SIMULINK仿真方法简介

SIMULINK仿真方法简介
SIMULINK仿真方法简介

SIMULINK仿真方法简介

SIMULINK是一个进行动态系统的建模、仿真和综合分析的集成软件包。它可以处理的系统包括:线性、非线性系统;离散、连续及混合系统;单任务、多任务离散事件系统。

在SIMULINK提供的图形用户界面GUI上,只要进行鼠标的简单拖拉操作就可以构造出复杂的仿真模型。它的外表以方框图形式呈现,且采用分层结构。从建模角度,SIMULINK 既适用于自上而下的设计流程,又适用于自下而上的逆程设计。从分析研究角度,这种SIMULINK模型不仅让用户知道具体环节的动态细节,而且能够让用户清晰的了解各器件、各子系统、各系统间的信息交换,掌握各部分的交互影响。

1. 应用SIMULINK的基本操作

1)在MATLAB的命令窗运行指令simulink或点击命令窗口中的图标,便可以打开如图B1-2所示的SIMULINK模块库浏览器(Simulink Library Browser)。

图B1-2 SIMULINK库浏览器

2)点击Source字库前的“+”号(或双击字库名),便可以得到各种信源模块,如图B1-3。

图B1-3 信源子库的模块

3)点击“新建”图标,打开一个名为untitled的空白模型窗口,如图B1-4。

图B1-4 SIMULINK的新建模型窗口

4)用鼠标指向所需的信号源(如阶跃信号Step),按下鼠标左键,把它拖至untitled窗,就生成一个阶跃信号的复制品。,如图B1-5。

图B1-5模型创建中的模型窗口

5)采用上述方法,将信宿库Sink中的示波器scope拷贝到模型窗口,把鼠标指向信源右侧的输出端,当光标变成十字符时,按住鼠标任意键,移向示波器的输入端,就完成了两个模块间的信号连接,如图B1-6。

图B1-6 创建模型完毕中的模型窗口

6)进行仿真,双击示波器,打开示波器显示屏,如图1-7。点击模型窗口中的“仿真启动”

图标或点击simulink菜单下的start,仿真就开始了,就可以观测到阶跃信号的波形了,如图B1-7。

图B1-7 仿真结果波形

2. 常用的Sourse库信源和Sink库信宿

无论是线性系统还是非线性系统,不管建模还是仿真都要用到元件库中提供的各种元件和模块。列表说明常用信源和信宿,如表B1-1、B1-2。

3.模块操作

1)模块的基本操作

模块的选定模块的选定操作是其他操作(模块的复制、移动、删除)的前导操作,被选定的模块四个角处会出现小黑块。选定单个模块时,用鼠标点击待选模块即可;选定多个模块时,可按下shift键依次点击所选模块或按住鼠标任意键拉出包含待选模块的虚线框,则可以选中包括连接模块的信号线在内的模块。

模块的复制不同模型窗口之间的模块的复制时,在一个窗口中鼠标点中待复制的模块,将其拖至另外一窗口,然后松开鼠标即可;在同一窗口复制模块时,按下鼠标右键,拖动鼠标至合适的位置松开鼠标即可,也可以按下ctrl键,用鼠标左键点中待复制的模块,拖动鼠标至合适位置松开鼠标就可以了。

模块的移动选中所需移动的模块,按下鼠标左键将模块拖动到合适的位置即可。同时模块移动时与其相连的信号线也随之移动,在不同的模型窗口之间移动模块,需同时按下shift键。

模块的删除选中带删除的模块,按键盘上的删除按键delete即可。

模块的大小调整选中模块,待模块四个角处的出现小黑块时,用鼠标拖动小黑块使得模块至适当大小时然后释放,就能调整好模块的大小。

模块的旋转选用菜单format中的flip block 可将选定模块旋转1800,选用rotate block 将模块旋转900。

表B1-1 常用的SOURSE库信源

模块形状

(

恒值输出

从文件读数据

从工作内存读取

数据

信号发生器

正弦信号

阶跃输出

(表B1-1说明:信源中还有标准的信源Band-Limited White Noise,Chirp Signal,Digital Clock,Discrete Pulse Generator, Uniform Random Numbe等。)

模块名的修改、及字体设置点击模块名,将在原名字的位置上出现一个编辑框,将光标移动到修改位置处即可进行修改,字体的设置可选用菜单Format中Font字体对话框来进行修改。

2)模块的参数设置

几乎所有的模块都有一个相应的参数对话框,双击模块就可以打开模块参数对话框,然后改变对话框中的适当的栏目即可改变模块的参数。在改变参数的过程中,参数对话框主要应用四个按钮。OK参数设置完成,关闭对话框;Cancel取消所做的操作,恢复原先的参数值,关闭对话框;Help打开模块的超文本帮助文档;Apply将所做的修改应用于模块,不关闭对话框。

表B1-2 Sink库信宿一览表

模型形状

把数据写成矩阵

Workspace

显示

3)信号线的操作

连线的绘制将光标指向连线的起点,光标变成十字后,按下鼠标键并拖动,直至终点,松开鼠标。SIMULINK会根据起点和终点的位置自动配置连线,或者采用直线或者采用折线,绘制出水平或垂直连接的直线;按下shift键,拉动鼠标,即可绘制斜线;选中所画线段,拖动鼠标至希望位置,可实现线段的移动,按键盘上的delete键可实现信号线的删除。

信号线的分支与折曲分支线的的产生可将鼠标指向分支点的起点,按下鼠标右键,鼠标变为十字,拖动鼠标直至分支点的终点处,释放鼠标,可画出分支线;选中已存在的信号线,将光标指向待转折处,按住shift键,再按下鼠标左键,拖动鼠标至合适处即可绘制出折线。

