2022届高考数学复习题:函数模型及其应用

2022届高考数学复习题:函数模型及其应用
2022届高考数学复习题:函数模型及其应用

2022届高考数学复习题:函数模型及其应用1.下列函数中随x的增大而增长速度最快的是()

A.v=

1

100·e

x B.v=100ln x

C.v=x100D.v=100×2x

答案:A

2.用长度为24(单位:米)的材料围成一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为()

A.3米B.4米

C.6米D.12米

解析:设隔墙的长为x(0<x<6)米,矩形的面积为y平方米,则y=x×24-4x

2

=2x(6-x)=-2(x-3)2+18,所以当x=3时,y取得最大值.

答案:A

3.某商场销售A型商品,已知该商品的进价是每件3元,且销售单价与日均销售量的关系如表所示:

请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的定价(单位:元/件)应为()

A.4 B.5.5

C.8.5 D.10

解析:由题意可设定价为x元/件,利润为y元,则y=(x-3)[400-40(x-4)]=40(-x2+17x-42),故当x=8.5时,y有最大值,故选C.

答案:C

4.某种动物繁殖量y只与时间x年的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们将发展到()

A.200只B.300只

C.400只D.500只

解析:∵繁殖数量y只与时间x年的关系为y=a log3(x+1),这种动物第2年

有100只,

∴100=a log3(2+1),∴a=100,

∴y=100log3(x+1),

∴当x=8时,y=100log3(8+1)=100×2=200.故选A.

答案:A

5.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x,y应为()

A.x=15,y=12 B.x=12,y=15 C.x=14,y=10 D.x=10,y=14

解析:由三角形相似得24-y

24-8

x

20,

得x=5

4(24-y),由0<x≤20得,8≤y<24,

所以S=xy=-5

4(y-12)

2+180,

所以当y=12时,S有最大值,此时x=15.

答案:A

6.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x之间关系的是()

A.y=100x B.y=50x2-50x+100

C.y=50×2x D.y=100log2x+100

解析:根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证即可得.

答案:C

7.某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内通话时间t(分钟)与电话费S(元)的函数关系如图所示,当通话150分钟时,这两种方式的电话费相差__________.

解析:依题意可设S A(t)=20+kt,S B(t)=mt.

又S A(100)=S B(100),

∴100k+20=100m,得k-m=-0.2,

于是S A(150)-S B(150)=20+150k-150m

=20+150×(-0.2)=-10,即两种方式的电话费相差10元.

答案:10元

8.(2021·模拟)某人计划购买一辆A型轿车,售价为14.4万元,购买后轿车一年的保险费、汽油费、年检费、停车费等约需2.4万元,同时汽车年折旧率约为10%(即这辆车每年减少它的价值的10%),试问,大约使用________年后,花费在该车上的费用(含折旧费)达到14.4万元?

解析:设使用x年后花费在该车上的费用达到14.4万元.

依题意可得,14.4(1-0.9x)+2.4x=14.4.

化简得:x-6×0.9x=0,令f(x)=x-6×0.9x.

因为f(3)=-1.374<0,f(4)=0.063 4>0,

所以函数f(x)在(3,4)上应有一个零点.

故大约使用4年后,花费在该车上的费用达到14.4万元.

答案:4

9.一片森林原来面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积

至少要保留原面积的1

4,已知到今年为止,森林剩余面积为原来的

2

2.

(1)求每年砍伐面积的百分比;

(2)到今年为止,该森林已砍伐了多少年?

10.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为

鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的 全部零件的出厂单价就降低0.02元,但实际出厂单价不低于51元.

(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?

(2)设一次订购量为x 个,零件的实际出厂单价为p 元,写出函数p =f (x )的表达式;

(3)当销售商一次订购多少个时,该厂获得的利润为6 000元?( 工厂售出一个零件的利润=实际出厂单价-成本)

解析:(1)设每个零件的实际出厂价格恰好降为51元时,一次订购量为x 0个,

则x 0=100+60-510.02=550(个),因此,当一次订购量为550个时,每个零件

的实际出厂价格恰好降为51元.

(2)当0≤x ≤100时,p =60;

当100<x <550时,

p =60-0.02(x -100)=62-x 50;

当x ≥550时,p =51.

所以p =????? 60(0≤x ≤100),62-x 50(100<x <550),(x ∈N *),

51(x ≥550).

(3)设销售商的一次订购量为x 个时,工厂获得的利润为L 元,则L =(p -40)x

=????? 20x (0≤x ≤100),22x -x 250(100<x <550),(x ∈N *),

11x (x ≥550),

当0≤x ≤100时,L ≤2 000;当x ≥550时,L ≥6 050; 当100<x <550时,L =22x -x 250.

由????? 22x -x 250=6 000,100<x <550,

解得x =500.

11.世界人口在过去40年翻了一番,则每年人口平均增长率约是(参考数据lg

2≈0.301 0,100.007 5≈1.017)( )

A .1.5%

B .1.6%

C .1.7%

D .1.8% 解析:由题意得(1+x )40=2,

∴40lg(1+x )=lg 2,∴lg(1+x )≈0.007 5,

∴1+x =100.007 5,∴x ≈0.017=1.7%.

故选C.

答案:C

12.已知某服装厂生产某种品牌的衣服,销售量q (x )(单位:百件)关于每件衣服的利润x (单位:元)的函数解析式为 q (x )=??? 1 260x +1,0<x ≤20,90-35x ,20<x ≤180,

当该服装厂所获效益最大时,x =( )

A .20

B .60

C .80

D .40 解析:设效益为f (x )

则f (x )=100xq (x )=

??? 126 000x x +1,0<x ≤20,100x (90-35x ),20<x ≤180.

