自然数的和,平方和,立方和

自然数的和,平方和,立方和
自然数的和,平方和,立方和

For personal use only in study and research; not for commercial use

求:①自然数(一次方)的和,即:n ++++ 321

②自然数平方(二次方)的和,即:2222321n ++++

③自然数立方(三次方)的和,即:3333321n ++++

求①式可用2)1(+n 来计算;求②式可用3)1(+n 来计算;求③式可用4)1(+n 来计算

∵12)1(22++=+n n n

∴ 1121222+?+=

……

将以上等式两边相加得:

∴ n ++++ 3212

)1(+=

n n ②

∵3)1(+n = 13323+++n n n

∴ 1131312233+?+?+=

…… 3)1(+n = 13323+++n n n

将以上等式两边相加得:

)321(32222n ++++? = 3)1(+n —??

????++?+n n n 2)1(313 ∴ 2222321n ++++ =

6

)12)(1(++n n n ③

用同样的方法,可得: 3333321n ++++ = 4)1(22+n n = 22)1(??

? ??+n n 自然数的立方和等于自然数和的平方。

利用上面三个结论,我们就可以计算下面数列的和了。

④ )321()321()21(1n +++++++++++

∵n ++++ 3212)1(+=n n = n n 2

1212+

∴ 12

112112?+?= ……

n ++++ 321 = n n 2

1212+ 将上面各式左右两边分别相加,得:

)321()321()21(1n +++++++++++ = )321(2

12222n ++++ = ??

? ??++++2)1(6)12)(1(21n n n n n =

6

)2)(1(++n n n ⑤ )1(433221+++?+?+?n n = 3

)2)(1(++n n n ⑥ )2)(1(543432321++++??+??+??n n n = 4)3)(2)(1(+++n n n n

仅供个人用于学习、研究;不得用于商业用途。

For personal use only in study and research; not for commercial use.

Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.

Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.

толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.

以下无正文

自然数平方数列和立方数列求和公式

自然数平方数列和立方数列求和公式怎么推导?即: (1) 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 (2) 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 推导过程如下: 一. 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3=2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ...... n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n) n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+... +n) n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1 n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2 3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1) =(n/2)(n+1)(2n+1) 故:1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 二. 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 证明如下: (n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2] =(2n^2+2n+1)(2n+1)

自然数平方和公式的推导与证明

※自然数之和公式的推导 法计算1,2,3,…,n,…的前n项的和: 由 1 + 2 + … + n-1 + n n + n-1 + … + 2 + 1 (n+1)+(n+1)+ … +(n+1)+(n+1) 可知 上面这种加法叫“倒序相加法” ※等差数列求和公式的推导 一般地,称为数列的前n项的和,用表示,即 1、思考:受高斯的启示,我们这里可以用什么方法去求和呢? 思考后知道,也可以用“倒序相加法”进行求和。 我们用两种方法表示: ① ② 由①+②,得

由此得到等差数列的前n项和的公式 对于这个公式,我们知道:只要知道等差数列首项、尾项和项数就可以求等差数列前n项和了。 2、除此之外,等差数列还有其他方法(读基础教好学生要介绍) 当然,对于等差数列求和公式的推导,也可以有其他的推导途径。例如: = = = = 这两个公式是可以相互转化的。把代入中,就可以得到 引导学生思考这两个公式的结构特征得到:第一个公式反映了等差数列的任意的第k项与倒数第k项的和等于首项与末项的和这个内在性质。第二个公式反映了等差数列的前n项和与它的首项、公差之间的关系,而且是关于n的“二次 函数”,可以与二次函数进行比较。这两个公式的共同点都是知道和n,不同 点是第一个公式还需知道,而第二个公式是要知道d,解题时还需要根据已知条件决定选用哪个公式。

