应取1.0; 对结构的倾覆、滑移或漂浮验算,应取0.9。 2)可变荷载的分项系数 一般情况下应取1.4; 对标准值大于4kN/m2的工业房屋楼面结构活荷载应取1.3。 对于偶然组合,荷载效应组合的设计值宜按下列规定确定:偶然荷载的代表值不乘分项系数;与偶然荷载同时出现的其他荷载可根据观测资料和工程经验采用适当的代表值。 3.民用建筑楼面均布活荷载标准值及其组合值、频遇值和准永久值系数(见表2-1) 民用建筑楼面均布活荷载标准值及其组合值、频遇值和准永久值系数表2-1 类别 标 准值 ( 组 合值系数 频 遇值系数 准永 久值系数

结构设计荷载计算(模板)

第三医院荷载计算 面层荷载 一、屋面荷载:(上人屋面) 25厚水泥花砖0.60(kN/m2) 20厚水泥砂浆20×0.020=0.40(kN/m2) 防水层0.40(kN/m2) 20厚水泥砂浆找平层20×0.020=0.40(kN/m2) 水泥焦渣找坡层 1.60(kN/m2) 60厚高密度聚苯板保温层2×0.06=0.12(kN/m2) 水泥砂浆找平层0.40(kN/m2) 120厚钢筋混凝土屋面板25×0.12=3.00(kN/m2) 170厚钢筋混凝土屋面板2) 吊顶0.50(kN/m2) 静荷载总计2) 活荷载总计(上人屋面) 2.00(kN/m2) 二、首层楼面荷载:

隔墙折算板面荷载 2.50(kN/m2) 100厚面层25×0.100=2.50(kN/m2) 结构层200厚钢筋混凝土板25×0.200=5.00(kN/m2) 吊顶0.50(kN/m2) 静荷载总计10.50(kN/m2) 活荷载(考虑施工堆载)总计 5.00(kN/m2) 三、首层(CT、MRI有地沟)楼面荷载 100厚面层25×0.100=2.50(kN/m2) 结构层200厚钢筋混凝土板25×0.200=5.00(kN/m2) 吊顶0.50(kN/m2) 静荷载总计8.00(kN/m2) 活荷载总计8.00(kN/m2) CT、MRI围护墙恒荷载30.00(kN/m2) 四、四层以下楼面荷载:(生化、免疫、试验室、护士站等) 隔墙折算板面荷载 2.50(kN/m2) 100厚面层25×0.100=2.50(kN/m2) 结构层120厚钢筋混凝土板25×0.120=3.00(kN/m2) 结构层170厚钢筋混凝土板2) 吊顶0.50(kN/m2) 静荷载总计2)

结构设计原理计算方法

结构设计原理案例计算步骤 一、单筋矩形截面受弯构件正截面承载力计算 计算公式: ——水平力平衡 ()——所有力对受拉钢筋合力作用点取矩() ()——所有力对受压区砼合力作用点取矩()使用条件: 注:/,&& 计算方法: ㈠截面设计yy 1、已知弯矩组合设计值,钢筋、混凝土强度等级及截面尺寸b、h,计算。 ①由已知查表得:、、、; ②假设; ③根据假设计算; ④计算(力矩平衡公式:); ⑤判断适用条件:(若,则为超筋梁,应修改截面尺寸或提 高砼等级或改为双筋截面); ⑥计算钢筋面积(力平衡公式:); ⑦选择钢筋,并布置钢筋(若 ,则按一排布置); 侧外 ⑧根据以上计算确定(若与假定值接近,则计算,否则以的确定值作 为假定值从③开始重新计算); ⑨以的确定值计算; ⑩验证配筋率是否满足要求(,)。 2、已知弯矩组合设计值,材料规格,设计截面尺寸、和钢筋截面面积。 ①有已知条件查表得:、、、; ②假设,先确定; ③假设配筋率(矩形梁,板); ④计算(,若,则取); ⑤计算(令,代入); ⑥计算(,&&取其整、模数化); ⑦确定(依构造要求,调整); ⑧之后按“1”的计算步骤计算。 ㈡承载力复核 已知截面尺寸b、,钢筋截面面积,材料规格,弯矩组合设计值,