当0<x ≤20时,f (x )=126 000x x +1=126 000-126 000x +1

,f (x )在区间(0,20]上单调递增,所以当x =20时,f (x )有最大值120 000.当20<x ≤180时,f (x )=9 000x -3005·x x ,则f ′(x )=9 000-4505·x ,

令f ′(x )=0,∴x =80.

当20<x <80时,f ′(x )>0,f (x )单调递增,

当80≤x ≤180时,f ′(x )≤0,f (x )单调递减,

所以当x =80时,f (x )有极大值,也是最大值240 000.故选C.

答案:C

13.某商场对顾客实行购物优惠活动,规定一次性购物付款总额:

(1)如果不超过200元,则不给予优惠.

(2)如果超过200元但不超过500元,则按标价给予9折优惠.

(3)如果超过500元,则500元按第(2)条给予优惠,剩余部分给予7折优惠. 某人单独购买A ,B 商品分别付款100元和450元,假设他一次性购买A ,B 两件商品,则应付款是________元.

解析:设商品总额为x 元,应付金额为y 元,

则y =??? x ,0≤x ≤200,

0.9x ,200<x ≤500,

0.7x +100,x >500,

令0.9x =450,得x =500, 则0.7×(500+100)+100=520(元).

答案:520

14.一个容器装有细沙a cm 3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,

t min 后剩余的细沙量为y =a e -bt (cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过________ min ,容器中的沙子只有开始时的八分之一.

解析:依题意有a ·e -b ×8=12a ,所以b =ln 28,

所以y =a ·e -ln 28t .

若容器中的沙子只有开始时的八分之一,

则有a ·e -ln 28t =18a ,解得t =24,

所以再经过的时间为24-8=16 min.

答案:16

15.随着中国一带一路的深入发展,中国某陶瓷厂为了适应发展,制定了以下生

产计划,每天生产陶瓷的固定成本为14 000元,每生产一件产品,成本增加 210元.已知该产品的日销售量f (x )(单位:件)与产量x (单位:件)之间的

关系式为f (x )=????? 1625

x 2(0≤x ≤400)x -144(400<x <500),每件产品的售价g (x )(单位:元)与

产量x 之间的关系式为g (x )=????? -58

x +750(0≤x ≤400)-x +900(400<x <500).

(1)写出该陶瓷厂的日销售利润Q (x )(单位:元)与产量x 之间的关系式;

(2)若要使得日销售利润最大,则该陶瓷厂每天应生产多少件产品,并求出最大利润.

解析:(1)设总成本为c (x )(单位:元)则c (x )=14 000+210x ,

所以日销售利润Q (x )=f (x )g (x )-c (x )

=????? -11 000x 3+65x 2-210x -14 000(0≤x ≤400),-x 2+834x -143 600(400<x <500).

(2)由(1)知,当0≤x ≤400时,

Q ′(x )=-31 000x 2+125x -210.

令Q ′(x )=0,解得x =100或x =700(舍去).

易知当x ∈[0,100)时,Q ′(x )<0;

当x ∈(100,400]时,Q ′(x )>0.

所以Q (x )在区间[0,100)上单调递减,

在区间(100,400]上单调递增.

因为Q (0)=-14 000,Q (400)=30 000,

所以Q (x )在x =400时取到最大值,且最大值为30 000.

当400<x <500时,Q (x )=-x 2+834x -143 600.

当x =-8342×(-1)

=417时,Q (x )取得最大值,最大值为Q (x )max =-4172+834×417-143 600=30 289.

综上所述,若要使得日销售利润最大,则该陶瓷厂每天应生产417件产品,其最大利润为30 289元.

16.已知某工厂每天固定成本是4万元,每生产一件产品成本增加100元,工厂

每件产品的出厂价定为a 元时,生产x (x >0)件产品的销 售收入是R (x )=-

14x 2+500x (元),P (x )为每天生产x 件产品的平均利润(平均利润=总利润总产量

).销售商从工厂以每件a 元进货后,又以每件b 元销售,且b =a +λ(c -a ),其中c 为最高限价(a <b <c ),λ为销售乐观系数,据市场调查,λ由当b -a 是c -b ,c -a 的比例中项时来确定.

(1)每天生产量x 为多少时,平均利润P (x )取得最大值?并求P (x )的最大值;

(2)求乐观系数λ的值;

(3)若c =600,当厂家平均利润最大时,求a 与b 的值.

解析:(1)依题意设总利润为L (x ),则L (x )=-14x 2+500x -100x -40 000=-

14x 2+400x -40 000(x >0),

∴P (x )=-14x 2+400x -40 000x =-14x -40 000x +400≤-200+400=200,当

且仅当14x =40 000x ,即x =400时等号成立.

故当每天生产量为400件时,平均利润最大,最大值为200元.

(2)由b =a +λ(c -a ),得λ=b -a c -a

. ∵b -a 是c -b ,c -a 的比例中项,

∴(b -a )2=(c -b )(c -a ),

两边同时除以(b -a )2,得1=(c -a )-(b -a )b -a ·c -a b -a =(c -a b -a -1)c -a b -a

∴1=(1λ-1)·1λ,解得λ=5-12或λ=-5-12

(舍去). 故乐观系数λ的值为5-12.

(3)∵厂家平均利润最大,∴a =

40 000x +100+P (x )=40 000400+100+200=400.

由b =a +λ(c -a ),结合(2)可得b -a =λ(c -a )=100(5-1), ∴b =100(5+3).

故a 与b 的值分别为400,100(5+3).