自然数平方和公式的推导与证明(一) 12+22+32+…+n2=n(n+1)(2n+1)/6,在高中数学中是用数学归纳法证明的一个命题,没有给出其直接的推导过程。其实,该求和公式的直接推导并不复杂,也没有超出初中数学内容。 一、设:S=12+22+32+…+n2 =12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2,此步设题是解题另设:S 1 的关键,一般人不会这么去设想。有了此步设题, 第一:S =12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2中的12+22+32+…+n2=S,1 (n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以展开为(n2+2n+12)+( n2+2×2n+22) +( n2+2×3n+32)+…+( n2+2×nn+n2)=n3+2n(1+2+3+…+n)+ 12+22+32+…+n2,即 =2S+n3+2n(1+2+3+...+n).. (1) S 1 =12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以写为: 第二:S 1 =12+32+52…+ (2n-1)2+22+42+62…+(2n)2,其中: S 1 22+42+62...+(2n)2=22(12+22+32+...+n2)=4S.. (2) 12+32+52…+(2n-1)2=(2×1-1)2+(2×2-1)2+(2×3-1) 2+…+ (2n-1) 2 = (22×12-2×2×1+1) +(22×22-2×2×2+1)2+(22×32-2×2×3+1)2+…+ (22×n2-2×2×n+1)2 =22×12+22×22+22×32+…+22×n2-2×2×1-2×2×2-2×2×3-…-2×2×n+n =22×(12+22+32+…+n2)-2×2 (1+2+3+…+n)+n =4S-4(1+2+3+…+n)+n……………………………………………………………..(3 ) 由(2)+ (3)得: =8S-4(1+2+3+...+n)+n.. (4) S 1 由(1)与(4)得:2S+ n3+2n(1+2+3+…+n) =8S-4(1+2+3+…+n)+n 即:6S= n3+2n(1+2+3+…+n)+ 4(1+2+3+…+n)-n = n[n2+n(1+n)+2(1+n)-1] = n(2n2+3n+1)

平方和公式

平方和公式-CAL-FENGHAI.-(YICAI)-Company One1

平方立方和公式 平方类公式: 两数和的平方;(a+b)2 =a2+2ab+b2 (a+b)2 - (a-b)2=4ab 两数差的平方;(a-b)2 =a2-2ab+b2 a2+b2 = (a+b)2 -2ab = (a-b)2+2ab 平方差公式:a2 - b2=(a+b)(a-b) 三项平方公式;(a+b+c)2 = a2 +b2 +c2+2ab+2bc+2ac 立方类公式 1.立方和公式;a3+b3=(a+b)(a2-ab+b2) 2.立方差公式;a3-b3=(a-b)(a2+ab+b2) 3.三项立方和公式;a3+b3 +c3-3abc=(a+b+c)(a2 +b2 +c2+ab+bc+ac)完全立方公式:(a+b)3=a3+3ab2+3a2b+b3 (a - b)3=a3+3ab2- 3a2b-b3 平方、立方和累加 正整数范围中

公式证明 :迭代法一 我们知道:0次方和的求和公式 即 1次方和的求和公式 即 2次方和的求和公式 即 平方和公式,此公式可由同种方法得出,取公式 立方和: a3+b3 =a3+a2b-a2b+b3 =a2(a+b )-b (a2-b2) =a2(a+b )-b (a+b )(a-b ) =(a+b )[a2-b (a-b )] =(a+b )(a2-ab+b2) 立方差: a3-b3 =a 3-b 3+a 2b-a 2b =a 2(a-b)+b(a 2-b 2) =a 2(a-b)+b(a+b)(a-b) =[a2+b(a+b)](a-b) =(a-b)(a 2+ab+b 2)

