驱动电路、输入阻抗及输出阻抗

驱动电路、输入阻抗及输出阻抗
驱动电路、输入阻抗及输出阻抗

1.驱动电路(Drive Circuit),位于主电路和控制电路之间,用来对控制电路的信号进行放大的中间电路(即放大控制电路的信号使其能够驱动功率晶体管),称为驱动电路。

功率驱动电路:一般情况下,无论是数字电路还是模拟电路,为了减小功耗,那么在内部信号处理和计算的时候,电压、电流比较小,那么这些信号对外部的驱动能力也就很小。但是比如电机等一些外部设备,他们的功率比较高,如果直接用这些内部计算得到的信号去驱动它们显然是不行的,那么就需要有功率驱动电路了,由这些控制信号来控制功率驱动电路,再由功率驱动电路产生大功率信号,来驱动外部设备(如:电机)。

NPN三极管驱动继电器电路

注:当三极管由导通变为截止时,继电器产生一个较大的自感电压,二极管的作用是消除这个感生电动势,吸收改电动势(反向续流)。

※注:输入、输出阻抗与带负载能力(驱动能力)

对于带负载能力,可以理解为输出功率的大小。一般大功率的功放用MOSFET管,因为它的内阻更小。

一般地,运算放大器输入阻抗越大越好,输出阻抗越小越好。若输入信号源的电压和内阻是不变的,则放大器的输入电阻越大(即高输入阻抗),从信号源取得的电流就越小,而在信号源内阻上的压降也就越小,信号电压就能以尽可能小的损失加到放大器的输入端;若放大器的输出电阻越小(即低输出阻抗),根据电阻串联分压原理,信号源电压(放大器的输出电压)在内阻Rs(输出阻抗)上的损失也越小,负载就会获得尽可能高的输出电压,常称之为“负载能力强”,即放大器可以带动功率更大,内阻更小的负载。

2.输入阻抗和输出阻抗小结

(1)输入阻抗

输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值就是输入阻抗。

输入阻抗跟一个普通的电抗元件一样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。另外如果要获取最大输出功率时,也要考虑阻抗匹配问题。

(2)输出阻抗

无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源),内阻应该为0,或理想电流源的阻抗应当为无穷大。输出阻抗在电路设计最特别需要注意,但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r的方式来等效一个实际的电压源,这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源)的内阻了。当这个电压源给负载供电时,就

会有电流I从这个负载上流过,并在这个电阻上产生I×r的电压降。这将导致电源输出电压的下降,从而限制了最大输出功率。同样,一个理想的电流源,输出阻抗应该是无穷大,但实际的电路是不可能的。低输出阻抗还意味着放大器本身会有更低的功耗。在驱动低阻抗负载时,大电流输出也是一种有用的特性。

(3)阻抗匹配

3.上拉和下拉电阻

上拉电阻就是把不确定的信号通过一个电阻钳位在高电平,此电阻还起到限流的作用。同理,下拉电阻是把不确定的信号钳位在低电平。上拉电阻是指器件的输入电流,而下拉指的是输出电流。

拉电阻的作用:

(1)防止输入端悬空,在引脚悬空时有确定的状态

(2)通过上拉或下拉来增加或减小驱动电流

(3)增加高电平输出时的驱动能力;为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

(4)改变电平的电位,常用在TTL-CMOS匹配;当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3~5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

(5)为OC门提供电流;OC门电路必须加上拉电阻才能使用。

(6)长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。一般地说,上拉电阻越小,驱动能力越强,但功耗越大。

三极管上拉电阻三极管下拉电阻

4.W=VA×功率因数(其中,W是有功功率,VA是视在功率)

——陈宇栋 2014/3/14

-第九章作业参考答案

第九章作业 专业 学号 姓名 等级 第九章 脉冲波形的产生与变换 9.1 图题9.1是用两个555定时器接成的延时报警器。当开关S 断开后,经过一定的延迟时间后,扬声器开始发声。如果在延迟时间内开关S 重新闭合,扬声器不会发出声音。在图中给定参数下,试求延迟时间的具体数值和扬声器发出声音的频率。图中G 1是CMOS 反相器,输出的高、低电平分别为V OH =12V ,V OL ≈0V 。 图题9.1 解:1.工作原理: 图题9.1由两级555电路构成,第一级是施密特触发器,第二级是多谐振荡器。施密特触发器的输入由R 1、C 1充放电回路和开关S 控制。 当S 闭合时,V C =0V ,施密特触发器输出高电平。施密特触发器的输出经反相器去控制多谐振荡器的R D 端,当施密特触发器的输出为高电平时,R D =0,多谐振荡器复位,扬声器不会发出声音。 当开关S 断开后,R 1、C 1充放电回路开始充电,V C 随之上升,但在达到CC T 3 2 V V =+之前, 施密特触发器的输出仍为高电平时,R D =0,扬声器仍不会发出声音。这一段时间即为延迟时间。 一旦V C 达到CC T 32 V V =+,施密特触发器触发翻转,输出低电平,R D =1,多谐振荡器工作,扬 声器开始发声报警。 2.求延迟时间: 延迟时间由R 1、C 1充放电回路的充电过程决定: τ t e v v v v -+∞-+∞=)]()0([)(C C C C 将 V 12)(CC C ==∞V v )0(C +v =0V τ=R 1C 1代入上式,得: )1(1 1CC C C R t e V v --= t=t 1时,CC C 3 2 V v =代入上式,整理得延迟时间: t 1= R 1C 1ln3≈1.1 R 1C 1=1.1×106+10×10-6=11S 扬声器发声频率:MHz 95.01 1≈== f

