混凝剂浓度对混凝沉淀实验效果的影响

混凝剂浓度对混凝沉淀实验效果的影响
混凝剂浓度对混凝沉淀实验效果的影响

混凝剂浓度对混凝沉淀实验效果的影响

一、实验目的

1、要求认识几种混凝剂,掌握其配制方法;

2、观察混凝现象,从而加深对混凝理论的理解。

3、了解混凝剂的用量对混凝效果的影响

二、实验原理

水中粒径小的悬浮物以及胶体物质,由于微粒的布朗运动,胶体颗粒间的静电斥力和胶体表面的水化作用,致使水中这种含浊状态稳定。

向水中投加混凝剂后,由于如下原因:①能降低颗粒间的排斥能峰,降低胶粒的δ电位,实现胶粒“脱稳”;②发生高聚物式高分子混凝剂的吸附架桥作用;③网捕作用,从而达到颗粒的凝聚。

三、实验设备及药品

按每4人一组配置数量如下:

1、设备

⑴1000mL量筒,2个;

⑵1000mL烧杯,6个;

⑶100mL烧杯,2个;

⑷l0mL移液管,2个;

⑸2mL移液管,1个;

⑹医用针筒,1个;

⑺洗耳球,1个;

⑻2100P浊度仪,1台;

⑼ZR4-6混凝搅拌器,1台;

⑽pH计,1台。

⑾温度计,1根。

2、药品

⑴Al2(SO4)3

⑵FeCl3

四、实验方法

1、方法一混凝搅拌器变速混凝实验

实验步骤如下:

(1)认真了解ZR4--6型混凝搅拌器的使用方法。

(2)用1000ml量筒取6个水样至6个1000mL烧杯中。注意:所取水样要搅拌均匀,要一次量取,以尽量减少取样浓度上的误差。

(3)按10、20、30、40、50、60、70、80mg/L的量将Al2(SO4)3或FeCl3依次加入各水样中。

(4)将第一组水样置于ZR4--6型混凝搅拌器下。(搅拌时间和程序已按说明书预先设定好)与此同时,按计算好的投药量,用移液管分别移取不同体积的混凝剂逐个加到加药试管中。

(5)开动机器,在搅拌器第一次自动加药后,用蒸馏水冲洗加药试管2次。

(6)搅拌器以500r/min的速度搅拌30s,150r/min的速度搅拌5min,80r/min的速度搅拌10min。

(7)搅拌过程中,注意观察并记录“矾花”形成的过程,“矾花”形成的快慢、外观、大小、密实程度、下沉快慢等。

(8)搅拌过程完成后,搅拌器自动停机,水样静沉15min,继续观察并记录“矾花”沉淀的过

程,记入表1—1—2内。

(9)静沉15min后,用医用针筒在6个水样中依次取出约20mL的上清液,置于浊度仪的水样瓶中,用浊度仪测出其剩余浊度,记入表1—1—1内。

(10) 以投药量为横座标,以剩余浊度为纵座标,绘制混凝曲线图。根据6个水样所测得的剩余浊度值,以及对水样混凝沉淀观察记录的分析,从混凝曲线图对最佳投药量所在区间作出判断,缩小实验范围(加药量范围),重新设定(第二组)实验的最大和最小投药量值a和b以及a、b之间的X1、X2、X3、X4值,重复以上实验。

⑾根据6个水样所测得的剩余浊度值,绘制出第二个混凝曲线图,从混凝曲线图对最佳投药量作出判断。

混凝沉淀实验

实验一混凝沉淀实验 1 实验目得 通过本实验希望达到下述目得: 1. 学会求得最佳混凝条件(包括投药量、pH 值)得基本方法; 2。加深对混凝机理得理解、 2实验原理 分散在水中得胶体颗粒带有电荷,同时在布朗运动及其表面水化膜作用下,长期处于稳定分散状态,不能用自然沉淀法去除,致使水中这种含浊状态稳定。向水中投加混凝剂后,由于(1)能降低颗粒间得排斥能峰,降低胶粒得ζ电位,实现胶粒“脱稳”,(2)同时也能发生高聚物式高分子混凝剂得吸附架桥作用,(3)网捕作用,从而达到颗粒得凝聚,最终沉淀从水中分离出来。由于各种原水有很大差别,混凝效果不尽相同,混凝剂得混凝效果不仅取决于混凝剂投加量,同时还取决于水得pH值、水流速度梯度等因素。 3实验装置与设备 3、1 实验装置 混凝实验装置主要就是六联搅拌机。搅拌机上装有电机调速设备、 3。2 实验设备及仪器仪表 1。混凝试验搅拌仪(MY3000-6) 1台 2。浊度仪(2100N)1台 3. 数显pH计(FE20/EL20) 1台 4. 温度计刻度0~100 oC1支 5。精制硫酸铝Al2(SO4)3·18H2O 国药集团北京化学试剂有限公司 6、三氯化铁FeCl3·6H2O 国药集团北京化学试剂有限公司 4 实验步骤