前n个自然数的平方和及证明

帕斯卡与前n 个自然数的平方和 十七世纪的法国数学家帕斯卡(Pascal B.,1623.6.19~1662.8.19)想出了一个新的很妙的方法能求出前n 个自然数的平方和。这个方法是这样的: 利用和的立方公式,我们有 (n +1)3=n 3+3n 2+3n +1, 移项可得 (n +1)3 -n 3=3n 2+3n +1, 此式对于任何自然数n 都成立。 依次把n =1,2,3,…,n -1,n 代入上式可得 23 -13=3?12+3?1+1, 33 -23=3?22+3?2+1, 43 -33=3?32+3?3+1, …………………………… n 3-(n -1)3=3(n -1)2+3(n -1)+1, (n +1)3 -n 3=3n 2+3n +1, 把这n 个等式的左边与右边对应相加,则n 个等式的左边各项两两相消,最后只剩下(n +1)3 - 1;而n 个等式的右边各项,我们把它们按三列相加,提取公因数后,第一列出现我们所要计算的前n 个自然数的平方和,第二列出现我们在上一段已经算过的前n 个自然数的和,第三列是n 个1。因而我们得到 (n +1)3 -1=3S n + 2)1(3+n n +n , 现在这里S n =12+22+…+n 2。 对这个结果进行恒等变形可得 n 3+3n 2+3n =3S n + 2)1(3+n n +n , 2n 3+6n 2+6n =6S n +3n 2+3n +2n 移项、合并同类项可得 6S n =2n 3+3n 2+n =n (n +1)(2n +1), ∴S n = 61n (n +1)(2n +1), 即 12+22+32+…+n 2=6 1n (n +1)(2n +1)。 这个方法把所要计算的前n 个自然数的平方和与已知的前n 个自然数的和及其它一些已知量通过一个方程联系起来,然后解方程求出所希望得到的公式,确实是很妙的。

100以内的平方数与立方数

平方表 平方根平方数平方根平方数平方根平方数平方根平方数 1 1 26 676 51 2601 76 5776 2 4 27 729 52 2704 77 5929 3 9 28 78 4 53 2809 78 6084 4 16 29 841 54 2916 79 6241 5 25 30 900 55 3025 80 6400 6 36 31 961 56 3136 81 6561 7 49 32 1024 57 3249 82 6724 8 64 33 1089 58 3364 83 6889 9 81 34 1156 59 3481 84 7056 10 100 35 1225 60 3600 85 7225 11 121 36 1296 61 3721 86 7396 12 144 37 1369 62 3844 87 7569 13 169 38 1444 63 3969 88 7744 14 196 39 1521 64 4096 89 7921 15 225 40 1600 65 4225 90 8100 16 256 41 1681 66 4356 91 8281 17 289 42 1764 67 4489 92 8464 18 324 43 1849 68 4624 93 8649 19 361 44 1936 69 4761 94 8836 20 400 45 2025 70 4900 95 9025 21 441 46 2116 71 5041 96 9216 22 484 47 2209 72 5184 97 9409 23 529 48 2304 73 5329 98 9604 24 576 49 2401 74 5476 99 9801 25 625 50 2500 75 5625 100 10000

平方和立方和公式推导

数学][转载]自然数平方和公式推导及其应用 (2009-07-29 12:13:14) 转载▼ 标 分类:游戏数学 签: 杂 谈 12+22+32+…+n2=n(n+1)(2n+1)/6,在高中数学中是用数学归纳法证明的一个命题,没有给出其直接的推导过程。其实,该求和公式的直接推导并不复杂,也没有超出初中数学内容。 设:S=12+22+32+…+n2 另设:S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2,此步设题是解题的关键,一般人不会这么去设想。有了此步设题,第一: S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2中的12+22+32+…+n2=S, (n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以展开为(n2+2n+12)+( n2+2×2n+22) +( n2+2×3n+32)+…+( n2+2×nn+n2)=n3+2n(1+2+3+…+n)+ 12+22+32+…+n2,即 S1=2S+n3+2n(1+2+3+...+n).. (1) 第二:S1=12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以写为: S1=12+32+52…+ (2n-1)2+22+42+62…+(2n)2,其中: 22+42+62...+(2n)2=22(12+22+32+...+n2)=4S.. (2) 12+32+52…+(2n-1)2=(2×1-1)2+(2×2-1)2+(2×3-1) 2+…+ (2n-1) 2 = (22×12-2×2×1+1) +(22×22-2×2×2+1)2+(22×32-2×2×3+1)2+…+ (22×n2-2×2×n+1)2 =22×12+22×22+22×32+…+22×n2-2×2×1-2×2×2-2×2×3-…-2×2×n+n =22×(12+22+32+…+n2)-2×2 (1+2+3+…+n)+n =4S-4(1+2+3+...+n)+n.. (3) 由(2)+ (3)得:S1=8S-4(1+2+3+...+n)+n.. (4) 由(1)与(4)得:2S+ n3+2n(1+2+3+…+n) =8S-4(1+2+3+…+n)+n 即:6S= n3+2n(1+2+3+…+n)+ 4(1+2+3+…+n)-n