无刷直流电机的驱动及控制

无刷直流电机驱动 James P. Johnson, Caterpiller公司 本章的题目是无刷直流电动机及其驱动。无刷直流电动机(BLDC)的运行仿效了有刷并励直流电动机或是永磁直流电动机的运行。通过将原直流电动机的定子、转子内外对调—变成采用包含电枢绕组的交流定子和产生磁场的转子使得该仿效得以可能。正如本章中要进一步讨论的,输入到BLDC定子绕组中的交流电流必须与转子位置同步更变,以便保持磁场定向,或优化定子电流与转子磁通的相互作用,类似于有刷直流电动机中换向器、电刷对绕组的作用。该原理的实际运用只能在开关电子学新发展的今天方可出现。BLDC电机控制是今天世界上发展最快的运动控制技术。可以预见,随着BLDC的优点愈益被大家所熟知且燃油成本持续增加,BLDC必然会进一步广泛运用。 2011-01-30 23.1 BLDC基本原理 在众文献中无刷直流电动机有许多定义。NEMA标准《运动/定位控制电动机和控制》中对“无刷直流电动机”的定义是:“无刷直流电动机是具有永久磁铁转子并具有转轴位置监测来实施电子换向的旋转自同步电机。不论其驱动电子装置是否与电动机集成在一起还是彼此分离,只要满足这一定义均为所指。”

图23.1 无刷直流电机构形 2011-01-31 若干类型的电机和驱动被归类于无刷直流电机,它们包括: 1 永磁同步电机(PMSMs); 2 梯形反电势(back - EMF)表面安装磁铁无刷直流电机; 3 正弦形表面安装磁铁无刷直流电机; 4 内嵌式磁铁无刷直流电机; 5 电机与驱动装置组合式无刷直流电机; 6 轴向磁通无刷直流电机。 图23.1给出了几种较常见的无刷直流电机的构形图。永磁同步电机反电势是正弦形的,其绕组如同其他交流电机一样通常不是满距,或是接近满距的集中式绕组。许多无刷直流电

第九章习题答案

第9章 习题解答 9-1 正弦波振荡电路由哪几部分组成如果没有选频网络,输出信号会有什么特点 解: 正弦波电路由四部分组成 1. 放大电路 2. 正反馈网络 3. 选频网络 4. 稳幅电路 如果没有选频网络,输出信号将不再是单一频率的正弦波。 9-2判断下列说法是否正确,用“√”或“×”表示判断结果。 (1)正弦波振荡电路维持振荡的幅度条件是1=F A 。 ( ) (2)只要电路引入了正反馈,就一定会产生正弦波振荡。( ) (3)如果电路引入了负反馈,就不可能产生正弦波振荡。( ) (4)非正弦波振荡电路与正弦波振荡电路的振荡条件完全相同。( ) (5)当集成运放工作在非线性区时,输出电压不是高电平,就是低电平。( ) (6)电路只要满足1=F A ,就一定会产生正弦波振荡。 ( ) 解:(1)√(2)× (3)× (4)× (5)√ (6) × 9-3 改错:在图所示各电路中判断电路是否满足振荡的相位条件,如不满足请加以改正。要求不能改变放大电路的基本接法(共射、共基、共集)。 图 解:(a )加集电极电阻R c 及放大电路输入端的耦合电容。 (b )变压器副边与放大电路之间加耦合电容,改同铭端。 9-4 选择下面一个答案填入空内,只需填入A 、B 或C 。 A .容性 B .阻性 C .感性 (1)LC 并联网络在谐振时呈 ,在信号频率大于谐振频率时呈 ,在信号频率小于谐振频率时呈 。 (2)当信号频率f =f 0时,RC 串并联网络呈 。 解:(1)B A C (2)B

9-5 RC桥式正弦波振荡电路如图所示,要是电路能产生振荡,试求: (1)R W的下限值; (2)振荡频率的调节范围。 图 解:(1)根据起振条件 2 2' W ' W f > , >R R R R+kΩ。 故R W的下限值为2kΩ。 (2)振荡频率的最大值和最小值分别为 Hz 145 ) ( π2 1 kHz 6.1 π2 1 2 1 min 1 max ≈ + = ≈ = C R R f C R f 9-6在图所示RC桥式正弦波振荡电路中,稳压管D Z起稳幅作用,其稳定电压±U Z =±6V。试估算: (1)输出电压不失真情况下的有效值; (2)振荡频率。 解:(1)输出电压不失真情况下的峰值 是稳压管的稳定电压,故其有效值 V 36 .6 2 5.1 Z o ≈ = U U (2)电路的振荡频率 图 Hz 95 .9 π2 1 ≈ = RC f 9-7在图所示。所示的电路中,问: (1)为使电路产生正弦波振荡,标出集成运放的“+”和“-”;并说明电路是哪