层高三数学函数测试题目

层高三数学函数测试题目

高三数学函数测试题 一、选择题: 1.函数2134y x x =+- ) A )43,21(- B ]43,21[- C ),43[]21,(+∞?-∞ D ),0()0,2 1(+∞?- 2.函数log (2)1a y x =++的图象过定点( )。 A.(1,2) B.(2,1) C.(-2,1) D.(-1,1) 3.二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 7- B 1 C 17 D 25 4. 若{}{}21,4,,1,A x B x ==且A B B =,则x 的值为( ) A.0,2或-2 B.1,2或-2 C.0,1或2 D.1,2或-2 5.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A 3-≤a B 3-≥a C 5≤a D 5≥a 6.若132log

(A) (B) (C) (D ) 8.设c b a ,,均为正数,且a a 21log 2=,b b 21log 21=??? ??,c c 2log 21=??? ??.则( ) A .c b a << B .a b c << C .b a c << D .c a b << 二、填空题: 9.)27log 9log 3(log 69842)32(log ++=_________ 10.若2log 2,log 3,m n a a m n a +=== ; 11. 已知()f x 是一次函数,且满足()()3121217,f x f x x +--=+ 那么()f x =_____________________. 12.函数22811(31)3x x y x --+??=- ???≤≤的值域是 。 三、解答题: 13、若函数y=log 2(kx 2+4kx +3)的定义域为R ,求实数k 的取值范围 14.已知指数函数1 ()x y a =,当(0,)x ∈+∞时,有1y >,解关于x 的不等式log (1)log (6)a a x x -≤- 15.已知函数)1(11log )(>-+=a x x x f a (8分) (1)求f(x)的定义域; (2)判断f(x)的奇偶性并证明; H O h

函数应用题-(2009-2018)高考数学分类汇编含解析

【命题规律】 1. 根据待定系数法、几何公式、解三角形确定函数解析式 2. 利用导数、基本不等式或解三角形求最值或范围. 【真题展示】 1【2009江苏,19】按照某学者的理论,假设一个人生产某产品单件成本为a 元,如果他卖出该产品的单价为m 元,则他的满意度为 m m a +;如果他买进该产品的单价为n 元,则他的满意度为 n n a +.如果一个人对两种交易(卖 出或买进)的满意度分别为 1h 和2h .现假设甲生产A 、B 两种产品的 单件成本分别为12元和5元,乙生产A 、B 两种产品的单件成本分别为3元和20元,设产品A 、B 的单价分别为 A m 元和 B m 元,甲买进A 与卖出B 的综合满意度为h 甲,乙卖出A 与买进B 的综合满意度为 h 乙(1)求h 甲和h 乙 关于 A m 、 B m 的表达式;当 35A B m m =时,求证:h 甲=h 乙;(2)设35 A B m m =,当A m 、B m 分别为多少时, 甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3)记(2)中最大的综合满意度为0h ,试问能否适当 选取 A m 、 B m 的值,使得0h h ≥甲和0h h ≥乙同时成立, 但等号不同时成立?试说明理由.【答案】(1)详见解析; (2) 20,12B A m m == 时,甲乙两人同时取到最大的综合满意度为5 (3) 不能

故当1120 B m =即20,12B A m m ==时, (3)由(2)知:0h 由05 h h ≥=甲得: 12552A B A B m m m m ++?≤,

所以不能否适当选取A m 、B m 的值,使得0h h ≥甲和0h h ≥乙同时成立,但等号不同时成立. 2【2015江苏高考,17】(本小题满分14分) 某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边 界的直线型公路,记两条相互垂直的公路为12l l , ,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到12l l , 的距离分别为5千米和40千米,点N 到12l l ,的距离分别为20千米和2.5千米,以12l l , 所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数2a y x b =+(其中a ,b 为常数)模型. (1)求a ,b 的值; (2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式()f t ,并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.

高考数学函数专题习题及详细答案

函数专题练习 1.函数1()x y e x R +=∈的反函数是( ) A .1ln (0)y x x =+> B .1ln (0)y x x =-> C .1ln (0)y x x =--> D .1ln (0)y x x =-+> 2.已知(31)4,1 ()log ,1a a x a x f x x x -+? 是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1(0,)3 (C )11 [,)73 (D )1 [,1)7 3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1212,()x x x x ≠ , 1221|()()|||f x f x x x -<-恒成立”的只有 (A )1()f x x = (B )()||f x x = (C )()2x f x = (D )2()f x x = 4.已知()f x 是周期为2 的奇函数,当01x <<时,()l g f x x = 设 63(),(),52a f b f ==5 (),2 c f =则 (A )a b c << (B )b a c << (C )c b a << (D )c a b << 5. 函数2 ()lg(31)f x x = ++的定义域是 A .1 (,)3 -+∞ B . 1 (,1)3 - C . 11 (,)33 - D . 1 (,)3 -∞- 6、下列函数中,在其定义域内既是奇函数又是减函数的是 A .3 ,y x x R =-∈ B . sin ,y x x R =∈ C . ,y x x R =∈ 7、函数()y f x =的反函数1 ()y f x -=的图像与y 轴交于点 (0,2)P (如右图所示),则方程()0f x =在[1,4]上的根是x = A .4 B .3 C . 2 D .1 8、设()f x 是R 上的任意函数,则下列叙述正确的是 (A )()()f x f x -是奇函数 (B )()()f x f x -是奇函数 (C ) ()()f x f x --是偶函数 (D ) ()()f x f x +-是偶函数 9、已知函数x y e =的图象与函数()y f x =的图象关于直线y x =对称,则 A .()22()x f x e x R =∈ B .()2ln 2ln (0)f x x x => )