自然数平方和公式推导

我们把S(n)拆成数字排成的直角三角形: 1 2 2 3 3 3 4 4 4 4 …… n n …… n 这个三角形第一行数字的和为12,第二行数字和为22,……第n行数字和为n2,因此S(n)可以看作这个三角形里所有数字的和 接下来我们注意到三角形列上的数字,左起第一列是1,2,3,……,n,第二列是2,3,4,……n 这些列的数字和可以用等差数列的前n项和来算出,但是它们共性不明显,无法加以利用 如果求的数字和是1,2,3,……,n,1,2,3,……,n-1这样的,便可以像求 1+(1+2)+(1+2+3)+(1+2+3+……n)一样算出结果,那么该怎样构造出这样的列数字呢 注意上面那个直角三角三角形空缺的部分,将它补全成一个正方形的话,是这样的: 1 1 1 (1) 2 2 2 (2) 3 3 3 (3) 4 4 4 (4) …… n n n …… n 这个正方形所有的数字和为n*(1+n)*n/2=n3/2+n2/2 而我们补上的数字是哪些呢? 1 1 1 …… 1 (n-1)个的1 2 2 …… 2 (n-2)个的2 3 …… 3 (n-3)个的3 ……… n-1 又一个直角三角形,我们只需算出这个三角形的数字和T(n),再用刚才算的正方形数字和减去它,便能得到要求的S(n),即S(n)=n3/2+n2/2-T(n)。而这个三角形的每一列数字和很好算,第一列是1,第二列是1+2,第三列是1+2+3,……,

最后一列(第n-1列)是1+2+3+……+n-1,根据等差数列前n项和公式,这个三角形第n列的数字和是(1+n)*n/2=n2/2+n/2,所以T(n)相当于 (12/2+1/2)+(22/2+2/2)+(32/2+3/2)……+[(n-1)2/2+(n-1)/2] 将各个扩号内的第一项和第二项分别相加,得 T(n)=[12+22+32+……+(n-1)2]/2+(1+2+3+……+n-1)/2 =S(n-1)/2+(n-1)*n/4 =S(n-1)/2+n2/4-n/4 也就是说,S(n)=n3/2+n2/2-T(n) =n3/2+n2/2-S(n-1)-n2/4+n/4 =n3/2+n2/4+n/4-S(n-1)/2 ……① 因为S(n)=12+22+32+……+n2,S(n-1)=12+22+32+……+(n-1)2 可以看出,S(n)=S(n-1)+n2,即S(n-1)=S(n)-n2,代入①式,得到 S(n)=n3/2+n2/4+n/4-S(n)/2+n2/2 3S(n)/2=n3/2+3n2/4+n/4 3S(n)=n3+3n2/2+n/2 S(n)=n3/3+3n2/6+n/6 上面这个式子就是我们熟悉的S(n)=n(n+1)(2n+1)/6 另外一种经典的方法