混凝实验分为最佳投药量、最佳pH 值三部分。在进行最佳投药量实验时,先选定一种搅拌速度变化方式与pH值,求出最佳投药量。然后按照最佳投药量求出混凝最佳pH值。最后根据最佳投药量、最佳pH值,在混凝实验中所用得实验药剂可参考下列浓度进行配制: 1。Al2(SO4)3·18H2O 浓度10 gL-1; 2. FeCl3·6H2O 浓度10 gL-1; 3.HCI10%(v/v); 4、NaOH 10%(w/v)。 4、1 最佳投药量实验步骤 1。确定原水特征,即测定原水水样混浊度、pH值、温度、 2。确定形成矾花所用得最小混凝剂量。方法就是通过慢速搅拌烧杯中50mL原水,并每次增加0.2mL混凝剂投加量,直至出现矾花为止。这时得混凝剂量作为形成矾花得最小投加量。 3。在实验杯中放入100 mL原水,置于实验搅拌器平台上。 4。确定实验时得混凝剂投加量。根据步骤2得出得形成矾花最小混凝剂投加量,取其1/4作为1号实验杯混凝剂投加量,取其2倍作为6号实验杯混凝剂投加量,用依次增加混凝剂投加量相等得方法求出2~5号烧杯混凝剂投加量,把混凝剂分别加入1~6号实验杯中。 5。启动搅拌器,快速搅拌0.5 min、转速约300 rpm,中速搅拌6 min,转速约100rpm;慢速搅拌6min、转速约50 rpm。如果用污水进行混凝实验,污水胶体颗粒比较脆弱,搅拌速度可适当放慢、 6、静止沉淀5min,关闭搅拌器,用60mL注射针筒抽出实验杯中得上清液(共约100mL)放入200mL 烧杯内,立即用浊度仪测定浊度、 4、2 最佳pH值实验步骤 1、在实验杯中分别放入150 mL原水,置于实验搅拌器平台上、 2、确定原水特征,测定原水浑浊度、pH值,温度。本实验所用原水与最佳投药量实验时相同。 3、调整原水pH值,用移液管依次向1、2、3号实验杯中分别加入2、1.0、0、

浅谈影响混凝剂投加量的几个因素

浅谈影响药剂投加量的几个因素 据统计,城市净水厂的药剂消耗约占自来水制水成本的20-30%,若在保证供水水质的前提下,采取一定的节药措施,就能降低生产成本,提高水厂的经济效益,实现节能降耗。 影响混凝效果(药剂投加量)的因素比较复杂,其中包括水温、pH值和碱度、水中杂质性质和浓度、外部水利条件等。以下仅略述几项主要因素。 水温对药耗有明显影响,尤其是冬季低水温对药耗影响较大,通常絮凝体形成缓慢,颗粒细小、松散。原因主要有:一、无机盐混凝剂水解是吸热反应,低温水混凝剂水解困难;二、低温水的粘度大,使水中杂质颗粒的布朗运动强度减弱,碰撞机会减少,不利于胶体脱稳凝聚,同时还影响絮凝体的成长。三、水温低时,胶体颗粒的水化作用增强,妨碍胶体凝聚,还影响胶体颗粒之间的粘附强度。四、水温和水的pH值有关。水温低时,水的pH值提高,相应的混凝最佳pH值也将提高。所以在寒冷地区的冬季,尽管投加大量混凝剂也难获得良好的混凝效果。 pH值和碱度对混凝效果的影响:pH值是表示水是酸性还是碱性的指标,也就是说明水中H+浓度的指标。原水的pH值直接影响混凝剂的水解反应,即当原水的pH值处于一定范围时,才能保证混凝效果。当水中投加混凝剂后,因混凝剂发生水解使水中的H+浓度增加,从而导致水的pH值下降,阻碍了水解的进行。要使pH值保持在最佳范围以内,水中应有足够的碱性物质与H+中和。天然水中均含有一定碱度(通常是HCO3-),可以中和混凝剂水解过程产生的H+,对pH值有缓冲作用。当原水碱度不足或混凝剂投加过量时,水的pH 值将大幅下降,破坏混凝效果。 水中杂质成份的性质和浓度对混凝效果也有影响。天然水中的浊度是因为粘土杂质而引起的,粘土颗粒大小、带电性都会影响混凝效果。一般来说,粒径细小而均一,其混凝效果较差,水中颗粒浓度低,颗粒碰撞机率小,对混凝不利;当浊度很大时,为使水中胶体脱稳,所需药耗将大大增加。当水中存在大量有机物时,能被粘土颗粒吸附,从而改变了原有胶体颗粒的表面特性,使胶体颗粒更加稳定,将严重影响混凝效果,此时必须向水中投加氧化剂,破坏有机物的作用,提高混凝效果。水中溶解性盐类也能影响混凝效果,如天然水中存在大量钙、镁离子时,有利于混凝,而大量的Cl-,则不利于混凝。在汛期,