输入输出阻抗以及阻抗匹配

输入、输出阻抗以及阻抗匹配 在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。阻抗常用Z表示。阻抗由电阻、感抗和容抗三者组成,但不是三者简单相加。阻抗的单位是欧。在直流电中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻很小的物质称作良导体,如金属等;电阻极大的物质称作绝缘体,如木头和塑料等。还有一种介于两者之间的导体叫做半导体,而超导体则是一种电阻值几近于零的物质。但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是欧姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。对于一个具体电路,阻抗不是不变的,而是随着频率变化而变化。在电阻、电感和电容串联电路中,电路的阻抗一般来说比电阻大。也就是阻抗减小到最小值。在电感和电容并联电路中,谐振的时候阻抗增加到最大值,这和串联电路相反。 一、输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。输入阻抗是用来衡量放大器对信号源的影响的一个性能指标: 对于电压驱动的电路,输入阻抗越大,表明放大器从信号源取的电流越小,放大器输入端得到的信号电压也越大,即信号源电压衰减的少,对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响。理论基础:Us=(Rs+Ri)×I。Rs为信号源内阻,Ri为放大器输入电阻。因此作为测量信号电压的示波器、电压表等仪器的放大电路应当具有较大的输入电阻。对于一般的放大电路来说,输入电阻当然是越大越好。如果想从信号源取得较大的电流,则应该使放大器具有较小的输入电阻 而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要

直流电机控制系统

直流电机控制系统

摘要:本文利用MCS-51系列单片机产生PWM信号,采用了自己设计的电机驱动电路,实现对直流电机的转速和控制方向的控制,并着重对电机驱动电路的设计进行叙述。主要模块包括单片机控制模块、电机驱动模块、电机接口模块、电源模块、键盘控制模块。 关键词:PWM信号,直流电机,电机驱动,单片机

引言 随着科学技术的迅猛发展,电气设备发展日新月异.尤其以计算机,信息技术为代表的高新技术的发展,使制造技术的内涵和外延发生了革命性的变化,传统的电气设备设计,制造技术不断吸收信息控制,材料,能量及管理等领域的现代成果,综合应用于产品设计,制造,检测,生产管理和售后服务.在生产技术和生产模式等方面,许多新的思想和概念不断涌现,而且,不同科学之间相互渗透,交叉融合,迅速改变着传统电气设备制造业的面貌,从而使得产品频繁的更新换代,这就使得电机成为社会生产和生活中必不可少的工具.随着科学技术的不断发展,人类社会的不断进步,人们对生活产品的需求要不断趋向多样化,这就要求生产设备必须具有良好的动态性能,在不同的时候进行不同的操作,完成不同的任务.为了使系统具有良好的动态性能必须对系统进行设计.特别是大型的钢铁行业和材料生产行业,为达到很高的控制精度,速度的稳定性,调速范围等国产直流电机简介为了满足各行业按不同运行条件对电动机提出的要求,将直流电机制造成不同型号的系列.所谓系列就是指结构形状基本相似,而容量按一定比例递增的一系列电机.它们的电压,转速,机座型号和铁心长度都是一定的等级.现将我国目前生产的几个主要系列直流电机简要的介绍如下。Z2系列为普通用途的中,小型电机.它的容量从400W到200KW,电动机的额定电压有200V和110V两种,额定转速有3000,1500,1000,750及600r/min五个等级.Z2系列普通用

驱动电路、输入阻抗及输出阻抗

1.驱动电路(Drive Circuit),位于主电路和控制电路之间,用来对控制电路的信号进行放大的中间电路(即放大控制电路的信号使其能够驱动功率晶体管),称为驱动电路。 功率驱动电路:一般情况下,无论是数字电路还是模拟电路,为了减小功耗,那么在内部信号处理和计算的时候,电压、电流比较小,那么这些信号对外部的驱动能力也就很小。但是比如电机等一些外部设备,他们的功率比较高,如果直接用这些内部计算得到的信号去驱动它们显然是不行的,那么就需要有功率驱动电路了,由这些控制信号来控制功率驱动电路,再由功率驱动电路产生大功率信号,来驱动外部设备(如:电机)。 NPN三极管驱动继电器电路 注:当三极管由导通变为截止时,继电器产生一个较大的自感电压,二极管的作用是消除这个感生电动势,吸收改电动势(反向续流)。

※注:输入、输出阻抗与带负载能力(驱动能力) 对于带负载能力,可以理解为输出功率的大小。一般大功率的功放用MOSFET管,因为它的内阻更小。 一般地,运算放大器输入阻抗越大越好,输出阻抗越小越好。若输入信号源的电压和内阻是不变的,则放大器的输入电阻越大(即高输入阻抗),从信号源取得的电流就越小,而在信号源内阻上的压降也就越小,信号电压就能以尽可能小的损失加到放大器的输入端;若放大器的输出电阻越小(即低输出阻抗),根据电阻串联分压原理,信号源电压(放大器的输出电压)在内阻Rs(输出阻抗)上的损失也越小,负载就会获得尽可能高的输出电压,常称之为“负载能力强”,即放大器可以带动功率更大,内阻更小的负载。 2.输入阻抗和输出阻抗小结 (1)输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值就是输入阻抗。 输入阻抗跟一个普通的电抗元件一样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。另外如果要获取最大输出功率时,也要考虑阻抗匹配问题。 (2)输出阻抗 无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源),内阻应该为0,或理想电流源的阻抗应当为无穷大。输出阻抗在电路设计最特别需要注意,但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r的方式来等效一个实际的电压源,这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源)的内阻了。当这个电压源给负载供电时,就