折点的移动选中折线,将光标指向待移动的折点处,光标变成小圆圈时,按下鼠标左键拖动至希望处,释放鼠标。

4. 仿真配置

进行仿真前对仿真的起始时间和终止时刻的设定、仿真步长的选择、各种仿真容差的及数值积分算法的进行选定,配置好各种参数,就可以对按照上述步骤所建立的线性或非线性等系统进行仿真分析了。

通信仿真课程设计-matlab-simulink

成都理工大学工程技术学院 《通信仿真课程设计》报告 班级:信息工程1班 姓名:寇路军 学号: 201620101133 指导教师:周玲 成绩: 2019 年 3月 23 日

目录 通信仿真课程设计报告 (2) 一.绪论 (2) 二.课程设计的目的 (2) 三.模拟调制系统的设计 (3) 3.1 二进制相移键控调制基本原理 (3) 3.2 2PSK信号的调制 (3) 3.2.1模拟调制的方法 (3) 3.3 2PSK信号的解调 (4) 3.4 2PSK的“倒∏现象”或“反向工作” (5) 3.5功率谱密度 (5) 四.数字调制技术设计 (7) 4.1 2PSK的仿真 (7) 4.1.1仿真原理图 (7) 4.1.2 仿真数据 (7) 4.1.3 输出结果 (9) 总结 (10) 参考文献 (11)

通信仿真课程设计报告 一.绪论 随着社会的快速发展,通信系统在社会上表现出越来越重要的作用。目前,我们生活中使用的手机,电话,Internet,ATM机等通信设备都离不开通信系统。随着通信系统与我们生活越来越密切,使用越来越广泛,对社会对通信系统的性能也越高。另外,随着人们对通信设备更新换代速度越来越快。不得不缩短通信系统的开发周期以及提高系统性能。针对这两方面的要求,必需要通过强大的计算机辅助分析设计技术和工具才能实现。自从现代以来,计算机科技走上了快速发展道路,实现了可视化的仿真软件。 通信系统仿真,在目前的通信系统工程设计当中。已成为了不可替代的一部分。它表现出很强的灵活性和适应性。为我们更好地研究通信系统性能带来了很大的帮助。本论文主要针对模拟调制系统中的二进制相移键控调制技术进行设计和基于Simulink进行仿真。通过系统仿真验证理论中的结论。本论文设计的目的之一是进一步加强理论知识,熟悉Matlab软件。 Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink 已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。 二.课程设计的目的 1.掌握模拟系统2PSK调制和解调原理及设计方法。 2.熟悉基于Simulink的通信系统仿真。

Simulink仿真参数设定

simulink中的solver各选项表示的意思ZZ 2007-05-11 21:12 | (分类:默认分类) 构建好一个系统的模型之后,接下来的事情就是运行模型,得出仿真结果。运行一个仿真的完整过程分成三个步骤:设置仿真参数,启动仿真和仿真结果分析。 一、设置仿真参数和选择解法器 设置仿真参数和选择解法器,选择Simulation菜单下的Parameters命令,就会弹出一个仿真参数对话框,它主要用三个页面来管理仿真的参数。 Solver页,它允许用户设置仿真的开始和结束时间,选择解法器,说明解法器参数及选择一些输出选项。 Workspace I/O页,作用是管理模型从MATLAB工作空间的输入和对它的输出。 Diagnostics页,允许用户选择Simulink在仿真中显示的警告信息的等级。 1、Solver页 此页可以进行的设置有:选择仿真开始和结束的时间;选择解法器,并设定它的参数;选择输出项。 仿真时间:注意这里的时间概念与真实的时间并不一样,只是计算机仿真中对时间的一种表示,比如10秒的仿真时间,如果采样步长定为0.1,则需要执行100步,若把步长减小,则采样点数增加,那么实际的执行时间就会增加。一般仿真开始时间设为0,而结束时间视不同的因素而选择。总的说来,执行一次仿真要耗费的时间依赖于很多因素,包括模型的复杂程度、解法器及其步长的选择、计算机时钟的速度等等。 仿真步长模式:用户在Type后面的第一个下拉选项框中指定仿真的步长选取方式,可供选择的有Variable-step(变步长)和Fixed-step(固定步长)方式。变步长模式可以在仿真的过程中改变步长,提供误差控制和过零检测。固定步长模式在仿真过程中提供固定的步长,不提供误差控制和过零检测。用户还可以在第二个下拉选项框中选择对应模式下仿真所采用的算法。 变步长模式解法器有:ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb和discrete。ode45:缺省值,四/五阶龙格-库塔法,适用于大多数连续或离散系统,但不适用于刚性(stiff)系统。它是单步解法器,也就是,在计算y(tn)时,它仅需要最近处理时刻的结果y(tn-1)。一般来说,面对一个仿真问题最好是首先试试ode45。 ode23:二/三阶龙格-库塔法,它在误差限要求不高和求解的问题不太难的情况下,可能会比ode45更有效。也是一个单步解法器。 ode113:是一种阶数可变的解法器,它在误差容许要求严格的情况下通常比ode45有效。ode113是一种多步解法器,也就是在计算当前时刻输出时,它需要以前多个时刻的解。 ode15s:是一种基于数字微分公式的解法器(NDFs)。也是一种多步解法器。适用于刚性系统,当用户估计要解决的问题是比较困难的,或者不能使用ode45,或者即使使用效果也不好,就可以用ode15s。 ode23s:它是一种单步解法器,专门应用于刚性系统,在弱误差允许下的效果好于ode15s。它能解决某些ode15s所不能有效解决的stiff问题。 ode23t:是梯形规则的一种自由插值实现。这种解法器适用于求解适度stiff的问题而用户又需要一个无数字振荡的解法器的情况。 ode23tb:是TR-BDF2的一种实现, TR-BDF2 是具有两个阶段的隐式龙格-库塔公式。discrtet:当Simulink检查到模型没有连续状态时使用它。 固定步长模式解法器有:ode5,ode4,ode3,ode2,ode1和discrete。 ode5:缺省值,是ode45的固定步长版本,适用于大多数连续或离散系统,不适用于刚性系统。