水处理实验报告-混凝实验

水处理实验报告-混凝实验 降低或降低不多~胶粒不能相互接触~通过高分子链状物吸附胶粒~一般形成广西民族大学水污染控制工程实验报告 2012 年 6 月 10 日絮凝体。消除或降低胶体颗粒稳定因素的过程叫脱稳。脱稳后的胶粒~在一定 姓名实验混凝的水利条件下~才能形成较大的絮凝体~俗称矾花~自投加混凝剂直至形成矾 名称实验投加混凝剂的多少~直接影响混凝效果。水质是千变万化的~最花的过程叫混凝。同组者 佳的投药量各不相同~必须通过实验方可确定。实验目的: 在水中投加混凝剂如 A1(SO)、 FeCl后~生成的AI、 Fe的化合物对胶体的脱1、通过实验学会求一般天然水体最佳混凝条件,包括投药量、PH、水流速度梯度,的2433 稳效果不仅受投加的剂量、水中胶体颗粒的浓度、水温的影响~还受水的 pH 值影响。基本方法。 如果pH值过低(小于4)~则混凝剂水解受到限制~其化合物中很少有高分子物质存在~2、加深对混凝机理的理解。 絮凝作用较差。如果pH值过高(大于9—10)~它们就会出现溶解现象~生成带负电荷实验原理: 的络合离子~也不能很好地发挥絮凝作用。混凝阶段所处理的对象主要是水中悬浮物和胶体杂质~是水处理工艺中十分重要的

投加了混凝剂的水中~胶体颗粒脱稳后相互聚结~逐渐变成大的絮凝体~这时~一个环节。水中较大颗粒悬浮物可在自身重力作用下沉降~而胶体颗粒不能靠自然沉降 水流速度梯度G值的大小起着主要的作用。得以去除。胶体表面的电荷值常用电动电位ξ表示~又称为Zeta电位。一般天然水中的胶体 颗粒的Zeta电位约在-30mV以上~投加混凝剂之后~只要该电位降到-15mV左右即可得到较好的实验步骤及装臵图: 混凝效果。相反~当电位降到零~往往不是最佳混凝状态。因为水中的胶体颗粒主要是带负1.最佳投药量实验步骤 电的粘土颗粒。胶体间存在着静电斥力~胶粒的布朗运动~胶粒表面的水化作用~使胶,1,、用6个1000mL的烧杯~分别取1000mL原水~放臵在实验搅拌机平台上, 粒具有分散稳定性~三者中以静电斥力影响最大~若向水中投加混凝剂能提供大量的正,2,、确定原水特征~即测定原水水样混浊度、 pH值、温度。离子~能加速胶体的凝结和沉降。水化膜中的水分子与胶粒有固定联系~具有弹性较高,3,、确定形成矾花所用的最小混凝剂量。,混凝剂A、B,方法是通过慢速搅拌烧杯的粘度~把这些水分子排挤出去需克服特殊的阻力~这种阻力阻碍胶粒直接接触。有些中200mL原水~并每次增加1mL混凝剂的投加量~逐滴滴入200mL原水杯中直到出现水化膜的存在决定于双电层状态。若投加混凝结降低ζ电位~有可能是水化作用减弱~矾花为止。这时的混凝剂量作为形成矾花的最小投加量, 混凝剂水解后形成的高分子物质在胶粒与胶粒之间起着吸附架桥作用。即使ζ电位没 有 ,4,、确定实验时的混凝剂投加量。根据步骤3得出的形成矾花的最小混凝剂投加量~ 取其1,3作为1号烧杯的混凝剂投加量~取其2倍作为6号烧杯的混凝剂投加量~用