基于51单片机的波形发生器的设计讲解

目录 1 引言 (1) 1.1 题目要求及分析 (1) 1.1.1 示意图 (1) 1.2 设计要求 (1) 2 波形发生器系统设计方案 (2) 2.1 方案的设计思路 (2) 2.2 设计框图及系统介绍 (2) 2.3 选择合适的设计方案 (2) 3 主要硬件电路及器件介绍 (4) 3.1 80C51单片机 (4) 3.2 DAC0832 (5) 3.3 数码显示管 (6) 4 系统的硬件设计 (8) 4.1 硬件原理框图 (8) 4.2 89C51系统设计 (8) 4.3 时钟电路 (9) 4.4 复位电路 (9) 4.5 键盘接口电路 (10) 4.7 数模转换器 (11) 5 系统软件设计 (12) 5.1 流程图: (12) 5.2 产生波形图 (12) 5.2.1 正弦波 (12) 5.2.2 三角波 (13) 5.2.3 方波 (14) 6 结论 (16) 主要参考文献 (17) 致谢...................................................... 错误!未定义书签。

1引言 1.1题目要求及分析 题目:基于51单片机的波形发生器设计,即由51单片机控制产生正弦波、方波、三角波等的多种波形。 1.1.1示意图 图1:系统流程示意图 1.2设计要求 (1) 系统具有产生正弦波、三角波、方波三种周期性波形的功能。 (2) 用键盘控制上述三种波形(同周期)的生成,以及由基波和它的谐波(5次以下)线性组合的波形。 (3) 系统具有存储波形功能。 (4) 系统输出波形的频率范围为1Hz~1MHz,重复频率可调,频率步进间隔≤100Hz,非正弦波的频率按照10次谐波来计算。 (5) 系统输出波形幅度范围0~5V。 (6) 系统具有显示输出波形的类型、重复频率和幅度的功能。

在理解阻抗匹配前,先要搞明白输入阻抗和输出阻抗

在理解阻抗匹配前,先要搞明白输入阻抗和输出阻抗 阻抗匹配(impedance matching)是指信号传输过程中负载阻抗和信源内阻抗之间的特定配合关系。一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。对于低频电路和高频电路,阻抗匹配有很大的不同。 在理解阻抗匹配前,先要搞明白输入阻抗和输出阻抗。 一、输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题),另外如果要获取最大输出功率时,也要考虑阻抗匹配问题。 二、输出阻抗 无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源),内阻应该为0,或理想电流源的阻抗应当为无穷大。但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r 的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源)内阻了。 当这个电压源给负载供电时,就会有电流I 从这个负载上流过,并在这个电阻上产生I ×r 的电压降。这将导致电源输出电压的下降,从而限制了最大输出功率(关于为什么会

直流电机驱动与控制系统设计

直流电机驱动与控制系统设计 【摘要】介绍了基于AT89C52单片机,利用光电传感器检测直流电机的转速,采用PWM调速方式,通过AT89C52单片机产生控制信号直接控制驱动芯片LMD18200,从而间接控制直流电机的速度、正反转,以及停止,并可以调节速度至预先设定的速度。 【关键词】直流电机;单片机;lmd18200;PWM调速 直流电机在机器人和各种自动化控制领域发挥着重要的作用,而对电机速度的控制尤其重要,传统的控制系统通常采用模拟元件,如晶体管、各种线性运算电路等,虽在一定程度上满足了生产要求,但线路复杂、通用性差,控制效果受到器件性能、温度等因素的影响,从而使系统的运行特性也随之变化,故系统的运行可靠性及准确性得不到保证,甚至出现事故[1]。直流电机的数字控制已经成为了电动机控制的发展趋势,用单片机对电动机进行控制是实现电机数字控制的最常用手段,但是仅仅使用单片机进行控制会使运行程序复杂。为了减小单片机的负担,本文使用专门的直流电机控制芯片LMD18200,设计了一种基于单片机的直流电机驱动控制系统。 1.硬件电路的组成 系统硬件电路结构框图如图1所示,主要包括单片机电路、稳压电路、转速检测电路、转数显示电路、隔离电路、LMD18200驱动电路等。 1.1 稳压电路 硬件系统需要两个不同大小的电压供电。一个电压是所用驱动芯LMD18200电源端口的电压,该电压最大可以使用55V,在该硬件电路中使用的是24V;另一个电压大小为5V,该电压提供给单片机、转数测量电路中的LM393芯片以及隔离电路中的光电耦合芯片6N137。为了减少成本,硬件调试方便及满足设计的合理性,本设计中使用了稳压芯片LM7805,从而实现一个24V电源对整个硬件电路供电。具体电路如图2所示。电路左边接入24V的电经过稳压芯片LM7805将右边输出电压稳定到5V。 1.2 隔离电路 单片机输出的控制信号包括PWM控制信号和转向信号。由于驱动芯片LDM18200的控制信号是由单片机产生的,而驱动芯片输入电压较大,如果电路发生问题,电流就直接流入单片机,这样会对单片机造成损害,为了解决这个问题,在单片机和驱动芯片之间接入隔离电路,从而使单片机和驱动芯片进行隔离。同时考虑到PWM信号频率高[2],高达16.5khz,普通的光电隔离器件不能应用,故选用了高速光电耦合器芯片6N137。以PWM信号为例,转向信号类似,具体电路如图3所示,该种连接方法在传输过程中逻辑状态不变,单片机产生的PWM 信号从芯片6N137的3号引脚输入,从网络标号PWM端输出。 1.3 转速检测电路 采用光电传感器测量直流电机的转速。在直流电机转轴的末端贴上一个黑白交替的塑料卡片,该塑料卡片由三层组成,上下两层由透明塑料组成,中间夹着十张均匀分布的小黑纸。根据光电传感器的工作原理,直流电机转动一周,光电传感器输出引脚输出十个脉冲信号。同时考虑到光电传感器输出的脉冲信号不规则,将其输入到单片机后,不宜于单片机对其识别,因此在光电传感器的输出引脚连接一个由运放芯片LM393组成的脉冲整形电路[3]。具体电路如图4所示,