立方和与立方差公式

立方和与立方差公式集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

第一阶梯 [例1]我们来计算(a+b)(a-b)=a2-ab+ab-b2=a2-b2,这就是说,两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做乘法的平方差公式,利用这个公式计算: (1)(2x+3y)(2x-3y) (2)(1+2a)(1-2a) (3)(2x3+5y2)(2x3-5y2) (4)(-a2-b2)(b2-a2) 提示: 刚开始使用公式,运算格式可分两步走,第一步先按公式特征写出一个"框架",如(1)(2x+3y)(2x-3y) =()2-()2,第二步分析哪项相当于公式中的a,哪项相当于公式中的b,并在"框架"中填数计算。 参考答案: (1)(2x+3y)(2x-3y)=(2x)2-(3y)2=4x2-9y2 (2)(1+2a)(1-2a) =12-(2a)2=1-4a2 (3)(2x3+5y2)(2x3-5y2)=(2x3)2-(5y2)2=4x6-25y4 (4)(-a2-b2)(b2-a2)=(-a2-b2)(-a2+b2)=(-a2)2-(b2)2=a4-b4 说明: 平方差公式(a+b)(a-b)=a2-b2的特征是:

(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。 (2)右边是乘式中两项的平方差:即用相同项的平方减去相反项的平方,在学习平方差公式时还应注意: ①公式中的a和b可以是具体数,也可以是单项式或多项式 ②一定要认真仔细地对题目进行观察研究,把不符合公式标准形式的题目加以调整,使它变化为符合公式标准的形式,如第(4)小题。 [例2]计算(a+b)2和(a-b)2,可知(a+b) 2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2(a-b)2=(a-b)(a-b)=a2-ab-ab+b2=a2-2ab+b2,即(a±b)2=a2±2ab+b2,这就是说,两数和(或差)的平方,等于它们的平方和,加上(或者减去)它们积的2倍,这两个公式叫做乘法的完全平方公式。利用这两个公式计算(1)(x+5)2 (2)(2-y)2 (3)(3a+2b)2 (5) (-a+2b)2 提示: 在套用完全平方公式进行计算时,一定要先弄清题目中的哪个数或式是a,哪个数或式是b。 参考答案: (1)(x+5)2=x2+2·x·5+52=x2+10x+25

自然数的和,平方和,立方和

For personal use only in study and research; not for commercial use 求:①自然数(一次方)的和,即:n ++++ 321 ②自然数平方(二次方)的和,即:2222321n ++++ ③自然数立方(三次方)的和,即:3333321n ++++ 求①式可用2)1(+n 来计算;求②式可用3)1(+n 来计算;求③式可用4)1(+n 来计算 ① ∵12)1(22++=+n n n ∴ 1121222+?+= …… 将以上等式两边相加得: ∴ n ++++ 3212 )1(+= n n ② ∵3)1(+n = 13323+++n n n ∴ 1131312233+?+?+= …… 3)1(+n = 13323+++n n n 将以上等式两边相加得: )321(32222n ++++? = 3)1(+n —?? ????++?+n n n 2)1(313 ∴ 2222321n ++++ = 6 )12)(1(++n n n ③ 用同样的方法,可得: 3333321n ++++ = 4)1(22+n n = 22)1(?? ? ??+n n 自然数的立方和等于自然数和的平方。 利用上面三个结论,我们就可以计算下面数列的和了。 ④ )321()321()21(1n +++++++++++ ∵n ++++ 3212)1(+=n n = n n 2 1212+

∴ 12 112112?+?= …… n ++++ 321 = n n 2 1212+ 将上面各式左右两边分别相加,得: )321()321()21(1n +++++++++++ = )321(2 12222n ++++ = ?? ? ??++++2)1(6)12)(1(21n n n n n = 6 )2)(1(++n n n ⑤ )1(433221+++?+?+?n n = 3 )2)(1(++n n n ⑥ )2)(1(543432321++++??+??+??n n n = 4)3)(2)(1(+++n n n n