开关电源《基于MatlabSimulink的BOOST电路仿真》

基于Matlab/Simulink 的BOOST电路仿真 姓名: 学号: 班级: 时间:2010年12月7日

1引言 BOOST 电路又称为升压型电路, 是一种直流- 直流变换电路, 其电路结构如图1 所示。此电路在开关电源领域内占有非常重要的地位, 长期以来广泛的应用于各种电源设备的设计中。对它工作过程的理解掌握关系到对整个开关电源领域各种电路工作过程的理解, 然而现有的书本上仅仅给出电路在理想情况下稳态工作过程的分析, 而没有提及电路从启动到稳定之间暂态的工作过程, 不利于读者理解电路的整个工作过程和升压原理。采用matlab仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOO ST 电路的工作特性。 图1BOO ST 电路的结构 2电路的工作状态 BOO ST 电路的工作模式分为电感电流连续工作模式和电感电流断续工作模式。其中电流连续模式的电路工作状态如图2 (a) 和图2 (b) 所示, 电流断续模式的电路工作状态如图2 (a)、(b)、(c) 所示, 两种工作模式的前两个工作状态相同, 电流断续型模式比电流连续型模式多出一个电感电流为零的工作状态。 (a) 开关状态1 (S 闭合) (b) 开关状态2 (S 关断) (c) 开关状态3 (电感电流为零) 图2BOO ST 电路的工作状态

3matlab仿真分析 matlab 是一种功能强大的仿真软件, 它可以进行各种各样的模拟电路和数字电路仿真,并给出波形输出和数据输出, 无论对哪种器件和哪种电路进行仿真, 均可以得到精确的仿真结果。本文应用基于matlab软件对BOO ST 电路仿真, 仿真图如图3 所示,其中IGBT作为开关, 以脉冲发生器脉冲周期T=0.2ms,脉冲宽度为50%的通断来仿真图2 中开关S的通断过程。 图3BOO ST 电路的PSp ice 模型 3.1电路工作原理 在电路中IGBT导通时,电流由E经升压电感L和V形成回路,电感L储能;当IGBT关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而在负载侧得到高于电源的电压,二极管的作用是阻断IGBT导通是,电容的放电回路。调节开关器件V的通断周期,可以调整负载侧输出电流和电压的大小。负载侧输出电压的平均值为: (3-1) 式(3-1)中T为开关周期, 为导通时间,为关断时间。

Simulink系统仿真课程设计

《信息系统仿真课程设计》 课程设计报告 题目:信息系统课程设计仿真 院(系):信息科学与技术工程学院 专业班级:通信工程1003 学生姓名: 学号: 指导教师:吴莉朱忠敏 2012 年 1 月 14 日至2012 年 1 月 25 日 华中科技大学武昌分校制

信息系统仿真课程设计任务书

目录 摘要 (5) 一、Simulink仿真设计 (6) 1.1 低通抽样定理 (6) 1.2 抽样量化编码 (9) 二、MATLAB仿真设计 (12) 2.1、自编程序实现动态卷积 (12) 2.1.1 编程分析 (12) 2.1.2自编matlab程序: (13) 2.1.3 仿真图形 (13) 2.1.4仿真结果分析 (15) 2.2用双线性变换法设计IIR数字滤波器 (15) 2.2.1双线性变换法的基本知识 (15) 2.2.2采用双线性变换法设计一个巴特沃斯数字低通滤波器 (16) 2.2.3自编matlab程序 (16) 2.2.4 仿真波形 (17) 2.2.5仿真结果分析 (17) 三、总结 (19) 四、参考文献 (19) 五、课程设计成绩 (20)

摘要 Matlab 是一种广泛应用于工程设计及数值分析领域的高级仿真平台。它功能强大、简单易学、编程效率高,目前已发展成为由MATLAB语言、MATLAB工作环境、MATLAB图形处理系统、MATLAB数学函数库和MATLAB应用程序接口五大部分组成的集数值计算、图形处理、程序开发为一体的功能强大的系统。本次课程设计主要包括MATLAB和SIMULINKL 两个部分。首先利用SIMULINKL 实现了连续信号的采样及重构,通过改变抽样频率来实现过采样、等采样、欠采样三种情况来验证低通抽样定理,绘出原始信号、采样信号、重构信号的时域波形图。然后利用SIMULINKL 实现抽样量化编码,首先用一连续信号通过一个抽样量化编码器按照A律13折线进量化行,观察其产生的量化误差,其次利用折线近似的PCM编码器对一连续信号进行编码。最后利用MATLAB进行仿真设计,通过编程,在编程环境中对程序进行调试,实现动态卷积以及双线性变换法设计IIR数字滤波器。 本次课程设计加深理解和巩固通信原理、数字信号处理课上所学的有关基本概念、基本理论和基本方法,并锻炼分析问题和解决问题的能力。