直流电机控制系统设计范本

直流电机控制系统 设计

XX大学 课程设计 (论文)题目直流电机控制系统设计 班级 学号 学生姓名 指导教师

沈阳航空航天大学 课程设计任务书 课程名称专业基础课程设计 院(系)自动化学院专业测控技术与仪器 班级学号姓名 课程设计题目直流电机控制系统设计 课程设计时间: 7 月 9 日至 7 月 20 日 课程设计的内容及要求: 1.内容 利用51单片机开发板设计并制作一个直流电机控制系统。系统能够实时控制电机的正转、反转、启动、停止、加速、减速等。 2.要求 (1)掌握直流电机的工作原理及编程方法。 (2)掌握直流电机驱动电路的设计方法。 (3)制定设计方案,绘制系统工作框图,给出系统电路原理图。 (4)用汇编或C语言进行程序设计与调试。 (5)完成系统硬件电路的设计。 (6)撰写一篇7000字左右的课程设计报告。

指导教师年月日 负责教师年月日 学生签字年月日 目录 0 前言...................................................................................... 错误!未定义书签。 1 总体方案设计 ...................................................................... 错误!未定义书签。 1.1 系统方案 ...................................................................... 错误!未定义书签。 1.2 系统构成 ...................................................................... 错误!未定义书签。 1.3 电路工作原理............................................................... 错误!未定义书签。 1.4 方案选择 ...................................................................... 错误!未定义书签。 2 硬件电路设计 ...................................................................... 错误!未定义书签。 2.1 系统分析与硬件设计................................................... 错误!未定义书签。 2.2 单片机AT89C52............................................................ 错误!未定义书签。 2.3 复位电路和时钟电路................................................... 错误!未定义书签。 2.4 直流电机驱动电路设计 ............................................... 错误!未定义书签。 2.5 键盘电路设计............................................................... 错误!未定义书签。 3 软件设计 ............................................................................ 错误!未定义书签。 3.1 应用软件的编制和调试 ............................................... 错误!未定义书签。 3.2 程序总体设计............................................................... 错误!未定义书签。 3.3 仿真图形 ...................................................................... 错误!未定义书签。 4 调试分析 .............................................................................. 错误!未定义书签。

多种波形发生器的设计与制作

课题三 多种波形发生器的设计与制作 方波、三角波、脉冲波、锯齿波等非正弦电振荡信号是仪器仪表、电子测量中最常用的波形,产生这些波形的方法较多。本课题要求设计的多种波形发生器是一种环形的波形发生器,方波、三角波、脉冲波、锯齿波互相依存。电路中应用到模拟电路中的积分电路、过零比较器、直流电平移位电路和锯齿波发生器等典型电路。通过对本课题的设计与制作,可进一步熟悉集成运算放大器的应用及电路的调试方法,提高对电子技术的开发应用能力。 1、 设计任务 设计并制作一个环形的多种波形发生器,能同时产生方波、三角波、脉冲波和锯齿波,它们的时序关系及幅值要求如图3-3-1所示。 图3-3-1 波形图 设计要求: ⑴ 四种波形的周期及时序关系满足图3-3-1的要求,周期误差不超过%1±。 ⑵ 四种波形的幅值要求如图3-3-1所示,幅值误差不超过%10±。 ⑶ 只允许采用通用器件,如集成运放,选用F741。

要求完成单元电路的选择及参数设计,系统调试方案的选取及综合调试。 2、设计方案的选择 由给定的四种波形的时序关系看:方波决定三角波,三角波决定脉冲波,脉冲波决定锯齿波,而锯齿波又决定方波。属于环形多种波形发生器,原理框图可用3-3-2表示。 图3-3-2 多种波形发生器的方框图 仔细研究时序图可以看出,方波的电平突变发生在锯齿波过零时刻,当锯齿波的正程过零时,方波由高电平跳变为低电平,故方波发生电路可由锯齿波经一个反相型过零比较器来实现。三角波可由方波通过积分电路来实现,选用一个积分电路来完成。图中的u B电平显然上移了+1V,故在积分电路之后应接一个直流电平移位电路,才能获得符合要求的u B波形。脉冲波的电平突变发生在三角波u B的过零时刻,三角波由高电平下降至零电位时,脉冲波由高电平实跳为低电平,故可用一个同相型过零比较器来实现。锯齿波波形仍是脉冲波波形对时间的积分,只不过正程和逆程积分时常数不同,可利用二极管作为开关,组成一个锯齿波发生电路。由上,可进一步将图3-3-2的方框图进一步具体化,如图3-3-3所示。 图3-3-3 多种波形发生器实际框图 器件选择,设计要求中规定只能选用通用器件,由于波形均有正、负电平,应选择由正、负电源供电的集成运放来完成,考虑到重复频率为100Hz(10ms),故选用通用型运放F741(F007)或四运放F324均可满足要求。本设计选用F741。其管脚排列及功能见附录三之三。