沉淀实验实验报告

沉淀实验实验报告 篇一:自由沉淀实验报告 六、实验数据记录与整理 1、实验数据记录 沉降柱直径水样来源柱高 静置沉淀时间/min 表面皿表面皿编号质量/g 表面皿 和悬浮物总质量/g 水样中悬浮物质量/g 水样体积/mL 悬浮物沉降柱浓度/工作水(g/ml)深/mm 颗粒沉沉淀效 速/率/%(mm/s) 残余颗 粒百分比/% 0 5 10 20 30 60 120 0 1 2 3 4 5 6 79.0438 80.7412 1.6974 81.7603 83.2075 1.4472 64.1890 65.4972 1.3082 66.1162 67.3286 1.2124 73.7895 74.9385 1.1490 83.4782 84.6290 1.1508 75.0332 76.1573 1.1241

31.0 30.0 30.0 30.0 30.0 31.0 31.0 0.0548 0.0482 0.0436 0.0404 0.0383 0.0371 0.0363 846.0 808.0 780.0 724.0 664.0 500.0 361.0 1.860 0.883 0.395 0.230 0.069 0.021 11.40 20.44 26.28 30.11 32.30 33.76 100 87.96 79.56 73.72 69.89 67.70 66.24 2、实验数据整理 (2)绘制沉淀曲线:E-t 、E-u 、ui~pi曲线如下: 2-1、绘制去除率与沉淀时间的曲线如下: 图2.2:沉淀时间t与沉淀效率E的关系曲线 2-2、绘制去除率与沉淀速度的曲线如下: 图2.2:颗粒沉速u与沉淀效率E的关系曲线 2-3、绘制去除率与沉淀速度的曲线如下: 图2.3:颗粒沉速u与残余颗粒百分比的关系曲线 (1)选择t=60min 时刻:(大家注意哦!这部分手写的,不要直接打印!) 水样中悬浮物质量=表面皿和悬浮物总质量-表面皿质量,如表格所示。原水悬浮物的浓度:C0? 水样中悬浮物质量1.6974 ??0.0548g/ml 水样体积31.0 悬浮物的浓度:C5? 水样中悬浮物质量1.1508

混凝搅拌实验操作方法

混凝搅拌试验作业指导书 混凝搅拌实验是一种模拟混合、反应、沉淀三个工艺过程的实验手段,自来水厂可以通过混凝搅拌试验选择混凝剂的品种以及混凝剂最佳投量。 一、仪器及器皿 1、六联混凝实验搅拌机(带6个原水杯)1台、电子天平1台、散射光浊度仪1台、pH计1台; 2、100mL的容量瓶2个、100mL烧杯2个、收集瓶(250mL-300mL)6个、1升量筒1个、刻度吸管(1mL、2mL、5mL、10mL)各1支; 3、10升~15升的水桶1只、玻棒2根、洗耳球1个、定时器1个,温度计1支、蒸馏水洗瓶1个。 二、混凝剂溶液的配制 取固体混凝剂约10克备用(可装在磨口试剂瓶中以避免受潮)。混凝剂溶液的浓度单位实验室常用毫克/升(mg/L)表示,生产上用于投加量计算时往往采用公斤/千立方米(Kg/Km3),这两个浓度单位是等价的,即:1mg/L=1Kg/Km3。 配制混凝剂溶液浓度的高低取决于投药量的大小,混凝搅拌机投药试管的体积一般约10毫升,所以当投药量大时应提高混凝剂的配制浓度,以保证投药试管能容纳下所投加的混凝剂溶液(投加混凝剂溶液的体积不超过9mL)。 1、1 mL=1 mg(1 mg/L)混凝剂溶液的配制 用天平准确称取0.1g固体混凝剂之于100mL烧杯中,用少量蒸馏水溶解后移入00mL 容量瓶中,加蒸馏水至刻度,摇匀,即配成1mL=1mg(1mg/L)的混凝剂溶液。 2、1 mL=10 mg(10 mg/L)混凝剂溶液的配制