simulink仿真全参数设置

1.变步长(Variable—Step)求解器 可以选择的变步长求解器有:ode45,ode23,ode113,odel5s,ode23s和discret.缺省情况下,具有状态的系统用的是ode45;没有状态的系统用的是discrete. 1)ode45基于显式Runge—Kutta(4,5)公式,Dormand—Prince对.它是—个单步求解器(solver)。也就是说它在计算y(tn)时,仅仅利用前一步的计算结果y(tn-1).对于大多数问题.在第一次仿真时、可用ode45试一下. 2)ode23是基于显式Runge—Kutta(2,3).Bogackt和Shampine对.对于宽误差容限和存在轻微刚性的系统、它比ode45更有效一些.ode23也是单步求解器.3)odell3是变阶Adams-Bashforth—Moulton PECE求解器.在误差容限比较严时,它比ode45更有效.odell3是一个多步求解器,即为了计算当前的结果y(tn),不仅要知道前一步结果y(tn-1),还要知道前几步的结果y(tn-2),y(tn-3),…; 4)odel5s是基于数值微分公式(NDFs)的变阶求解器.它与后向微分公式BDFs(也叫Gear方法)有联系.但比它更有效.ode15s是一个多步求解器,如果认为一个问题是刚性的,或者在用ode45s时仿真失败或不够有效时,可以试试odel5s。odel5s是基于一到五阶的NDF公式的求解器.尽管公式的阶数越高结果越精确,但稳定性会差一些.如果模型是刚性的,并且要求有比较好的稳定性,应将最大的阶数减小到2.选择odel5s求解器时,对话框中会显示这一参数.可以用ode23求解器代替。del5s,ode23是定步长、低阶求解器. 5)ode23s是基于一个2阶改进的Rosenbrock公式.因为它是一个单步求解器,所以对于宽误差容限,它比odel5s更有效.对于一些用odel5s不是很有效的刚性问题,可以用它解决. 6)ode23t是使用“自由”内插式梯形规则来实现的.如果问题是适度刚性,而且需要没有数字阻尼的结果,可采用该求解器. 7)ode23tb是使用TR—BDF2来实现的,即基于隐式Runge—Kutta公式,其第一级是梯形规则步长和第二级是二阶反向微分公式.两级计算使用相同的迭代矩阵.与ode23s相似,对于宽误差容限,它比odtl5s更有效. 8)discrete(变步长)是simulink在检测到模型中没有连续状态时所选择的一种求解器.

通信仿真课程设计-matlab-simulink

理工大学工程技术学院 《通信仿真课程设计》报告 班级:信息工程1班 姓名:寇路军 学号: 3 指导教师:周玲 成绩: 2019 年 3月 23 日

目录 通信仿真课程设计报告 (2) 一.绪论 (2) 二.课程设计的目的 (2) 三.模拟调制系统的设计 (3) 3.1 二进制相移键控调制基本原理 (3) 3.2 2PSK信号的调制 (3) 3.2.1模拟调制的方法 (3) 3.3 2PSK信号的解调 (4) 3.4 2PSK的“倒∏现象”或“反向工作” (5) 3.5功率谱密度 (5) 四.数字调制技术设计 (7) 4.1 2PSK的仿真 (7) 4.1.1仿真原理图 (7) 4.1.2 仿真数据 (7) 4.1.3 输出结果 (9) 总结 (10) 参考文献 (11)

通信仿真课程设计报告 一.绪论 随着社会的快速发展,通信系统在社会上表现出越来越重要的作用。目前,我们生活中使用的手机,,Internet,ATM机等通信设备都离不开通信系统。随着通信系统与我们生活越来越密切,使用越来越广泛,对社会对通信系统的性能也越高。另外,随着人们对通信设备更新换代速度越来越快。不得不缩短通信系统的开发周期以及提高系统性能。针对这两方面的要求,必需要通过强大的计算机辅助分析设计技术和工具才能实现。自从现代以来,计算机科技走上了快速发展道路,实现了可视化的仿真软件。 通信系统仿真,在目前的通信系统工程设计当中。已成为了不可替代的一部分。它表现出很强的灵活性和适应性。为我们更好地研究通信系统性能带来了很大的帮助。本论文主要针对模拟调制系统中的二进制相移键控调制技术进行设计和基于Simulink进行仿真。通过系统仿真验证理论中的结论。本论文设计的目的之一是进一步加强理论知识,熟悉Matlab软件。 Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink 已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。 二.课程设计的目的 1.掌握模拟系统2PSK调制和解调原理及设计方法。 2.熟悉基于Simulink的通信系统仿真。

Matlab第五章 Simulink模拟电路仿真

第五章Simulink模拟电路仿真 武汉大学物理科学与技术学院微电子系常胜

§5.1 电路仿真概要 5.1.1 MATLAB仿真V.S. Simulink仿真 利用MATLAB编写M文件和利用Simulink搭建仿真模型均可实现对电路的仿真,在实现电路仿真的过程中和仿真结果输出中,它们分别具有各自的优缺点。 武汉大学物理科学与技术学院微电子系常胜

ex5_1.m clear; V=40;R=5;Ra=25;Rb=100;Rc=125;Rd=40;Re=37.5; R1=(Rb*Rc)/(Ra+Rb+Rc); R2=(Rc*Ra)/(Ra+Rb+Rc); R3=(Ra*Rb)/(Ra+Rb+Rc); Req=R+R1+1/(1/(R2+Re)+1/(R3+Rd)); I=V/Req 武汉大学物理科学与技术学院微电子系常胜

ex5_1 武汉大学物理科学与技术学院微电子系常胜

武汉大学物理科学与技术学院微电子系常胜

注意Simulink仿真中imeasurement模块 /vmeasurement模块和Display模块/Scope模块的联合使用 Series RLC Branch模块中R、C、L的确定方式 R:Resistance设置为真实值Capacitance设置为inf(无穷大)Inductance设置为0 C:Resistance设置为0 Capacitance设置为真实值Inductance设置为0 L:Resistance设置为0Capacitance设置为inf Inductance设置为真实值 武汉大学物理科学与技术学院微电子系常胜

matlab通信仿真课程设计样本

《matlab通信仿真设计》课程设计指导书 11月

课程设计题目1: 调幅广播系统的仿真设计 模拟幅度调制是无线电最早期的远距离传输技术。在幅度调制中, 以声音信号控制高频率正弦信号的幅度, 并将幅度变化的高频率正弦信号放大后经过天线发射出去, 成为电磁波辐射。 波动的电信号要能够有效地从天线发送出去, 或者有效地从天线将信号接收回来, 需要天线的等效长度至少达到波长的1/4。声音转换为电信号后其波长约在15~1500km之间, 实际中不可能制造出这样长度和范围的天线进行有效信号收发。因此需要将声音这样的低频信号从低频率段搬移到较高频率段上去, 以便经过较短的天线发射出去。 人耳可闻的声音信号经过话筒转化为波动的电信号, 其频率范围为20~20KHz。大量实验发现, 人耳对语音的频率敏感区域约为300~3400Hz, 为了节约频率带宽资源, 国际标准中将电话通信的传输频带规定为300~3400Hz。调幅广播除了传输声音以外, 还要播送音乐节目, 这就需要更宽的频带。一般而言, 调幅广播的传输频率范围约为100~6000Hz。 任务一: 调幅广播系统的仿真。 采用接收滤波器Analog Filter Design模块, 在同一示波器上观察调幅信号在未加入噪声和加入噪声后经过滤波器后的波形。采用另外两个相同的接收滤波器模块, 分别对纯信号和纯噪声滤波, 利用统计模块计算输出信号功率和噪声功率, 继而计算输出信噪比, 用Disply显示结果。 实例1: 对中波调幅广播传输系统进行仿真, 模型参数指标如下。