高考数学复习点拨 巧解函数模型应用题

去伪存真 巧解函数模型应用题 新课标加大了对应用问题的考查,而函数的应用问题也是训练同学们建立模型的好素材,因此也成为了高考命题的热点,本文通过比较建立不同的数学模型,来探讨如何建立效果最好的函数模型。 例:某皮鞋厂,从今年1月份开始投产,并且前4个月的产量分别为1万双,1.2万双, 1.3万双,1.37万双。由于产品质量好,款式新颖,前几个月的产品销售情况良好。为了推销员在推销产品时,接受定单不至于过多或过少,需要估测以后几个月的产量,厂里分析,产量的增加是由于工人生产熟练和理顺了生产流程。厂里也暂时不准备增加设备和工人。假如你是厂长,将会采用什么办法估算以后几个月的产量。 分析:本题是通过数据验证,确定系数,然后分析确定函数变化情况,最终找出与实际最接近的函数模型。 解:由题意知:可以得到四个点()()()()1,1,2,1.2,3,1.3,4,1.37A B C D 。 解法一:用一次函数模拟 设模拟函数为y ax b =+,以,B C 两点的坐标代入函数式,有2 1.23 1.3 a b a b +=??+=? 解得 0.11a b =??=? ,所以得0.11y x =+。 评价:此法的结论是:在不增加工人和设备的条件下,产量会月月上升1000双,这是不可能的。 解法二:用二次函数模拟 设2 y ax bx c =++,将,,A B C 三点的坐标代入,有 1,42 1.2,93 1.3,a b c a b c a b c ++=??++=??++=? 解得0.05,0.35,0.7,a b c =-??=??=? 所以2 0.050.350.7y x x =-++。 评价:有此法计算4月份产量为1.3万双,比实际产量少700双。而且,由二次函数性质可知,产量自4月份开始将月月下降(图象开口向下,对称轴方程是 3.5x =),这显然不符合实际情况。 解法三:用幂函数模拟 设y b =,将,A B 两点的坐标代入,有1 1.2 a b b +=??+=解得0.48,0.52.a b =??=? 所以0.52y =。 评价:以3,4x x ==代入,分别得到 1.35, 1.48y y ==,与实际产量差距较大。这是因为

函数模型的应用实例 说课稿 教案 教学设计

函数模型的应用实例 课型:新授课 教学目标 能够利用给定的函数模型或建立确定性函数模型解决实际问题,进一步感受运用函数概念建立函数模型的过程和方法,对给定的函数模型进行简单的分析评价. 二、教学重点 重点:利用给定的函数模型或建立确定性质函数模型解决实际问题. 难点:将实际问题转化为数学模型,并对给定的函数模型进行简单的分析评价. 三、学法与教学用具 1.学法:自主学习和尝试,互动式讨论. 2.教学用具:多媒体 四、教学设想 (一)创设情景,揭示课题. 现实生活中有些实际问题所涉及的数学模型是确定的,但需我们利用问题中的数据及其蕴含的关系来建立.对于已给定数学模型的问题,我们要对所确定的数学模型进行分析评价,验证数学模型的与所提供的数据的吻合程度. (二)实例尝试,探求新知 例1.一辆汽车在某段路程中的行驶速度与时间的关系如图所示. 1)写出速度v关于时间t的函数解析式; 2)写出汽车行驶路程y关于时间t的函数关系式,并作图象; 3)求图中阴影部分的面积,并说明所求面积的实际含义; 4)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立汽车行驶这段路程时汽车里程表读数s与时间t的函数解析式,并作出相应的图象. 本例所涉及的数学模型是确定的,需要利用问题中的数据及其蕴含的关系建立数学模型,此例分段函数模型刻画实际问题. 教师要引导学生从条块图象的独立性思考问题,把握函数模型的特征. 注意培养学生的读图能力,让学生懂得图象是函数对应关系的一种重要表现形式. 例2.人口问题是当今世界各国普遍关注的问题,认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798,英国经济家马尔萨斯就提出了自然状态下的人口增长模型: 0rt y y e 其中t表示经过的时间, y表示t=0时的人口数,r表示人口的年均增长率.下表是1950~1959年我国的人口数据资料:(单位:万人) 年份1950 1951 1952 1953 1954 人数55196 56300 57482 58796 60266 年份1955 1956 1957 1958 1959

高三文科数学三角函数专题测试题

高三文科数学三角函数专题测试题 1.在△ABC 中,已知a b =sin A cos B ,则B 的大小为( ) A .30° B .45° C .60° D .90° 2.在△ABC 中,已知A =75°,B =45°,b =4,则c =( ) B .2 6 C .4 3 D .2 3.在△ABC 中,若∠A=60°,∠B =45°,BC =32,则AC =( ) A .4 3 B .2 3 在△ABC 中, AC sin B =BC sin A ,∴AC =BC ·sin B sin A =32× 22 32=2 3. 4.在△ABC 中,若∠A=30°,∠B =60°,则a∶b∶c=( ) A .1∶3∶2 B .1∶2∶4 C .2∶3∶4 D .1∶2∶2 5.在△ABC 中,若sin A>sin B ,则A 与B 的大小关系为( ) A .A> B B .A

指数函数对数函数应用题

与指数函数、对数函数相关的应用题较多,如人口的增长(1981年、1996年高考题)、环保等社会热点问题,国民生产总值的增长、成本的增长或降低、平均增长率等经济生活问题,放射性物质的蜕变、温度等物理学科问题等. 一、人口问题 例1、某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下面的问题: ⑴写出该城市人口数y(万人)与年份x(年)的函数关系式; ⑵计算10年以后该城市人口总数(精确到0.1万人); ⑶计算大约多少年以后该城市人口将达到120万人(精确到1年). 二、增长率问题 例2、按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y 随存期x 变化的函数关系式.如果存入本金1000元,每期利率为2.25%,试计算5期后本利和是多少?(注:“复利”,即把前一期的利息和本金加在一起算作本金,再计算下一期利息.) 例3、某乡镇现在人均一年占有粮食360千克,如果乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x年后若人均一年占有y千克粮食,求出函数y关于x的解析式.