第9章2 正弦波振荡电路

一、选择题 (05 分)1.选择填空。1.利用正反馈产生正弦波振荡的电路,其组成主要是____。 A.放大电路、反馈网络 B.放大电路、反馈网络、选频网络 C.放大电路、反馈网络、稳频网络 2.为了保证正弦波振荡幅值稳定且波形较好,通常还需要引入____环节。 A.微调,B.屏蔽,C.限幅,D.稳幅 (12 分)2.将图示的文氏电桥和集成运放A连接成一个正弦波振荡电路,试在下列各题中选择正确案填空。 1.应按下列的方法____来连接: A.①-⑦,②-⑥,③-⑧,④-⑤; B.①-⑧,②-⑤,③-⑦,④-⑥; C.①-⑦,②-⑤,③-⑧,④-⑥; D.①-⑦,②-⑧,③-⑤,④-⑥; 2.若要降低振荡频率,应____。 A.增大R1;B.减小R2;C.减小C;D.增大R 3.若振荡器输出正弦波失真,应____。 A.增大R1;B.增大R2;C.增大C;D.增大R 二、是非题 (04 分)1.试判断下列说法是否正确,正确的在括号中画“√”,否则画“×”。1.负反馈放大电路不可能产生自激振荡。() 2.正反馈放大电路有可能产生自激振荡。() 3.满足自激振荡条件的反馈放大电路,就一定能产生正弦波振荡。() 4.对于正弦波振荡电路,只要满足相位平衡条件,就有可能产生正弦波振荡。()5.对于正弦波振荡电路,只要满足自激振荡的平衡条件,就有可能自行起振。()(04 分)2.试判断下列说法是否正确,正确的在括号中画“√”,否则画“×”。 1.正弦波振荡电路自行起振条件是。() 2.正弦波振荡电路维持振荡条件是。() 3.在正弦波振荡电路中,只允许引入正反馈,不允许引入负反馈。() 4.在放大电路中,为了提高输入电阻,只允许引入负反馈,不允许引入正反馈。()5.在放大电路中,若引入了负反馈,又引入了正反馈,就有可能产生自激振荡。()(05 分)3.试判断下列说法是否正确,正确的在括号中画“√”,否则画“×”。 1.由集成运放构成的电压跟随器,因为,因此不可能产生自激振荡。()

输入阻抗、输出阻抗、阻抗匹配分析_.

输入阻抗、输出阻抗、阻抗匹配分析 输入阻抗 四端网络、传输线、电子电路等的输入端口所呈现的阻抗。实质上是个等效阻抗。只有确定了输入阻抗,才能进行阻抗匹配,从信号源、传感器等获取输入信号。阻抗是电路或设备对交流电流的阻力,输入阻抗是在入口处测得的阻抗。高输入阻抗能够减小电路连接时信号的变化,因而也是最理想的。在给定电压下最小的阻抗就是最小输入阻抗。作为输入电流的替代或补充,它确定输入功率要求。 天线的输入阻抗定义为输入端电压和电流之比。其值表征了天线与发射机或接收机的匹配状况,体现了辐射波与导行波之间能量转换的好坏。 输出阻抗 阻抗是电路或设备对交流电流的阻力,输出阻抗是在出口处测得的阻抗。阻抗越小,驱动更大负载的能力就越高。 输入阻抗和输出阻抗在很多地方都用到,非常重要。 首先,输入阻抗和输出阻抗是相对的,我们先要明白阻抗的意思。 阻抗,简单的说就是阻碍作用,甚至可以说就是电阻,即一种另一层意思上的等效电阻。 引入输入阻抗和输出阻抗这两个词,最大的目的是在设计电路中,要提高效率,即要达到阻抗匹配,达到最佳效果。 有了输入输出阻抗这两个词,还可以方便两个电路独立的分开来设计。当A电路中输入阻抗和B电路的输出阻抗相同(或者在一定范围时,两个电路就可不作任何更改,直接组合成一个更复杂的电路(或者系统。

由上也可以得出:输入阻抗和输出阻抗实际上就是等效电阻,单位自然就是欧姆了。 一、输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对 信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。另外如果要获取最大输出功率时,也要考虑阻抗匹配问题 二、输出阻抗 无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源,内阻应该为0,或理想电流源的阻抗应当为无穷大。输出阻抗在电路设计最特别需要注意 但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源的内阻了。当这个电压源给负载供电时,就会有电流I从这个负载上流过,并在这个电阻上产生I×r的电压降。这将导致电源输出电压的下降,从而限制了最大输出功率(关于为什么会限制最大输出功率,请看后面的“阻抗匹配”一问。同样的,一个理想的电流源,输出阻抗应该是无穷大,但实际的电路是不可能的 三、阻抗匹配