1.基带信号: 音频, 最大幅度为1。基带测试信号频率在100~6000Hz 内可调。 2.载波: 给定幅度的正弦波, 为简单起见, 初相位设为0, 频率为550~1605Hz 内可调。 3.接收机选频放大滤波器带宽为12KHz, 中心频率为1000kHz 。 4.在信道中加入噪声。当调制度为0.3时, 设计接收机选频滤波器输出信噪比为20dB, 要求计算信道中应该加入噪声的方差, 并能够测量接收机选频滤波器实际输出信噪比。 仿真参数设计: 系统工作最高频率为调幅载波频率1605KHz, 设计仿真采样率为最高工作频率的10倍, 因此取仿真步长为 8max 1 6.2310(1-1)10step t s f -==? 相应的仿真带宽为仿真采样率的一半, 即 18025.7(1-2)2step W KHz t == 设基带测试正弦信号为m(t)=Acos2πFt, 载波为c(t)=cos2πf c t, 则调制度为m a 的调制输出信号s(t)为 ()(1cos 2)cos 2(1-3)a c s t m Ft f t ππ=+ 容易求出, s(t)的平均功率为 21(1-4)24a m P =+ 设信道无衰减, 其中加入的白噪声功率谱密度为N 0/2, 那么仿真带宽(-W, W)内噪声样值的方差为 2002(1-5)2N W N W σ=?=

复杂过程控制系统设计与Simulink仿真

银河航空航天大学 课程设计 (论文) 题目复杂过程控制系统设计与Simulink仿 真 班级 学号 学生姓名 指导教师

目录 0. 前言 (1) 1. 总体方案设计 (2) 2. 三种系统结构和原理 (3) 2.1 串级控制系统 (3) 2.2 前馈控制系统 (3) 2.3 解耦控制系统 (4) 3. 建立Simulink模型 (5) 3.1 串级 (5) 3.2 前馈 (5) 3.3 解耦 (7) 4. 课设小结及进一步思想 (15) 参考文献 (15) 附录设备清单 (16)

复杂过程控制系统设计与Simulink仿真 姬晓龙银河航空航天大学自动化分校 摘要:本文主要针对串级、前馈、解耦三种复杂过程控制系统进行设计,以此来深化对复杂过程控制系统的理解,体会复杂过程控制系统在工业生产中对提高产品产量、质量和生产效率的重要作用。建立Simulink模型,学习在工业过程中进行系统分析和参数整定的方法,为毕业设计对模型进行仿真分析及过程参数整定做准备。 关键字:串级;前馈;解耦;建模;Simulink。 0.前言 单回路控制系统解决了工业过程自动化中的大量的参数定制控制问题,在大多数情况下这种简单系统能满足生产工艺的要求。但随着现代工业生产过程的发展,对产品的产量、质量,对提高生产效率、降耗节能以及环境保护提出了更高的要求,这便使工业生产过程对操作条件要求更加严格、对工艺参数要求更加苛刻,从而对控制系统的精度和功能要求更高。为此,需要在单回路的基础上,采取其它措施,组成比单回路系统“复杂”一些的控制系统,如串级控制(双闭环控制)、前馈控制大滞后系统控制(补偿控制)、比值控制(特殊的多变量控制)、分程与选择控制(非线性切换控制)、多变量解耦控制(多输入多输出解耦控制)等等。从结构上看,这些控制系统由两个以上的回路构成,相比单回路系统要多一个以上的测量变送器或调节器,以便完成复杂的或特殊的控制任务。这类控制系统就称为“复杂过程控制系统”,以区别于单回路系统这样简单的过程控制系统。 计算机仿真是在计算机上建立仿真模型,模拟实际系统随时间变化的过程。通过对过程仿真的分析,得到被仿真系统的动态特性。过程控制系统计算机仿真,为流程工业控制系统的分析、设计、控制、优化和决策提供了依据。同时作为对先进控制策略的一种检验,仿真研究也是必不可少的步骤。控制系统的计算机仿真是一门涉及到控制理论、计算机数学与计算机技术的综合性学科。控制系统仿真是以控制系统的模型为基础,主要用数学模型代替实际控制系统,以计算机为工具,对控制系统进行实验和研究的一种方法。在进行计算机仿真时,十分耗费时间与精力的是编制与修改仿真程序。随着系统规模的越来越大,先进过程控制的出现,就需要行的功能强大的仿真平台Math Works公司为MATLAB提供了控制系统模型图形输入与仿真工具Simulink,这为过程控制系统设计与参数整定的计算与仿真提供了一个强有力的工具,使过程控制系统的设计与整定发生了革命性的变化。