用天平准确称取1g固体混凝剂之于100mL烧杯中,用少量蒸馏水溶解后移入00mL 容量瓶中,加蒸馏水至刻度,摇匀,即配成1 mL=10 mg(10 mg/L)的混凝剂溶液。 表1 投药量与混凝剂溶液浓度的关系 三、混凝试验模拟投药量的确定 混凝试验6个原水杯中混凝剂的模拟投药量,一种方法是根据当时生产实际投药量来确定,另外一种方法是根据形成矾花所用的最小投加量来确定。 1、根据生产实际投药量来确定6个模拟投药量 假如当时原水浊度为20NTU、投药量为5mg/L,则可以5mg/L为中心点来确定6个原水杯的投药量,即1~6号杯的投药量分别为3mg/L、4mg/L、5mg/L(中心点)、6mg/L (或以此为中心点)、7mg/L、8mg/L。 2、根据形成矾花所用的最小投加量来确定6个模拟投药量 ①确定形成矾花所用的最小投加量,在烧杯中加入200mL原水,慢速搅拌,每次增加0.5mL混凝剂溶液投加量,直至出现矾花为止,这时的混凝剂溶液量作为形成矾花的最小投加量。 ②根据得出的形成矾花最小混凝剂投加量,来确定混凝实验6个原水杯的模拟投药量。假如形成矾花最小混凝剂投加量为3mg/L,则取其1/4(即约1mg/L)作为1号杯的混凝剂投药量,取其2倍(即6mg/L)作为6号杯的投药量,用依次增加投加量相等的方法求出2-5号烧杯混凝剂投药量,即2-5号原水杯的投加量分别为2mg/L、3mg/L、4mg/L、5mg/L。 四、搅拌试验步骤

混凝沉淀实验

实验项目名称:混凝沉淀实验 (所属课程:水污染控制工程) 院系:专业班级:姓名:学号: 实验日期:实验地点:合作者:指导教师: 本实验项目成绩:教师签字:日期: 一、实验目的 (1)观察混凝现象及过程,了解混凝的净水机理及影响混凝的重要因素。 (2)确认某水样的最佳投药量及其相应的pH值。 (3)测定计算反应过程的G值和GT值,是否在适宜的范围内。 二、实验原理 水中的胶体颗粒,主要是带负电的黏土颗粒。胶体间的静电斥力,胶粒的布朗运动及胶粒表面的水化作用,使得胶粒具有分散稳定性,三者中以静电斥力影响最大。因此,胶体颗粒靠自然沉淀是不能除去的。向水中投加混凝剂能提供大量的正离子,压缩胶团的扩散层,使ξ电位降低,静电斥力减小。此时,布朗运动由稳定因素转变为不稳定因素,也有利于胶粒的吸附凝聚、水化胶中的水分子与胶粒有固定联系,具有弹性和较高的黏度,把这些分子排挤除去需要克服特殊的阻力,阻碍胶粒直接接触。有些水化膜的存在决定于双电层状态,投加混凝剂降低ξ电位,有可能是水化作用减弱,混凝剂水解后形成的高分子物质或直接加入水中的高分子物质一般具有链状结构,在胶粒与胶粒间起吸附架桥作用。即使ξ电位没有降低或减低不多,胶粒不能相互接触,通过高分子连状物媳妇叫李,也能形成絮凝体。 投加了混凝剂的水中,胶体颗粒脱稳后相互聚结,逐渐变成大的絮凝体。这时,水流速度梯度G值的大小起着主要的作用,具体计算见有关教材。 三、实验设备与试剂 (1)无极调速六联搅拌机1台。 (4)秒表1块。 (5)1000mL量筒1个。 (6)1mL,2mL,5ml,10mL移液管各1支。 (7)200mL烧杯1个,吸耳球等。 (8)1000mL烧杯6个。