所要求的是截面所能承受的最大弯矩,并判断是否安全。 ①由已知查表得:、、、; ②确定; ③计算; ④计算(应用力平衡公式:,若,则需调整。令, 计算出,再代回校核); ⑤适用条件判断(,,); ⑥计算最大弯矩(若,则按式计算最大弯矩) ⑦判断结构安全性(若,则结构安全,但若破坏则破坏受压区,所以应以受压区控制设计;若,则说明结构不安全,需进行调整——修改尺寸或提高砼等级或改为双筋截面)。 二、双筋矩形截面梁承载力计算 计算公式: , ,()+() 适用条件: (1) (2) 注:对适用条件的讨论 ①当&&时,则应增大截面尺寸或提高砼等级或增加的用量(即 将当作未知数重新计算一个较大的);当时,算得的即为安全要 求的最小值,且可以有效地发挥砼的抗压强度,比较经济; ②当&&时,表明受压区钢筋之布置靠近中性轴,梁破坏时应变较 小,抗压钢筋达不到其设计值,处理方法: a.《公桥规》规定:假定受压区混凝土压应力的合力作用点与受压区钢筋合力作用 点重合,并对其取矩,即 令2,并 () 计算出; b.再按不考虑受压区钢筋的存在(即令),按单筋截面梁计算出。 将a、b中计算出的进行比较,若是截面设计计算则取其较小值,若是承载能力复核则取其较大值。 计算方法: ㈠截面设计 1.已知截面尺寸b、h,钢筋、混凝土的强度等级,桥梁结构重要性系数,弯矩组合 设计值,计算和。 步骤: ①根据已知查表得:、、、、; ②假设、(一般按双排布置取假设值); ③计算;

《结构设计原理》述课

《结构设计原理》述课 一、前言 (一)课程基本信息 1.课程名称:结构设计原理 2.课程类别:专业平台课 3.学时:两学期总计84学时,2周课程设计 4.适用专业:交通工程 (二)课程性质 1.课程性质 结构是土木工程中最基本的元素,《结构设计原理》课程围绕着工程中常用的钢筋混凝土结构、预应力混凝土结构、圬工结构的设计计算进行理论和实践性的教学。 《结构设计原理》是土木工程专业的一门重要的专业必修课程,是学生运用已学的《工程制图》、《理论力学》、《材料力学》、《结构力学》、《工程材料》等知识,初步解决结构原理及结构设计问题的一门课程。其特点是:兼具理论性和实用性且承前启后,为学好专业课打好基础的课程,也是学生感到比较难学的一门课程。所以《结构设计原理》及其系列课程一直是土木工程专业的主干课,从开设的《结构设计原理》、《结构设计原理》课程设计,到毕业设计都渗透结构设计的理论,课程贯穿交通工程专业教学的所有环节。 本课程主要介绍钢筋混凝土结构、预应力混凝土结构和圬工结构的各种基本构件受力特性、设计原理、计算方法和构造设计。 2.本课程的作用 本课程主要培养学生掌握钢筋混凝土基本构件和结构的设计计算方法和与施工及工程质量有关的结构的基本知识,培养学生具有识读桥梁结构图纸的识读能力、基本构件的设计能力、使用和理解各种结构设计规范能力、解决工程结构实际问题的能力、综合分析问题的能力、学习能力和与人合作等能力,从而为继续学习后续专业课程奠定扎实的基础,以进一步培养学生树立独立思考、吃苦耐劳、勤奋工作的意识以及诚实、守信的优秀品质,为今后从事施工生产一线的工作奠定良好的基础。 本课程以“材料力学”、“理论力学”和“工程材料”的学习为基础共同打造学生的专业核心技能。

荷载计算表

做设计经常取平均值: 设计关键参数的确定: 基本风压=0.35N/m2 抗震设防烈度=6度,0.05g,,一组 楼板面荷载: 恒载:假定楼板厚度均为120mm,0.12x25=3KN/m2 附加面层恒载一般是:1.5~2.0kn 3+2=5KN/M2 活载:查荷载规范:民用建筑楼面均布活荷载2.0 屋面荷载:恒载:假定楼板厚度均为120mm,0.12x25=3KN/m2 附加面层恒载一般是:3.5kn 3+3.5=6.5KN/M2 活载:查荷载规范:民用建筑楼面均布活荷载3.0 隔墙荷载:14kn/m3x0.2(墙厚)=2.8kn/m2(砖墙重) 0.04(抹灰厚)x20kn/m3=0.8kn/m2(抹灰) 2.8+0.8= 3.6kn/m2 实心墙:3.6x3(墙高)=10.8KN/M 有窗户:7.0 目录 第一部分主体设计 一、计算依据 二、荷载计算 三、内力分析及结构设计 第二部分人防设计 一、计算依据 二、荷载计算 三、内力分析及配筋设计 第三部分基础设计 一、计算依据 第一部分:主体设计: 一、计算依据: 1.我国现行的《建筑结构荷载规范(GB50009-2001)》、《混凝土结构设计规范(GB50010-2002)》、《建筑抗震设计规范(GB50011-2001)》、《高层建筑混凝土结构技术规程(JGJ 3-2002)》以及《建筑用料说明(陕02J)》。 2.建筑施工图中的用料说明表;以及相关专业的互提资料。 二、荷载计算: 1.各层楼板面荷载计算: 根据建施平面及功能布置,以及(GB50038-2001)相关章节之规定。未注荷载单位为kN/m2(面荷载)。 1)地下室顶板荷载统计:

荷载结构设计与方法课后思考题答案(白国良)

.. 第一章 1.工程结构的基本功能是什么? ①能为人类生活和生产提供良好的服务,满足人类使用要求,审美要求的结构空间和实体 ②承受和低于结构服役过程中可能出现的各种环境作用2.说明直接作用和间接作用的区别 ①直接作用直接以力的不同集结形式作用于结构,包括结构的自重,行人及车辆的自重,各种物品及设备的紫红,风压力,土压力,雪压力,水压力,冻胀力,积灰荷载德不孤,这一类作用通常也称为荷载 ②间接作用不直接以力的某种集结形式出现,而是引起结构的振动,约束变形或外加变形,但也能使结构产生内力或变形等效应,包括温度变化,材料的收缩和膨胀变形。地基不均匀沉降、地震、焊接等。 3.什么是作用效应? 作用在结构上产生的内力和变形称为作用效应 4.作用有哪些类型? ①按随时间变化分类:永久作用、可变作用、偶然作用②按随空间变化分类:固定作用、自由作用 ③按结构的反应特点分类:静态作用、 动态作用 5.永久作用、可变作 用主要是指哪些荷 载 永久作用指在设计 基准期内作用随时 间变化或其变化与 平均值相比可以忽 略不计的作用。如 结构自重、土压力、 水位不变的水压 力、预加压力、地 基变形、钢材焊接、 混凝土收缩变形 等。 可变作用指在设计 基准期内作用随时 间变化,且其变化 与平均值相比不可 忽略的作用。如结 构施工过程中的人 员和物体重力、车 辆重力、吊车荷载、 服役结构中的人越 和设备重力、风荷 载、雪荷载、冰荷 载、波浪荷载、水 位变化的水压力、 温度变化等。 6.我国结构设计方 法是怎样演变的? 容许应力法,破损 阶段法,极限状态 设计法和概率极限 状态设计四个阶 段。 7.何为概率极限状 态设计法? 是以概率论为基 础,视作用效应和 影响结构拉力的主 要因素为随机变 量,根据统计分析 确定可靠概率来度 量结构可靠性的结 构设计法。 第二章 自重:指组成结构 的材料自身重量产 生的重力,属于永 久作用。 土的自重应力:颗 粒间压力在土体中 引起的应力。 雪压:是指单位面 积上的积雪重量。 基本雪压:是指当 地空旷平坦地面上 根据气象资料记录 资料经统计得到的 在结构使用期间可 能出现的最大雪压 值。 基本雪压如何确 定:①当气象台有 雪压记录时,应直 接采用雪压数据计 算基本雪压②当无 雪压记录时,可间 接采用积雪深度, 按公式s=hρg③积 雪对于局部,变异 特别大的地区,以 及高原地形的山 区,应予以专门的 调查和特殊处理。 车辆荷载分类:车 辆荷载属于基本可 变荷载,列车活荷 载、汽车或平板挂 车或履带车荷载 哪些属于楼面、屋 面活荷载? ①楼面活荷载;指 房屋中生活或工作 的人群、家具、用 品、设施等产生的 重力荷载。可分为 永久性和临时性。 如住宅内的家具、 物品,工业厂房内 的机器,设备和堆 料,常住人员自重 属于永久性活荷 载。聚会的人群、 维修时的工具和材 料的堆积、室内扫 除时家具的聚集属 于临时性活荷载。 ②房屋活荷载包括 房屋均布活荷载、 屋面积灰荷载 1.整体结构的自重 如何计算? 在计算结构整体的 自重时,应根据结 构各构建的材料重 度的不同将结构认 为划分为多种容易 计算的基本构建, 先计算基本构建的 重度,然后叠加即 得到结构的总自 重。(公式) 2.什么是土的有效 重度? 土的重力减去水的 浮力,称为土的有 效重度。地下土单 位体积的有效重力 称为土的有效重 度。 3.影响基本雪压的 主要因素是什么? 积雪深度,积雪时 间和当地的地理气 候条件 4.影响屋面雪压的 主要因素及原因是 什么 ①风:下雪时,风 会把部分本将飘落 在屋面上的雪吹到 附近的地面上或其 他较低的物体上, 称为风的飘积作 用。 ②屋面坡度:屋面 雪荷载随屋面坡度 的增加而减小,主 要原因是风的作用 和雪滑移。 ③屋面温度:各种 采暖屋的积雪一般 比非采暖屋上,这 是因为屋面散发的 热量使部分雪融 化,同时也使雪的 滑移容易发生。 5.为何对楼面活荷 载进行折减? 作用在露面上的活