平方和与立方和公式推导

1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3 =2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ...... n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3 =2*(2^2+3^2+...+n^2)+[1^2+2^2+... +(n-1)^2]-(2+3+4+...+n) n^3-1 =2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+... +(n-1)^2+n^2]-n^2-(2+3+4+...+n) n^3-1 =3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1 n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2 3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2 =(n/2)(2n^2+2n+n+1) =(n/2)(n+1)(2n+1) 1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 (n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2] =(2n^2+2n+1)(2n+1) =4n^3+6n^2+4n+1 2^4-1^4=4*1^3+6*1^2+4*1+1 3^4-2^4=4*2^3+6*2^2+4*2+1 4^4-3^4=4*3^3+6*3^2+4*3+1 ...... (n+1)^4-n^4=4*n^3+6*n^2+4*n+1 各式相加有 n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+ ...+n^2)+4*(1+2+3+...+n)+n 4*(1^3+2^3+3^3+...+n^3) =(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n =[n(n+1)]^2 1^3+2^3+...+n^3=[n(n+1)/2]^2 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3 =2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ...... n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3 =2*(2^2+3^2+...+n^2)+[1^2+2^2+... +(n-1)^2]-(2+3+4+...+n) n^3-1 =2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+... +(n-1)^2+n^2]-n^2-(2+3+4+...+n) n^3-1 =3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1 n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2 3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2 =(n/2)(2n^2+2n+n+1) =(n/2)(n+1)(2n+1) 1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 (n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2] =(2n^2+2n+1)(2n+1) =4n^3+6n^2+4n+1 2^4-1^4=4*1^3+6*1^2+4*1+1 3^4-2^4=4*2^3+6*2^2+4*2+1 4^4-3^4=4*3^3+6*3^2+4*3+1 ...... (n+1)^4-n^4=4*n^3+6*n^2+4*n+1 各式相加有 n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+ ...+n^2)+4*(1+2+3+...+n)+n 4*(1^3+2^3+3^3+...+n^3) =(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n =[n(n+1)]^2 1^3+2^3+...+n^3=[n(n+1)/2]^2

三角函数公式的推导及公式大全

诱导公式 目录2诱导公式 2诱导公式记忆口诀 2同角三角函数基本关系 2同角三角函数关系六角形记忆法 2两角和差公式 2倍角公式 2半角公式 2万能公式 2万能公式推导 2三倍角公式 2三倍角公式推导 2三倍角公式联想记忆 2和差化积公式 2积化和差公式 2和差化积公式推导 诱导公式 ★诱导公式★ 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈z) 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k2π/2±α(k∈z)的个三角函数值,

求连续自然数平方和的公式 精品

求连续自然数平方和的公式 前面,在“求连续自然数立方和的公式”一中,介绍了用列表法推导公式的过程。这种方法浅显易懂,有它突出的优越性。在“有趣的图形数”一文中,也曾经用图形法推出过求连续自然数平方和的公式: 12+22+32…+n 2=6 ) 12)(1(++n n n 这里用列表法再来推导一下这个公式,进一步体会列表法的优点。 首先,算出从1开始的一些连续自然数的和与平方和,列出下表: n 1 2 3 4 5 6 …… 1+2+3+…+n 1 3 6 10 15 21 …… 12+22+32+…+n 2 1 5 14 30 55 91 …… 然后,以连续自然数的平方和为分子,连续自然数的和为分母,构成分数 A n =n n ++++++++ 3213212 222, 再根据表中的数据,算出分数A n 的值,列出下表: n 1 2 3 4 5 6 …… A n 1 35 37 3 311 313 …… 观察发现,A n 的通项公式是3 1 2+n 。 既然A n =n n ++++++++ 3213212 222,而它的通项公式是312+n ,于是大胆猜想 n n ++++++++ 3213212 222=312+n 。 因为分母1+2+3+…+n =2 ) 1(+n n , 所以 2)1(3212222+++++n n n =31 2+n 。 由此得到 12+22+32…+n 2= 2)1(+n n ×312+n =6 ) 12)(1(++n n n 。 即 12+22+32…+n 2= 6 ) 12)(1(++n n n 。