三、环保问题 例4、一片森林面积为a ,计划每年砍伐一批木材,每年砍伐的百分比相等,则砍伐到面积一半时,所用时间是T 年,为保护生态环境,森林面积至少要保留原面积的 14,已知到今 年为止,森林剩余面积为原来的2 . ⑴到今年为止,该森林已砍伐了多少年? ⑵今后最多还能砍伐多少年? 四、物理问题 例5、牛顿冷却定律描述一个物体在常温环境下的温度变化:如果物体的初始温度是T 0,则 经过一定时间h 后的温度T 将满足T -T a = 2 1(T 0-T a ),其中T a 是环境温度,使上式成立所需要的时间h 称为半衰期.在这样的情况下,t 时间后的温度T 将满足T -T a =h t )21((T 0-T a ). 现有一杯ο195F 用热水冲的速溶咖啡,放置在ο75F 的房间中,如果咖啡降温到ο 105F 需20分钟,问欲降到ο95F 需多少时间? 例6、设在海拔x m 处的大气压强是y Pa ,y 与x 之间的函数关系式是kx ce y =,其中c,k 为常量.已知某地某天在海平面的大气压为 1.01×105Pa ,1000m 高空的大气压为0.90×105Pa ,求600m 高空的大气压强(结果保留3个有效数字).

2019-2020年高中数学 第三章函数的应用§3.2.2函数模型的应用实例(Ⅲ)教案 新人教A版必修1

2019-2020年高中数学第三章函数的应用§3.2.2函数模型的应用实例 (Ⅲ)教案新人教A版必修1 一、教学目标 1、知识与技能能够收集图表数据信息,建立拟合函数解决实际问题。 2、过程与方法体验收集图表数据信息、拟合数据的过程与方法,体会函数拟合的思想方法。 3、情感、态度、价值观深入体会数学模型在现实生产、生活及各个领域中的广泛应用及其重要价值。 二、教学重点、难点: 重点:收集图表数据信息、拟合数据,建立函数模解决实际问题。 难点:对数据信息进行拟合,建立起函数模型,并进行模型修正。 三、学学与教学用具 1、学法:学生自查阅读教材,尝试实践,合作交流,共同探索。 2、教学用具:多媒体 四、教学设想 (一)创设情景,揭示课题 2003年5月8日,西安交通大学医学院紧急启动“建立非典流行趋势预测与控制策略数学模型”研究项目,马知恩教授率领一批专家昼夜攻关,于5月19日初步完成了第一批成果,并制成了要供决策部门参考的应用软件。 这一数学模型利用实际数据拟合参数,并对全国和北京、山西等地的疫情进行了计算仿真,结果指出,将患者及时隔离对于抗击非典至关重要、分析报告说,就全国而论,菲非典病人延迟隔离1天,就医人数将增加1000人左右,推迟两天约增加工能力100人左右;若外界输入1000人中包含一个病人和一个潜伏病人,将增加患病人数100人左右;若4月21日以后,政府示采取隔离措施,则高峰期病人人数将达60万人。 这项研究在充分考虑传染病控制中心每日工资发布的数据,建立了非典流行趋势预测动力学模型和优化控制模型,并对非典未来的流行趋势做了分析预测。 本例建立教学模型的过程,实际上就是对收集来的数据信息进行拟合,从而找到近似度比较高的拟合函数。 (二)尝试实践探求新知 例1.某地区不同身高的未成年男性的体重平均值发下表 (身高:cm;体重:kg) 1)根据表中提供的数据,建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重与身高ykg与身高xcm的函数模型的解析式。 2)若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm ,体重为78kg的在校男生的体重是事正常? 探索以下问题:

高中数学_经典函数试题及答案

经典函数测试题及答案 (满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <

高考数学-应用题专题

1 高考数学-应用题 应用题类型: 1.代数型(1)函数型(2)不等式型(3)数列型(4)概率统计型 2.几何型(1)三角型(2)解析几何型(3)立体几何型 1. 某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用为12万元,以后每年都增加4万元,每年捕鱼收益50万元. (1)问第几年开始获利? (2)若干年后,有两种处理方案: 方案一:年平均获利最大时,以26万元出售该渔船 方案二:总纯收入获利最大时,以8万元出售该渔船.问哪种方案合算. 解析. (1)由题意知,每年的费用以12为首项,4为公差的等差数列. 设纯收入与年数n 的关系为f (n ),则 ++-=1612[50)(n n f …9840298)]48(2-+-=-++n n n . 由题知获利即为f (n )>0,由0984022>-+-n n ,得-10511051+<

2 2. 提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20020≤≤x 时,车流速度v 是车流密度x 的一次函数. (Ⅰ)当2000≤≤x 时,求函数()x v 的表达式; (Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)()()x v x x f ?=可以达到最大,并求出最大值.(精确到1辆/小时) 解析:(Ⅰ)由题意:当200≤≤x 时,()60=x v ;当20020≤≤x 时,设()b ax x v +=,显然 ()b ax x v +=在[]200,20是减函数,由已知得???=+=+60200200b a b a ,解得??? ????=-=320031b a 故函数()x v 的表达式为()x v =()?? ???≤≤-<≤.20020,20031,200,60x x x (Ⅱ)依题意并由(Ⅰ)可得()=x f ()?????≤≤-<≤.20020,2003 1,200,60x x x x x 当200≤≤x 时,()x f 为增函数,故当20=x 时,其最大值为12002060=?; 当20020≤≤x 时,()()()310000220031200312 =??????-+≤-=x x x x x f , 当且仅当x x -=200,即100=x 时,等号成立. 所以,当100=x 时,()x f 在区间[]200,20上取得最大值 3 10000. 综上,当100=x 时,()x f 在区间[]200,0上取得最大值3333310000≈, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.