荷载与与结构设计原则复习

荷载与与结构设计原则复习

第一章荷载类型 1.荷载类型: 1.荷载与作用:荷载、直接作用、间接作用、效应 2.作用的分类:按随时间的变异、随空间位置的变异和结构的反应分类 例如: 1、由各种环境因素产生的直接作用在结构上的各种力称为荷载。(√) 2、由各种环境因素产生的间接作用在结构上的各种力称为荷载。(×) 3、什么是荷载? (荷载的定义是什么?)?) 答:由各种环境因素产生的直接作用在结构的各种力称为荷载。 4、土压力、风压力和水压力是荷载,由爆炸、离心作用等产生的作用在物体上的惯性力不是荷载。(×)

5、什么是效应? 答:作用在结构上的荷载使结构产生的内力、变形、裂缝等就叫做效应。 6、什么是作用?直接作用和间接作用? 答:使结构产生效应(结构或构件的内力、应力、位移、应变、裂缝等)的各种因素总称为作用。 可归结为作用在结构上的力的因素称为直接作用; 不是作用力但同样引起结构效应的因素称为间接作用。 7、只有直接作用才能引起结构效应,间接作用并不能引起结构效应。(×) 8、严格意义上讲,只有直接作用才能称为荷载。(√) 9、以下几项中属于间接作用的是C C 10、预应力属于 A 。温度变化属于 B 。 A、永久作用 B、静态作用 C、直接作用 D、动态作用

第二章重力 1.重力(静载) 1)结构自重 2)土的自重应力 3)雪荷载(基本雪压、雪重度、屋面的雪压) 例如: 1、基本雪压是指当地空旷平坦地面上根据气象记录资料经统计得到的在结构使用期间可能出现的最大雪压值。(√) 2、我国基本雪压分布图是按照 C 一遇的重现期确定的。 A、10年 B、30年 C、50年 D、100年 3、虽然最大雪重度和最大雪深两者有很密切的关系,但是两者不一定是同时出现。(√) 4、造成屋面积雪与地面积雪不同的主要原因有:风、屋面形式和屋面散热等。

模板自重荷载参数

竭诚为您提供优质文档/双击可除 模板自重荷载参数 篇一:模板荷载计算 3.现浇梁板支模方案 现浇板采用15mm厚双面覆膜竹胶板做面板,下铺方木间距150-200mm,板支撑采用满堂红碗扣钢管架,钢管架立杆间距900mm。面板四周交接处用海绵毡条塞实,胶带封严以防漏浆。见图4-6。 图 4-6 现浇板支撑示意图图4-7 所有次梁及外墙简支梁、阳台挑梁配置定型钢模板,其他简支梁配置木模板。梁模面板:直梁的底模与侧模均采用15mm厚多层板,龙骨:采用50×70mm单面刨光方木。梁侧模、梁底模按图纸尺寸进行现场加工,由塔吊车运至作业面组合拼装。然后加方楞并利用支撑体系将梁两侧夹紧,当梁高大于500时,加对拉螺 杆加固,在梁h/2处加Φ12穿墙螺栓@600。梁底钢管支撑加固。所有跨度大于或等于4米的梁,均需在跨中起拱