计算机仿真实验5 基于Simulink三相电路仿真

实验5 基于Simulink三相电路仿真 5.1实验目的 1)掌握Simulink的工作环境及SimPowerSystems功能模块库的应用; 2)掌握Simulink的电路系统建模和仿真方法; 3)掌握Simulink仿真数据的输入与输出方法; 4)掌握三相电源及负载的连接方式,了解三相负载不同连接方式对线路电压、电流和负载功率的影响; 5)了解不对称负载作星形连接时对中点电压的影响; 5.2实验内容与要求 5.2.1 实验内容 三相工频电路如图 5.1所示。三相工频电源为对称三相电源,其中 。为线路电阻。三相负载为对称三相负载,其中 ,。三相开关在时间时刻合闸。在有中线和无中线条件下,分析电路在负载对称和不对称工作状态下的线(相)电压、线(相)电流、中线电压和电流以及负载有功功率与无功功率,并给出其瞬时值曲线及电路稳态时负载相电压和电流的幅值和相角值。 图5.1 三相对称电路 5.2.2 实验要求

1)利用Simulink系统建模与系统仿真的方法,完成系统仿真分析实验; 2)利用simulink库和SimPowerSystems库中的元件模型建立三相电路的有功功率、无功功率、电压与电流的幅值与相角及瞬时功率测量系统。对组建的测量系统进行封装,建立其子系统; 3)仿真输出结果若为时间曲线,则利用Scope模块显示结果。仿真输出结果若为数值,则利用Display模块显示结果。测量数据的传递,利用From与Goto 模块完成; 4)将三相电路的相同物理量(如电压)显示在同一坐标系中,并在Scopy显示界面中标注显示的物理量名称及符号。 5.3实验原理与方法 5.3.1系统的仿真电路图 5.3.2实验仿真曲线 参数设置如下: ,,, ○1三相电路的电压

单闭环直流调速系统simulink仿真课程设计

目录 一、摘要.......................................................... - 3 - 二、课程设计任务 .................................................................................................... - 3 - 三、课程设计内容 .................................................................................................... - 3 - 1、PID控制原理及PID参数整定概述.................................................................... - 3 - 2、基于稳定边界法(临界比例法)的PID控制器参数整定算法 ............................ - 5 - 3、利用Simulink建立仿真模型............................................................................ - 8 - 4、参数整定过程 .................................................................................................- 12 - 5、调试分析过程及仿真结果描述.........................................................................- 16 - 四、总结 ...................................................................................................................- 17 - 五、参考文献 ...........................................................................................................- 17 -

基于MATLAB的数字基带传输系统的仿真-课程设计报告书

通信工程专业《通信仿真综合实践》研究报告 基于MATLAB的数字基带传输系统的仿真设计 学生:*** 学生学号:20***** 指导教师:** 所在学院:信息技术学院 专业班级:通信工程 中国 2016 年 5月

信息技术学院 课程设计任务书 信息技术院通信工程专业 20** 级,学号 201***** **** 一、课程设计课题: 基于MATLAB的数字基带传输系统的仿真设计 二、课程设计工作日自 2016 年 5 月 12 日至 2016 年 5 月 24 日 三、课程设计进行地点:图书馆 四、程设计任务要求: 1.课题来源: 指导教师指定题目 2.目的意义:. 1)综合应用《掌握和精通MATLAB》、《通信原理》等多门课程知识,使学生建立通信系统的整体概念 2)培养学生系统设计与系统开发的思想 3)培养学生独立动手完成课程设计项目的能力 3.基本要求: 1) 数字基带信号直接送往信道: 2)传输信道中的噪声可以看作加性高斯白噪声 3)可用滤波法提取定是信号 4)对传输系统要有清楚的理论分析 5)把整个系统中的各个子系统自行构造,并对其性能进行测试 6)最终给出信号的仿真结果(信号输出图形) 课程设计评审表

基于MATLAB 的数字基带传输系统的仿真 概述 :本课程设计主要研究了数字信号的基带传输的基本概念及数字信号基带传输的传输过程和如何用MATLAB 软件仿真设计数字基带传输系统。首先介绍了本课题的理论依据及相关的基础知识,包括数字基带信号的概念,数字基带传输系统的组成及各子系统的作用,及数字基带信号的传输过程。最后按照仿真过程基本步骤用MATLAB 的仿真工具实现了数字基带传输系统的仿真过程,对系统进行了分析。 第一部分 原理介绍 一、数字基带传输系统 1)数字基带传输系统的介绍 未经调制的数字信号所占的频谱是从零频或很低频率开始,称为数字基带信号。在某些具有低通特性的有线信道中,特别是在传输距离不太远的情况下,基带信号可以不经载波调制而直接传输。这种不经载波调制直接传输数字基带信号的系统,称为数字基带传输系统。 数字基带系统的基本结构可以由图1 的模型表示.其中包括发送滤波器、传输信道、接收滤波器、抽样判决等效为传输函数为H (w) 基带形成网络,对于无码间干扰的基带传输系统来说, H (w) 应满足奈奎斯特第一准则, 在实验中一般取H (w) 为升余弦滚降特性.在最佳系统下, 取C(w) = 1,GT (w) 和GR(w) 均为升余弦平方根特性.传输信道中的噪声可看作加性高斯白噪声, 用产生高斯随机信号的噪声源表示. 位定时提取电路,在定时精度要求不高的场合, 可以用滤波法提取定时信号,滤波法提取位定时的原理可用图2表示。 图1 基带传输系统模型 设发送滤波器的传输特性 , 则 ω ωπ d e H t g jwt R ? ∞ ∞ -= )(21 )()(ωT G

MATLAB第六章simulink仿真答案

实验四 SIMULINK 仿真实验 一、 实验目的 1. 学习SIMULINK 的实验环境使用。 2. 掌握SIMULINK 进行结构图仿真的方法。 二、 实验内容 1.控制系统结构图仿真 给定被控对象) 1(10 )(+= s s s G ,控制器111.0145.0)(++=s s s D ,按以下两种情 况设计SIMULINK 仿真结构图(给定信号是单位阶跃信号)。 (1) 无控制器时被控对象单位负反馈。 (2) 控制器与被控对象串连接成单位负反馈。 给定的仿真参数: (1) 信号源参数设置: 阶跃信号(Step )的Step time 设为0秒。 (2)仿真参数设置: 仿真时间 0~10秒,求解器选定步长(Fixed-step)的ode5,仿真步长(Fixed step size )设为0.02秒。 实验要求: (1) 在SIMULINK 中对设计的结构图进行仿真,观察输入信号,输出信号和控制信号。 (1) 记录保存两种情况下的响应波形(适当调整时间轴和纵轴坐标,使图形显示适中,同时在图中求出系统的超调和调节时间(按2%的误差带)。