函数模型的应用实例(Ⅲ)

函数模型的应用实例(Ⅲ) 一、教学目标 1、知识与技能能够收集图表数据信息,建立拟合函数解决实际问题。 2、过程与方法体验收集图表数据信息、拟合数据的过程与方法,体会函数拟合的思想方法。 3、情感、态度、价值观深入体会数学模型在现实生产、生活及各个领域中的广泛应用及其重要价值。 二、教学重点、难点: 重点:收集图表数据信息、拟合数据,建立函数模解决实际问题。 难点:对数据信息进行拟合,建立起函数模型,并进行模型修正。 三、学学与教学用具 1、学法:学生自查阅读教材,尝试实践,合作交流,共同探索。 2、教学用具:多媒体 四、教学设想 (一)创设情景,揭示课题 2003年5月8日,西安交通大学医学院紧急启动“建立非典流行趋势预测与控制策略数学模型”研究项目,马知恩教授率领一批专家昼夜攻关,于5月19日初步完成了第一批成果,并制成了要供决策部门参考的应用软件。 这一数学模型利用实际数据拟合参数,并对全国和北京、山西等地的疫情进行了计算仿真,结果指出,将患者及时隔离对于抗击非典

至关重要、分析报告说,就全国而论,菲非典病人延迟隔离1天,就医人数将增加1000人左右,推迟两天约增加工能力100人左右;若外界输入1000人中包含一个病人和一个潜伏病人,将增加患病人数100人左右;若4月21日以后,政府示采取隔离措施,则高峰期病人人数将达60万人。 这项研究在充分考虑传染病控制中心每日工资发布的数据,建立了非典流行趋势预测动力学模型和优化控制模型,并对非典未来的流行趋势做了分析预测。 本例建立教学模型的过程,实际上就是对收集来的数据信息进行拟合,从而找到近似度比较高的拟合函数。 (二)尝试实践探求新知 例1.某地区不同身高的未成年男性的体重平均值发下表 (身高:cm;体重:kg) 1)根据表中提供的数据,建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重与身高ykg与身高xcm的函数模型的解析式。 2)若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm ,体重为78kg的在校男

2021年高考数学一轮复习第二章函数的概念及其基本性质.9函数模型及函数的综合应用课时练理

2021年高考数学一轮复习第二章函数的概念及其基本性质2.9函数 模型及函数的综合应用课时练理 1.[xx·衡水二中猜题]汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是( ) 答案 A 解析 汽车加速行驶时,速度变化越来越快,而汽车匀速行驶时,速度保持不变,体现在s 与t 的函数图象上是一条直线,减速行驶时,速度变化越来越慢,但路程仍是增加的,故选A. 2.[xx·衡水中学月考]某种电热水器的水箱的最大容积是200升,加热到一定温度可以浴用,浴用时,已知每分钟放水34升,在放水的同时注水,t 分钟注水2t 2升,当水箱内水量达到最小值时,放水自动停止.现在假定每人洗浴用水65升,则该热水器一次至多可供( ) A .3人洗澡 B .4人洗澡 C .5人洗澡 D .6人洗澡 答案 B 解析 设最多用t 分钟,则水箱内水量y =200+2t 2-34t ,当t =17 2时,y 有最小 值,此时共放水34×17 2 =289升,可以供4人洗澡. 3.[xx·枣强中学预测]若函数f (x )=a +|x |+log 2(x 2+2)有且只有一个零点,则实数a 的值是( ) A .-2 B .-1

C .0 D .2 答案 B 解析 将函数f (x )=a +|x |+log 2(x 2 +2)的零点问题转化为函数f 1(x )=-a -|x |的图象与f 2(x )=log 2(x 2+2)的图象的交点问题.因为f 2(x )=log 2(x 2+2)在[0,+∞)上单调递增,且为偶函数,因此其最低点为(0,1),而函数f 1(x )=-a -|x |也是偶函数,在[0,+∞)上单调递减,因此其最高点为(0,-a ),要满足题意,则-a =1,因此a =-1. 4.[xx·冀州中学模拟]某购物网站在xx 年11月开展“全场6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为( ) A .1 B .2 C .3 D .4 答案 C 解析 为使花钱总数最少,需使每张订单满足“每张订单金额(6折后)满300元时可减免100元”,即每张订单打折前原金额不少于500元.由于每件原价48元,因此每张订单至少11件,所以最少需要下的订单张数为3张,选C. 5. [xx·武邑中学预测]已知函数f (x )=(x -a )2 +(ln x 2 -2a )2 ,其中x >0,a ∈R ,存在x 0使得f (x 0)≤4 5 成立,则实数a 的值为( ) A.15 B.25

高中数学函数测试题(含答案)

高中数学函数测试题 学生: 用时: 分数: 一、选择题和填空题(3x28=84分) 1、若372log πlog 6log 0.8a b c ===,,,则( ) A .a b c >> B .b a c >> C .c a b >> D .b c a >> 【答案】A 【解析】利用中间值0和1来比较: 372log π>1log 61log 0.80a b c =<=<=<,0, 2、函数2 ()(1)1(1)f x x x =-+<的反函数为( ) A .1 ()11)f x x -=+> B .1 ()11)f x x -=-> C .1()11)f x x -=≥ D .1 ()11)f x x -=-≥ 【答案】B 【解析】 221(1)1,(1)11x y x x y x 3、已知函数2 ()cos f x x x =-,对于ππ22 ??-???? ,上的任意12x x ,,有如下条件: ①12x x >; ②22 12x x >; ③12x x >. 其中能使12()()f x f x >恒成立的条件序号是 . 【答案】② 【解析】函数2 ()cos f x x x =-为偶函数,则1212()()(||)(||).f x f x f x f x >?> 在区间π02?? ???? ,上, 函数2 ()cos f x x x =-为增函数, 22121212(||)(||)||||f x f x x x x x ∴>?>?> 4、已知函数3log ,0()2,0 x x x f x x >?=?≤?,则1 (())9f f =( )