直流电机驱动控制电路_NMosfet

1 引言 长期以来,直流电机以其良好的线性特性、优异的控制性能等特点成为大多数变速运动控制和闭环位置伺服控制系统的最佳选择。特别随着计算机在控制领域,高开关频率、全控型第二代电力半导体器件(GTR、GTO、MOSFET、IGBT等)的发展,以及脉宽调制(PWM)直流调速技术的应用,直流电机得到广泛应用。为适应小型直流电机的使用需求,各半导体厂商推出了直流电机控制专用集成电路,构成基于微处理器控制的直流电机伺服系统。但是,专用集成电路构成的直流电机驱动器的输出功率有限,不适合大功率直流电机驱动需求。因此采用N沟道增强型场效应管构建H桥,实现大功率直流电机驱动控制。该驱动电路能够满足各种类型直流电机需求,并具有快速、精确、高效、低功耗等特点,可直接与微处理器接口,可应用PWM技术实现直流电机调速控制。 2 直流电机驱动控制电路总体结构 直流电机驱动控制电路分为光电隔离电路、电机驱动逻辑电路、驱动信号放大电路、电荷泵电路、H桥功率驱动电路等四部分,其电路框图如图一 由图可以看出,电机驱动控制电路的外围接口简单。其主要控制信号有电机运转方向信号Dir电机调速信号PWM及电机制动信号Brake,Vcc为驱动逻辑电路部分提供电源,Vm为电机电源电压,M+、M-为直流电机接口。 在大功率驱动系统中,将驱动回路与控制回路电气隔离,减少驱动控制电路对外部控制电路的干扰。隔离后的控制信号经电机驱动逻辑电路产生电机逻辑控制信号,分别控制H桥的上下臂。由于H桥由大功率N沟道增强型场效应管构成,不能由电机逻辑控制信号直接驱动,必须经驱动信号放大电路和电荷泵电路对控制信号进行放大,然后驱动H桥功率驱动电路来驱动直流电机。 3 H桥功率驱动原理 直流电机驱动使用最广泛的就是H型全桥式电路,这种驱动电路方便地实现直流电机的四象限运行,分别对应正转、正转制动、反转、反转制动。H桥功率驱动原理图如图2所示。

什么是输入阻抗和输出阻抗

什么是输入阻抗和输出阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。另外如果要获取最大输出功率时,也要考虑阻抗匹配问题 二、输出阻抗 无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源),内阻应该为0,或理想电流源的阻抗应当为无穷大。输出阻抗在电路设计最特别需要注意。 但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源)的内阻了。当这个电压源给负载供电时,就会有电流I从这个负载上流过,并在这个电阻上产生I×r的电压降。这将导致电源输出电压的下降,从而限

制了最大输出功率(关于为什么会限制最大输出功率,请看后面的“阻抗匹配”一问)。同样的,一个理想的电流源,输出阻抗应该是无穷大,但实际的电路是不可能的 三、阻抗匹配 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U/[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为: P=I2×R=[U/(R+r)]2×R=U2×R/(R2+2×R×r+r2) =U2×R/[(R-r)2+4×R×r] =U2/{[(R-r)2/R]+4×r} 对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)2/R],当R=r时,[(R-r)2/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U2/(4×r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有

数控机床驱动与控制标准系统

第四章数控机床的驱动与控制系统 第一节位移、速度、位置传感器 数控机床若按伺服系统有无检测装置进行分类,可分为开环系统和闭环(或半环)系统。也就是说检测装置是闭环(半闭环)系统的重要部件之一,它的作用是测量工作实际位移并反馈送至数控装置,使工作台按规定的路径精确移动。因此对于闭环系统来说,检测装置决定了它的定位精度和加工精度。数控机床对检测装置的主要要求为: (1)工作可靠,抗干扰性强; (2)使用维护方便,适应机床的工作环境; (3)满足精度和速度的要求; (4)成本低。 通常,数控装置要求位置检测的分辨率为0.001~0.0lmm;测量精度为±0.002~±0.02mm/m,能满足数控机床以1~l0m/min的最大速度移动. 位置检测装置的分类列表于4-1中。本章仅就其中常用的检测装置(旋转变压器感应同步器光栅、磁栅、编码盘)的结构和原理予以讲述。 旋转变压器

是一种常用的转角检测元件,由于它结构简单,工作可靠,且其精度能满足一般的检测要求,因此被广泛应用在数控机床上。 工作原理 当转子绕组的磁轴与定子绕组的磁轴自垂直位置转动一角度θ时,绕组中产生的感应电势应为 E1=nV1sinθ =nV m sinωt sinθ 式中n——变压比; V1——定子的输入电压; V m——定子最大瞬时电压。 当转子转到两磁轴平行时(即θ=90o),转子绕组中感应电势最大,即 E1=nV m sinωt 旋转变压器的应用 V3=nV m sinωt sinθ1 + nV m cosωt cosθ1 =nV m cos(ωt –θ1) ?感应同步器 感应同步器是一种电磁式位置检测元件,按其结构特点一般可分为直线式和旋转式两种。直线式感应同步器由定尺和滑尺组成;旋转式感应同步器由转子和定子组成。前者用于直线位移的测量,后者用于角度位移的测量。 它们的工作原理都与旋转变压器相似。感应同步器具有检测精度高、抗干扰性强、寿命长、维护方便、成本低、工艺性好等优点,广泛应用于高精度的数控机床。本节主要以直线式感应同步器为例,对其结构特点和工作原理进行讲述。