混凝剂和助凝剂投加

供应信息 供应提供自动混凝剂加药装置,提供原… 当前位置:首页 > 供应信息 > 环保、水处理 > 污水处理设备 > 中和混凝、加药装置 本信息已经过期!可选择以下操作: ·点击查看最新 中和混凝、加药装置 信息 信息 加入慧聪网,开始网上贸易 联系方式 收藏此信息 提供自动混凝剂加药装置,提供原水预处理专业方案和设备 上海科域水处理技术有限公司遵循严谨科学的计算结果,在原水预处理环节做到经济有效,便接下来的电渗析、反渗透、离子交换等工艺得到最大的保护,保证整体设备长期安全运行。同时在这一环节中也尽量使用全自动无人值班加药工艺,实现整体设备全自动运行。 原水预处理工艺 水的预处理是在水的精制处理之前,预先进行的初步处理,以便在水的经处理时取得良好效果,提高水质。因为自然界的水都有大量杂质,如泥沙、粘土、有机物、微生物、机械杂质等,这些杂质的存在,严重影响精制水的水质与处理效果,因此必须在精处理之前将一些杂质降低或去除,这就需要预处理,有时也称前处理。作用和意义:对水质预处理的好坏,直接影响电渗析、反渗透、离子交换等主要处理工艺的技术经济效果和长期安全运行,它是工业水处理中非常重要的一环。 预处理的方法很多,主要有氧化、预沉、混凝、澄清、过滤、软化、消毒等。用这些方法预处理之后,可以使水的悬浮物(浑浊度)、色度、胶体物、有机物、铁、锰、暂时硬度、微生物、挥发性物质、溶解的气体等杂质去除或降低到一定的程度。 原水预处理工艺---混凝处理 混凝原理 化学混凝所处理的对象,主要是水中的微小悬浮物和胶体杂质。大颗的悬浮物由于受重力的作用而下沉,可以用沉淀等方法除去。但是,微小粒径的悬浮物和胶体,能在水中长期保持分散悬浮状态,即使静置数十小时以上,也不会自然沉降。这是由于胶体微粒及细微悬浮颗粒具有“稳定性”。1.胶体的稳定性 根据研究,胶体微粒都带有电荷。天然水中的粘土类胶体微粒以及污水中的胶态蛋白质和淀粉微粒等都带有负电荷,其结构示意图见(图8—1)。它的中心称为胶桉。其表面选择性地吸附了一层带有同号电荷的离子,这些离子可以是胶校的组成物直接电离而产生的,也可以是从水中选择吸附H+或OH-离子而造成的。这层离子称为胶体微粒的电位离子,它决定了胶粒电荷的大小和符号。由于电位离子的静电引力,在其周围又吸附了大量的异号离子.形成了所谓“双电层”。这些异号离子,其中紧靠电位离子的部分被牢固地吸引着.当胶核运 供应提供自动混凝剂加药装置,提供原水预处理专业方案和设备 普通会员 访问慧聪网首页 添加收藏| 出口服务 |行业加盟 |买卖通 |搜索推广 |慧聪发发 || 我的商务中心 |邮箱 |帮助 |网站导航 所有行业采购工具页码,1/5 中和混凝、加药装置-供应提供自动混凝剂加药装置,提供原水预处理专业方案...

混凝土配合比实验报告

混凝土配合比实验报告 班级:10工程管理2班 组别:第七组 组员:

一.实验目的:掌握混凝土配合比设计的程序和方法以及相关设备的使用方法;自行设计强 度等级为C30的混凝土,并通过实验检验其强度。 二、初步配合比的计算过程: 1.确定配制的强度(o cu f ,) o cu f ,= k cu f ,+1.645σ ; o cu f ,=30+1.645×5.0=38.225 Mpa 其中:o cu f ,—混凝土配制强度,单位:Mpa ; k cu f ,—设计的混凝土强度标准值,单位:Mpa σ—混凝土强度标准差,单位:Mpa 2.初步确定水灰比(C W ) C W =ce b a o cu ce a f a a f f a +,=0.48 其中: 07.0;46.0==b a a a —回归系数(碎石); ce f =γc ce f ;g :γc —水泥强度等级的富裕系数,取1.1; g ce f ,—水泥强度等级值,Mpa ; 3.初步估计单位用水量:wo m =185Kg 4.初步选取砂率(s β) 计算出水灰比后,查表取砂率(碎石,粒径40mm)。s β=30% 5.计算水泥用量(co m ) co m =C W m wo /=48 .0185=385Kg 6.计算砂、石用量(质量法) co m +go m +so m +wo m =cp m ; s β= go so so m m m +×100% co m --每立方混凝土的水泥用量(Kg);go m --每立方混凝土的碎石用量(Kg) so m --每立方混凝土的砂用量(Kg );wo m --每立方混凝土的水用量(Kg ) cp m --每立方混凝土拌合物假定容量(Kg ),取2400Kg 计算后的结果为:so m =549Kg go m =1281Kg