高三数学三角函数经典练习题及答案精析

1.将函数()2sin 2x f x =的图象向右移动象如右图所示,则?的值为( ) A 2.为了得到()sin 2g x x =的图象,则只需将()f x 的图象( ) A C 3 ,则sin cos αα=( ) A 1 D -1 4 ) A 5.记cos(80),tan 80k -?=?那么= ( ). A . C .21k k -- 6 .若sin a = -a ( ) (A )(B (C (D 7,则α2tan 的值为( )

A 8.已知函数)sin(cos )cos(sin )(x x x f +=,则下列结论正确的是( ) A .)(x f 的周期为π B .)(x f 在 C .)(x f 的最大值为.)(x f 的图象关于直线π=x 对称 9.如图是函数y=2sin (ωx+φ),φ A.ωφ B.ωφ C.ω =2,φ D.ω=2,10的图象,只需要将函数sin 4y x =的图象( ) A B C D 11.要得到12cos -=x y 的图象,只需将函数x y 2sin =的图象( ) A 个单位,再向上平移1个单位 B 个单位,再向下平移1个单位 C 个单位,再向上平移1个单位 D 个单位,再向下平移1个单位 12.将函数()cos f x x =向右平移个单位,得到函数()y g x =

于() A 13.同时具有性质①最小正周期是π; 增函数的一个函数为() A C 14则tanθ=() A.-2 D.2 15) A 16.已知tan(α﹣)=,则的值为() A. B.2 C.2 D.﹣2 17) A.1 D.2 18.已知角α的终边上一点的坐标为(,则角α值为 19) A 20) A..

2.9 函数模型及其综合应用-5年3年模拟北京高考

2.9 函数模型及其综合应用 五年高考 考点 函数的实际应用 1.(2013天津,8,5分)已知函数|).|1()(x a x x f +=设关于x 的不等式)()(x f a x f <+的解集为A .若 ,]21 ,21[A ?-则实数a 的取值范围是( ) )0,251.(-A )0,231.(-B )231,0()0,251.(+- C )2 51,.(--∞D 2.(2012北京,8,5分)某棵果树前n 年的总产量S 。与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为 ( ) 5.A 7.B 9.C 11.D 3.(2013湖南.16,5分)设函数,)(x x x c b a x f -+=其中.0,0>>>>b c a c (1)记集合c b a c b a M ,,1),,{(=不能构成一个三角形的三条边长,且a=b},则M c b a ∈),,(所对应的 )(x f 的零点的取值集合为 (2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是 .(写出所有正确结论的序号) ;0)(),1,(>-∞∈?x f x ① ,R x ∈?②使c b a xx x ,,不能构成一个三角形的三条边长; ③若△ABC 为钝角三角形,则),2,1(∈?x 使.0)(=x f 4.(2013课标全国I .21,12分)设函数)(,)(2x g b ax x x f ++=).(d cx e x +=若曲线)(x f y =?和曲 线)(x g y =都过点P(O ,2),且在点P 处有相同的切线.24+=x y (1)求a ,b ,c ,d 的值; (2)若2-≥x 时,),()(x kg x f ≤求k 的取值范围. 5.(2012江苏,17,14分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米,某炮位于坐标原点,已知炮弹发射后的轨迹在方程k x k kx y <+- =22)1(20 1 )0>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程;

第17讲 函数模型的应用实例(基础)

函数模型的应用实例 【学习目标】 1.能够找出简单实际问题中的函数关系式,应用指数函数、对数函数模型解决实际问题,并初步掌握数学建模的一般步骤和方法. 2.通过具体实例,感受运用函数建立模型的过程和方法,体会指数函数、对数函数模型在数学和其他学科中的应用. 3.通过函数应用的学习,体会数学应用的广泛性,树立事物间相互联系的辩证观,培养分析问题、解决问题的能力,增强数学的应用意识. 【要点梳理】 要点一、解答应用问题的基本思想和步骤 1.解应用题的基本思想 2.解答函数应用题的基本步骤 求解函数应用题时一般按以下几步进行: 第一步:审题 弄清题意,分清条件和结论,理顺数量关系,初步选择模型. 第二步:建模 在细心阅读与深入理解题意的基础上,引进数学符号,将问题的非数学语言合理转化为数学语言,然后根据题意,列出数量关系,建立函数模型.这时,要注意函数的定义域应符合实际问题的要求. 第三步:求模 运用数学方法及函数知识进行推理、运算,求解数学模型,得出结果. 第四步:还原 把数学结果转译成实际问题作出解答,对于解出的结果要代入原问题中进行检验、评判,使其符合实际背景. 上述四步可概括为以下流程: 实际问题(文字语言)?数学问题(数量关系与函数模型)?建模(数学语言)?求模(求解数学问题)?反馈(还原成实际问题的解答). 要点二、解答函数应用题应注意的问题 首先,要认真阅读理解材料.应用题所用的数学语言多为“文字语言、符号语言、图形语言”并用,往往篇幅较长,立意有创新脱俗之感.阅读理解材料要达到的目标是读懂题目所叙述的实际问题的意义,领悟其中的数学本质,接受题目所约定的临时性定义,理解题目中的量与量的位置关系、数量关系,确立解体思路和下一步的努力方向,对于有些数量关系较复杂、较模糊的问题,可以借助画图和列表来理清它. 其次,建立函数关系.根据前面审题及分析,把实际问题“用字母符号、关系符号”表达出来,建立函数关系.