用数学归纳法很容易证明等式的正确性,这样就轻而易举地推出了求连续自然数平方和的公式。 这个妙不可言的推导过程是数学家波利亚的杰作,关键之处是他运用了“猜想—证明”的思路。联想到当年著名文学家胡适也曾经有过“大胆假设,小心求证”的名言。看来,无论数学也好,文学也好,追求真理的道路是相通的。 这件事对我们教师有什么启示吗?有,那就是:切莫轻视了对学生观察、类比和猜想能力的培养,这往往是培育创新思维的有效途径。

初中常用数的平方立方及开平方开立方表

精品文档 1—30 的平方 2 的1—10 次方 12 = 1 2 222= 484 21= 2 22 = 4 232= 529 22=4 32 = 9 242= 576 23=8 42 = 16 2 252= 625 24= 16 52 = 25 262= 676 25=32 62 = 36 272= 729 26= 64 72 = 49 282= 784 27= 128 82 = 64 2 292= 841 28= 256 92 = 81 2 302= 900 29= 512 102= 100 210 1024 11 2= 121 1—10 的立方 12 2= 144 13= 1 2 132= 169 23= 8 14 2= 196 33= 27 2 152= 225 43= 64 16 2= 256 53= 125 172= 289 63= 216 182= 324 73= 343 2 192= 361 383= 512 20 2= 400 393= 729 21 2= 441 103= 1000 精品文档 1欢迎。下载

1-20 平方根,1-10 立方根表 平方根VI= 1 V2 = 1.4142135623731 V3 = 1.73205080756888 V4 = 2 V5 = 2.23606797749979 V6 = 2.44948974278318 V7 = 2.64575131106459 V8 = 2.82842712474619 V9 = 3 V10 = 3.16227766016838 VII= 3.3166247903554 V12 = 3.46410161513775 V13 = 3.60555127546399 V14 = 3.74165738677394 V15 = 3.87298334620742 V16 = 4 V17 = 4.12310562561766 V18 = 4.24264068711928 V19 = 4.35889894354067 V20 = 4.47213595499958 立方根 3V1 = 1 3V2 = 1.25992104989487 3V3 = 1.44224957030741 3V4 = 1.5874010519682 3V5 = 1.7099759466767 3V6 = 1.81712059283214 3V7 = 1.91293118277239 3V8 = 2 3V9 = 2.0800838230519 3V10 = 2.15443469003188 2欢迎。下载

平方和数列及立方和数列的前n项和的求解与证明

【专题】 平方和数列及立方和数列的前n 项和的求解与证明 【参考公式】 ()3322()a b a b a ab b +=+-+立方和公式: ()3322()a b a b a ab b -=-++立方差公式: 【平方和数列的前n 项求和】 证明 2222(1)(21)1+2+3++=6 n n n n ++… 证明:33222(1)[(1)][(1)(1)]331n n n n n n n n n n --=----+-=-+ 332(1)(2)3(1)3(1)1 n n n n ---=---+ …… 3322132321 -=?-?+ 333210131311 -==?-?+ 把以上n 个式子相加可得: 322223(1+2+3++)3(123)n n n n =-+++++ (32222) 323(123)1+2+3++3 3[(1)]23 1(2332)6 1(1)(21)6n n n n n n n n n n n n n n +++++-=++-==++-=++ …

【立方和数列的前n 项求和】 求和并证明 3333 1+2+3++= n …? 证明:4432(1)4641n n n n n +-=+++ 4432(1)4(1)6(1)4(1)1n n n n n --=-+-+-+ …… 4432214161411-=?+?+?+ 把以上n 个式子相加可得: 4433332222(1)14(1+2+3++)6(1+2+3++)4(123)n n n n n +-=+++++++ …… 2222(1)(21)1+2+3++=6 n n n n ++ … (1)1232 n n n +++++= 443333(1)(21)(1)(1)14(1+2+3++)6[]4[]62 n n n n n n n n ++++-=+++… 33334224(1+2+3++)(1)(1)(1)(21)2(1)(1)n n n n n n n n n n ∴=+-++++++=+… 223333 2(1)(1)1+2+3++[]42n n n n n ++==… 【总结】 2222(1)(21)1+2+3++=6 n n n n ++… 333322(1)1+2+3++=(123)[]2n n n n +++++= …