0.3%l,悬挑梁均需在悬臂端起拱0.6%。梁板支撑固定系统采用Φ48钢管和扣件支撑固定。现浇板模板采用满堂红钢管脚手架支撑架,梁模支撑当梁断面小于400×700mm,层高小于4.5米时,可采用双排立杆。 4.楼梯支模方案 采用木模板。板底、板侧模板均采用1.5mm双面覆膜竹胶板做面板,50×70mm方木板楞;踏步板配置木模板,用2根50×70做踏步板背楞,横向踏步梯板宽度用15mm多层板板按踏步设计尺寸。楼梯模板采用钢管架子支撑。 4.4.2施工准备 1.模板:1.5㎝双面覆膜竹胶板。 2.钢管:采用Φ48和铸铁扣件,作为模板的支撑体系。 3.其他支模用具:Φ32锥形/Φ14对拉螺栓(地下外墙带止水片)、80×100mm方木、钢筋撑子、脱模剂、海绵条(单、双面胶条)、硬质塑料套管、钢丝网片、各种连接螺栓等。 4.机具:空压机、角磨机、扳手、盒尺等。 4.4.7模板计算书(含模板支撑验算) 1.现浇板模板计算 楼板厚度100mm、120mm模板板面采用15mm层板,次龙骨采用50×70mm,e=104n/mm2,i=bh3/12=40×703/12=1.63×104mm4,方木主龙骨采用50×70mm方木。 1)荷载计算

混凝土结构设计原理 课件及试题10

第十章混凝土结构按《公路钢筋混凝土及预应力混凝土桥涵设计规 范》的设计计算 本章的意义和内容: 本章讲述了桥涵工程混凝土结构的材料、计算原理、基本构件(受弯构件、轴心受力构件、偏心受力构件、受扭构件、预应力混凝土构件)的承载能力计算和构件裂缝宽度、挠度验算以及构造要求。通过本章的学习,使学生了解混凝土按《公路钢筋混凝土及预应力混凝土桥涵设计规范》进行构件设计计算的方法、这种方法与房屋工程中混凝土构件的设计计算方法有何相同和不同之处,为进行桥涵工程混凝土结构设计计算奠定基础。并掌握以下重点、难点。 1.桥涵工程混凝土结构设计也采用以概率理论为基础的极限状态设计方法,但是由于涵桥结构所处环境、荷载性能以及结构的特点与房屋结构有较大的差异,因此《公路钢筋混凝土及预应力混凝土桥涵设计规范》规定的结构目标可靠指标比房屋结构的大;桥涵工程的材料强度设计值比房屋结构的小。 2.涵桥工程受弯构件不但要进行持久状态下的设计计算,而且还要进行短暂状态下的计算,受弯构件纵向受力钢筋的最小配筋率与房屋建筑有所不同。 3.土木工程中一般受弯构件斜截面抗剪承载力计算基于同一基本理论,但涵桥工程受弯构件斜截面抗剪承载力计算方法与房屋建筑工程不同。涵桥工程受弯构件斜截面抗剪承载力计算是采用单一公式(房屋建筑是两套公式),该公式适用矩形、T形、I字形截面构件,并且考虑了构件截面受压翼缘的抗剪作用,也考虑了受弯纵向受力钢筋的抗剪作用 4.由于桥梁结构受弯构件截面形式、剪力图的特点,桥涵工程受弯构件斜截面抗剪承载能力计算时,首先按斜截面始端的截面尺寸和规定的剪力值进行计算,然后确定斜截面末端的位置,再根据斜截面末端截面尺寸和规定的剪力取值对斜截面末端进行抗剪承载能力验算。 5.桥涵工程偏心受压构件正截面承载能力计算时,混凝土强度采用棱柱体抗压强度,而且不考虑附加偏心距的影响。 6.桥涵工程混凝土构件的裂缝宽度、受弯刚度计算公式的建立方法、计算方法与房屋建筑工程不同,为了减少受弯构件的挠度,经常需要设置预拱度,预拱度的大小为永久荷载与一半可变荷载频遇值引起的挠度。 在预应力混凝土构件的设计当中,桥涵工程中预应力混凝土构件的预应力损失的排序、预应力损失的组合与房屋建筑工程不同。 一、概念题 (一)填空题 1.《桥规》规定,钢筋混凝土构件的混凝土标号不应低于,当采用HRB400、KL400级钢筋时不应低于;预应力混凝土构件的混凝土标号不应低于; 2.《桥规》规定,钢筋混凝土构件中的普通钢筋应选用、、及。 3.桥涵工程结构设计采用以概率论为基础的方法,极限状态分为和。桥涵工程设计基准期为。 4.《桥规》规定,在进行承载能力极限状态和正常使用极限状态设计时,应考虑、和三种设计状态。 5.和房屋建筑工程相比,桥涵结构的目标可靠度指标值相对。

相关文档
最新文档