123 45678910 00.20.40.60.8 1 1.2 1.4 时间 (seconds) d a t a 时序图: 0123 45678910 0.20.40.60.81 1.21.41.6 1.8时间 (seconds) d a t a 时序图:

2.动态系统微分方程仿真 在SIMULINK 中求解下列二阶微分方程代表的动态系统在阶跃信号作用下的状态响应。 给定的仿真参数: (1) 信号源参数设置:阶跃信号(Step )的Step time 设为0秒。 (2) 仿真参数设置:仿真时间 0~8秒,求解器选变步长 (Variable-step)的ode45,最大仿真步长(Max step size )设为0.01秒。 实验要求: (1) 据微分方程构造结构图。 (2) 结构图仿真。 a) 零状态仿真:x 1=0,x 2=0, b) 非零状态仿真:x 1=1,x 2=-1, c) 记录保存两种情况下的响应波形(适当调整时间轴和纵轴坐 标,使图形显示适中)。 1 22122110) (1,||210x y t u u x x x x x x ==++--==

Matlab与通信仿真课程设计报告

《MATLAB与通信仿真》课程设计指导老师: 张水英、汪泓 班级:07通信(1)班 学号:E07680104 姓名:林哲妮

目录 目的和要求 (1) 实验环境 (1) 具体内容及要求 (1) 实验内容 题目一 (4) 题目内容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 题目二 (8) 题目内容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 题目三 (17) 题目内容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 题目四 (33) 题目内容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 心得与体会 (52)

目的和要求 通过课程设计,巩固本学期相关课程MATLAB与通信仿真所学知识的理解,增强动手能力和通信系统仿真的技能。在强调基本原理的同时,更突出设计过程的锻炼。强化学生的实践创新能力和独立进行科研工作的能力。 要求学生在熟练掌握MATLAB和simulink仿真使用的基础上,学会通信仿真系统的基本设计与调试。并结合通信原理的知识,对通信仿真系统进行性能分析。 实验环境 PC机、Matlab/Simulink 具体内容及要求 基于MATLAB编程语言和SIMULINK通信模块库,研究如下问题: (1)研究BFSK在加性高斯白噪声信道下(无突发干扰)的误码率性能与信噪比之间的关系; (2)研究BFSK在加性高斯白噪声信道下(有突发干扰)的误码率性能与信噪比之间的关系; 分析突发干扰的持续时间对误码率性能的影响。 (3)研究BFSK+信道编码(取BCH码和汉明码)在加性高斯白噪声信道下(无突发干扰) 的误码率性能与信噪比之间的关系;分析不同码率对误码率性能的影响。比较不同信道编码方式的编码增益性能。 (4)研究BFSK+信道编码(取BCH码和汉明码)在加性高斯白噪声信道下(有突发干扰) 的误码率性能与信噪比之间的关系;分析突发干扰的持续时间对误码率性能的影响。分析不同码率对误码率性能的影响。比较不同信道编码方式的编码增益性能。

基于Simulink的简单电力系统仿真

实验六 基于Simulink 的简单电力系统仿真 实验目的 1) 熟悉Simulink 的工作环境; 2) 掌握Simulink 电力系统工具箱的使用; 3) 掌握在Simulink 的工作环境中建立简单电力系统的仿真模型 实验内容 输电线路电路参数建模时采用电力系统分析中常用的π型等值电路,搭建如图1所示的一个简单交流单相电力系统,在仿真进行中,负载通过断路器切除并再次投入。π型等值电路具体元件参数如下:Ω=2.5R ,H L 138.0=, F C C μ967.021==。 图1 简单电力系统仿真示意图 1) 在Simulink 中建立简单交流单相电力系统模型,并进行仿真,观测负载电流和输电线路末端电压; 2) 结合理论知识分析上述观测信号变化的原因; 3) 比较不同功率因数,如cos φ=1、cos φ=0.8(感性)、cos φ=0.8(容性)负载条件下的仿真结果 实验原理与方法 1、系统的仿真电路图 实验步骤 根据所得建立模型,给定参数,得到仿真结果 cos φ=1 cos φ=0.8(感性) cos φ=0.8(容性)

实验结果与分析 cosφ=1 cosφ=0.8(感性) cosφ=0.8(容性) 仿真结果分析 (1)在纯阻性负载电路中,电压相位与电流相位相同;与感性负载相比,断路器重新闭合后电流没有额外的直流分量。 (2)在感性负载中,电压相位超前电流相位;断路器重新闭合时,交变的电流瞬间增加了一个直流分量,随后逐渐减小。 (3)在容性负载中,电压相位滞后于电流相位;断路器重新闭合时,电流瞬间突变至极大;与感性负载和纯阻性负载相比,断路器断开时的末端电压由于有电容放电作用,电压波形畸变很小。 (4)当断路器断开时,线路断路,电流突变为0,但电压行波仍在进行,因此在末端能够测量到连续的电压波形,但断路器断开对电压波形造成了影响,产生了畸变。这是由于能量是通过电磁场传递的,线路断开时电压继续向前传递。 总括:L和C对输出波形振荡的频率和幅度影响程度不同,当变化相同幅度时,电容对振荡频率和幅度的影响要比电感的大。 感想:Matlab中Simulik通过拖拉建模方式对电路进行仿真,具有快捷、方便、灵活的特点。Simulink的仿真电路简洁、参数调整方便。仿真结果直观。 通过本次实验,我认识到了建模与仿真的一般性方法,收获甚多,也更进一步了解了Matlab,Matlab不仅仅在平时的编程方面功能强大,在仿真方面也熠熠生辉。

matlab控制系统仿真课程设计心得【模版】

课程设计报告 题目PID控制器应用 课程名称控制系统仿真院部名称机电工程学院专业 班级 学生姓名 学号 课程设计地点 课程设计学时 指导教师 金陵科技学院教务处制成绩