(完整word版)高三数学文科集合逻辑函数练习题

高二文科数学月考检测 一 选择题 1. 集合}log ,2{3a M =,},{b a N =,若}1{=?N M ,则N M U =( ) A 、{0,1,2} B 、{0,1,3} C 、{0,2,3} D 、{1,2,3} 2. 已知命题p 、q ,“p ?为 真”是“p q ∧为假”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D. 既不充分也不必要条件 3.下列函数中与函数y x =是同一函数的是 ( ) A .()2y x = B.33y x = C.2 y x = D.2 x y x = 4.下列命题中,真命题是 A .存在,0x x e ∈≤R B .1,1a b >>是1ab >的充分条件 C .任意2,2x x x ∈>R D .0a b +=的充要条件是1a b =- 5.已知)(x f 是定义在R 上的奇函数,对任意R x ∈,都有)()4(x f x f =+,若2)1(=-f ,则)2013(f 等于( ) A 、-2 B 、2 C 、2013 D 、2012 6.当(0,)x ∈+∞时,幂函数21(1)m y m m x --=--为减函数,则实数m =( ) A .m=2 B .m=-1 C .m=2或m=1 D . 152 m +≠ 7. 函数y=x ln(1-x)的定义域为( ) A .(0,1) B.[ 0,1) C.( 0,1] D.[ 0,1] 8.函数sin ((,0)(0,))x y x x =∈-π?π的图象大致是

9.设()lg(101)x f x ax =++是偶函数,4()2x x b g x -=是奇函数,那么a +b 的值为 A .1 B .-1 C .21 D .-2 1 10.定义方程f (x )=f ′(x )的实数根x 0叫做函数f (x )的“新驻点”,若函数g (x )=2x ,h (x )=ln x ,φ(x )=x 3(x ≠0)的“新驻点”分别为a ,b ,c ,则a ,b ,c 的大小关系为( ) A .a >b >c B .c >b >a C .a >c >b D .b >a >c 二 填空题 11. 命题“?x ∈R ,x 2>4”的否定是____ _____. 12.设函数32)(+=x x f ,)()2(x f x g =+,则=)(x g 。 13.曲线 22y x x =+-在点()1,0处的切线方程为 14.已知函数???≥-<=, 1),1(,1,2)(x x f x x f x 则=)8(log 2f 15. 定义在R 上的偶函数)(x f 满足:)()1(x f x f -=+,且在[-1,0]上是增函数,下列关于)(x f 的判断:①)(x f 是周期函数;②)(x f 的图象关于直线2=x 对称;③)(x f 在[0,1]上是增函数;④)(x f 在[1,2]上是减函数;⑤)0()4(f f = 其中判断正确的序号是 。 三 解答题 16.命题p :关于x 的不等式a 2240x ax ++>对一切R x ∈恒成立;命题q :函数()(32)x f x a =-是增函数,若p 或q 为真,p 且q 为假,求实数a 的取值范围.

SXA179高考数学必修_函数模型应用题例析3

函数模型应用题例析3 函数模型应用问题,是常见的数学知识的应用题,经常涉及物价、路程、产值、环保等现实生活中的实际问题,也可涉及角度、面积、体积、造价的最优化问题.在解此类问题的过程中,首先需要在实际的情境中去理解、分析所给的一系列数据,舍弃与解题无关的因素,抽象转化为数学模型. 一、二次函数模型问题 例1 某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元. (Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车? (Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 解:(Ⅰ)当每辆车的月租金定为3600元时,未租出的车辆数为 50 30003600-= 12,所以这时租出了88辆车. (Ⅱ)设每辆车的月租金定为x 元,则租赁公司的月收益为: )(x f = (100-503000-x )(x -150)-503000-x ×50 =-502x + 162x -21000 =-50 1(x -4050)2+ 307050. 所以,当x = 405时,)(x f 最大,最大值为)4050(f =307050,即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益为307050元. 评析:此例主要考查一元二次函数等知识综合解答实际问题的能力,以函数为主线的联系实际的应用问题正是近几年高考的热点和重点题型. 二、分段函数模型问题 例2 某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但

3.2.2几种函数模型的应用举例

第三章 函数的应用 3.2.2几种函数模型的应用举例 【导学目标】 1.通过实例感受一次函数、二次函数、指数函数、对数函数以及幂函数的广泛应用,体会解决实际问题中建立函数模型的过程,从而进一步加深对这些函数的理解与应用; 2.初步了解对统计数据表的分析与处理. 【自主学习】 1、根据散点图设想比较接近的可能的函数模型: ①一次函数模型:()(0);f x kx b k =+≠ ②二次函数模型:2()(0);g x ax bx c a =++≠ ③指数函数模型:()x f x a b c =+g (0,a b ≠>0,1b ≠) ④对数函数模型:()log a f x m x b =+g (0,m ≠01a a >≠且) ⑤幂函数模型:12 ()(0);h x ax b a =+≠ 2、一般函数模型应用题的求解方法步骤: 1) 阅读理解,审清题意:逐字逐句,读懂题中的文字叙述,理解题中所反映的实际问题,明白已知什么,所求什么,从中提炼出相应的数学问题。 2)根据所给模型,列出函数表达式:合理选取变量,建立实际问题中的变量之间的函数关系,而将实际问题转化为函数模型问题。 3)运用所学知识和数学方法,将得到的函数问题予以解答,求得结果。 4)将所解得函数问题的解,翻译成实际问题的解答。 在将实际问题向数学问题的转化过程中,能画图的要画图,可借助于图形的直观性,研究两变量间的联系. 抽象出数学模型时,注意实际问题对变量范围的限制. 【典型例题】 例1:某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元. 销售单价与日均销售量的关系如下表所示: 请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?

相关文档
最新文档