2017最新立方公式推导

前n个自然数的和: 1+2+...+n=n(n+1)/2 前n个自然数平方和:前n个自然数的和: 1+2+...+n=n(n+1)/2 前n个自然数平方和: n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3=2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ......

n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n) n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+ ...+n) n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1 n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2 3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1) =(n/2)(n+1)(2n+1) 1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 (n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2] =(2n^2+2n+1)(2n+1) =4n^3+6n^2+4n+1 2^4-1^4=4*1^3+6*1^2+4*1+1 3^4-2^4=4*2^3+6*2^2+4*2+1 4^4-3^4=4*3^3+6*3^2+4*3+1 ...... (n+1)^4-n^4=4*n^3+6*n^2+4*n+1 各式相加有 (n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+ n 4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n =[n(n+1)]^2 1^3+2^3+...+n^3=[n(n+1)/2]^2 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]

初中常用数的平方立方及开平方开立方表

1—30的平方 1 2= 1 22= 4 32= 9 42= 16 52= 25 62= 36 72= 49 82= 64 92= 81 102= 100 112= 121 122= 144 132= 169 142= 196 152= 225 162= 256 172= 289 182= 324 192= 361 202= 400 212= 441 222= 484 232= 529 242= 576 252= 625 262= 676 272= 729 282= 784 292= 841 302= 900 1—10的立方 13= 1 23= 8 33= 27 43= 64 53= 125 63= 216 73= 343 83= 512 93= 729 103=1000 2的1—10次方 21= 2 22= 4 23= 8 24= 16 25= 32 26= 64 27= 128 28= 256 29= 512 210= 1024

1-20平方根,1-10立方根表 平方根 立方根 √1 = 1 √2 = 1.4142135623731 3√1 = 1 √3 = 1.73205080756888 3√2 = 1.25992104989487√4 = 2 3√3 = 1.44224957030741√5 = 2.23606797749979 3√4 = 1.5874010519682√6 = 2.44948974278318 3√5 = 1.7099759466767√7 = 2.64575131106459 3√6 = 1.81712059283214√8 = 2.82842712474619 3√7 = 1.91293118277239√9 = 3 3√8 = 2 √10 = 3.16227766016838 3√9 = 2.0800838230519√11 = 3.3166247903554 3√10 = 2.15443469003188√12 = 3.46410161513775 √13 = 3.60555127546399 √14 = 3.74165738677394 √15 = 3.87298334620742 √16 = 4 √17 = 4.12310562561766 √18 = 4.24264068711928 √19 = 4.35889894354067 √20 = 4.47213595499958

自然数的平方和立方的一些规律及其证明

平方和公式:1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 立方和公式:1^3+2^3+...+n^3=[n(n+1)/2]^2 首先给出网上的推导: 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 利用立方差公式 n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)] =n^2+(n-1)^2+n^2-n =2*n^2+(n-1)^2-n 2^3-1^3=2*2^2+1^2-2 3^3-2^3=2*3^2+2^2-3 4^3-3^3=2*4^2+3^2-4 ...... n^3-(n-1)^3=2*n^2+(n-1)^2-n 各等式全相加 n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n) n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n) n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1 n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2 3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)=(n/2)(n+1)(2n+1) 1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2 (n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2] =(2n^2+2n+1)(2n+1) =4n^3+6n^2+4n+1 2^4-1^4=4*1^3+6*1^2+4*1+1 3^4-2^4=4*2^3+6*2^2+4*2+1 4^4-3^4=4*3^3+6*3^2+4*3+1 ...... (n+1)^4-n^4=4*n^3+6*n^2+4*n+1 各式相加有 (n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+...+n^2)+4*(1+2+3+...+n)+n 4*(1^3+2^3+3^3+...+n^3)=(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n =[n(n+1)]^2 1^3+2^3+...+n^3=[n(n+1)/2]^2 平方和的经典题目: 立方和的另类推导: (1)

相关文档
最新文档