一、课程设计应达到的目的 应用所学的自动控制基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB软件上建立控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 二、课程设计题目及要求 1.单回路控制系统的设计及仿真。 2.串级控制系统的设计及仿真。 3.反馈前馈控制系统的设计及仿真。 4.采用Smith 补偿器克服纯滞后的控制系统的设计及仿真。 三、课程设计的内容与步骤 (1).单回路控制系统的设计及仿真。 (a)已知被控对象传函W(s) = 1 / (s2 +20s + 1)。 (b)画出单回路控制系统的方框图。 (c)用MatLab的Simulink画出该系统。 (d)选PID调节器的参数使系统的控制性能较好,并画出相应的单位阶约响应

曲线。注明所用PID调节器公式。PID调节器公式Wc(s)=50(5s+1)/(3s+1) 给定值为单位阶跃响应幅值为3。 有积分作用单回路控制系统 无积分作用单回路控制系统

大比例作用单回路控制系统 (e)修改调节器的参数,观察系统的稳定性或单位阶约响应曲线,理解控制器参数对系统的稳定性及控制性能的影响? 答:由上图分别可以看出无积分作用和大比例积分作用下的系数响应曲线,这两个PID调节的响应曲线均不如前面的理想。增大比例系数将加快系统的响应,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏;增大积分时间有利于减小超调,减小振荡,使系统的稳定性增加,但是系统静差消除时间变长,加入微分环节,有利于加快系统的响应速度,使系统超调量减小,稳定性增加。 (2).串级控制系统的设计及仿真。 (a)已知主被控对象传函W 01(s) = 1 / (100s + 1),副被控对象传函W 02 (s) = 1 / (10s + 1),副环干扰通道传函W d (s) = 1/(s2 +20s + 1)。 (b)画出串级控制系统方框图及相同控制对象下的单回路控制系统的方框图。(c)用MatLab的Simulink画出上述两系统。

实验四-SIMULINK仿真模型的建立及仿真

实验四 SIMULINK仿真模型的建立及仿真(一) 一、实验目的: 1、熟悉SIMULINK模型文件的操作。 2、熟悉SIMULINK建模的有关库及示波器的使用。 3、熟悉Simulink仿真模型的建立。 4、掌握用不同的输入、不同的算法、不同的仿真时间的系统仿真。 二、实验内容: 1、设计SIMULINK仿真模型。 2、建立SIMULINK结构图仿真模型。 3、了解各模块参数的设定。 4、了解示波器的使用方法。 5、了解参数、算法、仿真时间的设定方法。 例7.1-1 已知质量m=1kg,阻尼b=2N.s/m。弹簧系数k=100N/m,且质量块的初始位移x(0)=0.05m,其初始速度x’(0)=0m/s,要求创建该系统的SIMULINK 模型,并进行仿真运行。 步骤: 1、打开SIMULINK模块库,在MATLAB工作界面的工具条单击SIMULINK图标,或在MATLAB指令窗口中运行simulink,就可引出如图一所示的SIMULINK模块浏览器。 图一:SIMULINK模块浏览器

2、新建模型窗,单击SIMULINK模块库浏览器工具条山的新建图标,引出如图二所示的空白模型窗。 图二:已经复制进库模块的新建模型窗 3、从模块库复制所需模块到新建模型窗,分别在模块子库中找到所需模块,然后拖进空白模型窗中,如图二。 4、新建模型窗中的模型再复制:按住Ctrl键,用鼠标“点亮并拖拉”积分模块到适当位置,便完成了积分模块的再复制。 5、模块间信号线的连接,使光标靠近模块输出口;待光标变为“单线十字叉”时,按下鼠标左键;移动十字叉,拖出一根“虚连线”;光标与另一个模块输入口靠近到一定程度,单十字变为双十字;放开鼠标左键,“虚连线”变变为带箭头的信号连线。如图三所示:

电气传动课程设计-simulink-仿真

电气传动课程设计-simulink-仿真

————————————————————————————————作者:————————————————————————————————日期:

电气传动课程设计 题目:转速反馈控制调速系统的仿真 姓名韩雪晴 学院信息与电气工程学院 专业电气工程及其自动化 年级2009级 学号2001 指导教师赵枚

一、概述 调节原理 带转速负反馈的闭环直流调节系统,中有一台与电动机通州安装的测速发电机TG,引出与被调量转速成正比的负反馈电压Ub,与给定电压UB相比较后,得到转速偏差电压ΔUb,经放大器A,产生电力电子转换器UPE的控制电压Uc,用以控制电动机转速n 实验原理图如下图 利用MATLAB下的SIMULINK软件进行系统仿真是十分简单和直观的,SIMULINK提供了使用系统模型框图组态的仿真平台,使用SIMULINK进行仿真和分析可以像在纸上绘图一样简单。用户可以用图形化的方法直接建立起仿真系统的模型,并通过SIMULINK环境中的菜单直接启动系统的仿真过程,同时将结果在示波器上显示出

来,SIMULINK也实线与MATLAB,C或者FORTRAN之间的数据传递。所以,掌握强大的SIMULINK工具会大大地增强用户系统的仿真能力。 二、实验目的 1、进一步学习利用MATLAB下的SIMULINK来对控制系统进行仿真。 2、掌握转速、电流反馈控制直流调速系统的原理。 3、学会利用工程的方法设计ACR、ASR调节器的方法 三、实验原理 SIMULINK的简介: Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。 功能: Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。Simulink可以用连续采样时间、离散采样时

相关文档
最新文档