波形发生器的设计全解

正 文 1 选题背景 波形发生器又名信号源,广泛应用于电子电路、自动控制和科学试验等领域。雷达、通信、宇航、遥控遥测技术和电子系统等领域都随处可见波形发生器的应用。如今作为电子系统心脏的信号源的性能很大程度上决定了电子设备和系统的性能的提高,因此随着电子技术的不断发展,现今对信号源的频率稳定度、频谱纯度和频率范围以及信号波形的形状提出越来越高的挑战。 1.1指导思想 利用NE555构成多谐振荡器产生方波,根据LM324输出的锯齿波分别通入低通滤波器和高通滤波器就可以输出正弦波Ⅰ、正弦波Ⅱ。 1.2 方案论证 方案一:使用NE555芯片构成多谐振荡器,输出方波,通过锯齿波发生电路产生锯齿波,然后通过一个KHz f H 10=的低通滤波器,通过滤波产生一次,8KHz 到10KHz 的正弦波,然后再让锯齿波通过一个24KHz~30KHz 的带通滤波器,输出三次正弦波。其中滤出三次谐波的理论依据是,由于锯齿波是一个关于t 的周期函数,并且满足狄里赫莱条件:在一个周期内具有有限个间断点,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。 方案二:使用功放构成文森桥式震荡电路,产生出8KHz~10KHz 的正弦波。接着是用NE555芯片,搭建出施密特触发电路,产生脉冲波输出;将脉冲波分别输入一个KHz f H 10=的低通滤波器和24KHz~30KHz 的带通滤波器电路中,产生一次和三次正弦波。 最初方案设计的大体思路在方案一和方案二之间犹豫不决,于是将两个电路的大体电路都进行了简单的设计,发现方案二存在很多的问题很难解决。 问题一:如果使用文森桥式震荡器产生正弦波,改变震荡频率就需要改变RC 常数,要同时改变两个R (在实际电路中,同时改变两个电容的值是很复杂的,而且这样也无法得到一个8KHZ~10KHz 的连续的频率),需要双滑动变阻器并且要保证滑动变阻器改变的值完全相同,有一定困难。 问题二:NE555芯片搭建出来的是一个简单的施密特触发器,输入正弦波之后,输出的脉冲波的占空比是不可以调整的,不满足实验要求的占空比可调的条件。要是施密特触发器产生的脉冲波的占空比可调会是该电路进一步复杂化。 问题三:LM324芯片的功放不够,由于有Ω600负载电阻的限制,输出波形的峰峰值不能简单的通过电阻的分压来实现。 鉴于方案二存在的问题能以解决,我们就确定选择方案一的整体思路进行方案的设计。 1.3 基本设计任务 用555 定时器和四运放LM324 设计并制作一个频率可变的、能够同时输出脉冲波、

模拟电子技术实验-波形发生电路

实验: 波形发生电路 一、 实验目的 1.掌握RC 桥式正弦波振荡电路的原理与设计方法; 2.加深理解矩形波和方波-三角波发生电路的工作原理与设计方法; 3.了解运放转换速率对振荡波形跳变沿的影响。 二、实验仪器名称及型号 KeySight E36313A 型直流稳压电源,KeySight DSOX3014T 型示波器/信号源一体机。 模块化实验装置。 本实验将使用三种集成运放:μA741、LM324和TL084,它们的引脚如图1所示,LM324和TL084的引脚排列完全相同。 87654 3 2 1 μA741+Vcc -Vcc OUT OA2 NC 141312114 3 2 1 LM324(TL084) 10987 6 5 V-4OUT 4IN-4IN+ 3OUT 3IN-3IN+ 图1 741A 、LM324和TL084的引脚图 三、实验内容 1.RC 桥式正弦波振荡电路(SPOC 实验) (1)设计RC 桥式正弦波振荡电路,要求振荡频率为1.6kHz ,输出波形稳定并且无失真。其中集成运放可采用μA741、LM324或TL084,简要写出设计过程,绘制或截取电路原理图。 电阻R1.R2与电容C1、C2构成串并联选频网络,电阻R3、R4、RP 构成负反馈网络,VD1和VD2用于限幅作用稳定波形,当R1=R2=R,C1=C2=C 时,串并联选频网络的相频特性和幅频特性分别为 , 相频特性为 ,

, 根据,题目要求f=1.6kHz,取参数R1=R2=10kΩ,C1=C2=0.01μF,R3=R4=5.1kΩ,R p=10kΩ。 (2)学习SPOC实验操作视频,将示波器的两个通道分别接在u o端和u f端,缓慢调节电位器R W,使电路产生正弦振荡,在确保两个通道的正弦波不失真的前提下将输出幅度调得尽量大些,记录输出u o的峰-峰值U opp和输入u f的峰-峰值U fpp。U opp= 18.1V ;U opp= 6.1V ; (3)正反馈系数F u的测定。计算出F u = U f / U o = U fpp / U opp。F u = U f / U o = U fpp / U opp= 2.96 ;(4)李萨如图形法测量振荡频率f o:将u o送入示波器的一个通道,再从函数信号发生器引出正弦信号送入示波器的另一个通道(输出幅度与u o相同或接近)。按示波器的“水平(Horiz)”键,将“时基模式”改为“XY”方式。调整函数信号发生器输出频率,使之接近输出信号u o的频率,仔细调整,使屏幕上显示一个基本稳定的椭圆。此时信号发生器指示的频率即为振荡器的输出频率。截取SPOC视频中示波器的显示结果如下。

相关文档
最新文档