混凝浑液面沉速与混凝剂投加量的关系

摘要:探讨了黄河高浊度水混凝沉淀浑液面沉迷与自然沉迷之间的相关性,经过对实验数据进行线性回归提出了混凝过程中浑液面沉速与自然沉速、含沙量、pam投加量之间的经验公式。运用该经验公式得出的浑液面沉速计算值与实测相对误差在0.43%-12.27%之间。 混凝沉淀是黄河高浊度水处理常用的方法。提高浑液面沉速,节约药剂(pam)的投加量达到多出清水是高浊度水处理的主要目标。然而混凝过程极其复杂,影响浑液面沉速的因素有高浊度水的性质、pam投加量、速度梯度c、搅拌时间t 等。因为高浊度水自然沉淀沉速与原水的性质密切相关。在实际处理一定组成的高浊度水时,可以借助实验得到的经验关系,根据浑液面的自然沉速以及所希望达到的浑液面沉速来确定pam的投加量。本文先采用正交实验的方法确定混凝 过程的混合、反应的最佳水力条件,然后在此基础上研究浑液面沉速与pam投 加量及高浊度自然沉速之间的关系。 1实验方法 1.1自然沉降实验 高浊度水采用郑州上街段黄河泥沙配制而成。试验过程中所有水样水温 15±1℃。用nsy-1光电颗分仪测泥沙粒度,其当量直径dm由下式计算:dm=1/(∑(△pi/di)) 式中di——颗粒粒径,pi——粒径di颗粒占所有颗粒质量百分数。选出dm 相近的几组水样用比重瓶测定其含沙量,以cw(kg/m3)表示。然后用直径62mm,高500mm,有效体积1500ml的自制沉降筒做静置沉降实验,根据沉降曲线求得等速沉降段混液面沉降速度作为自然沉速,以从(mm/s)表示。 试样的含沙量cw,浑液面自然沉速u0,当量直径dm, 1.2加药混凝实验 实验所选的药剂为江苏南天生产的阳离子型pam,阳离子度30%,配制成0.5%溶液。 取1.5l上述配制的水样置于2l的烧杯中,以600r/s的转速搅拌5min,然后投加pam,再调整转速和时间确定混凝的水力条件:笔者通过对搅拌速度。搅拌时间、pam投加量做正交实验得出具有最大浑液面沉速时的最佳的速度梯度与搅拌时间乘积,即(ct)umax为2180,这与崔俊华验证的(ct)umax为1900-2000[1]相

谈混凝实验条件下混凝剂最佳投加量的选择方法

谈混凝实验条件下混凝剂最佳投加量的选择方法 摘要:针对水厂运行过程中源水水质、水量变化容易引起混凝效果下降的情况,为了及时准确调节混凝剂的投加量,使出水水质达到最优,本文进行了一系列模拟实际水厂运行的混凝实验,考察了不同混凝剂投加量对源水浊度去除率的影响。并以净水厂常规水质实验中混凝实验数据结果、混凝曲线图为参考,提出净水厂生产运行中三种关于混凝剂投加量的选择方法,就如何高效地使用混凝剂,使它既能高效发挥作用,同时寻求允许条件下的最低使用量,达到节支降耗、经济运行目的,作出新的尝试。 关键词:混凝实验参考点去浊率拐点最佳效果点选择法质控点选择法经济点选择法 混凝技术在给水和污水处理工程中有着广泛的应用。给水处理工程中,凡地表水源的水厂,混凝技术几乎是不可缺少的处理技术之一,混凝过程的完善程度,直接影响后续处理如沉淀过滤的效果[1]。因为混凝剂是混凝技术的核心内容,所以在国家逐步提高饮用水水质标准的过程中,混凝剂在净水厂制水工艺中发挥的作用也越来越重要。如何高效地使用混凝剂,使它既能高效发挥作用,同时又能寻求允许条件下的最低使用量,达到节支降耗、经济运行目的,就成为所有制水企业需要解决的一个重要课题。 混凝剂最佳投加量是指能够达到、满足既定水质目标要求的最小混凝剂投加量。由于影响混凝效果的因素较复杂,而且水厂运行过程中水质水量不断的变化,因此要达到混凝剂最佳投加量,能及时调节准确投加是相当困难的。目前,我国大多数水厂是根据实验室混凝搅拌实验确定混凝剂最佳投加量,然后进行人工调节,虽然滞后1~3个小时,但因简单易行,还仍然为各水厂采用[2]。本文重点探求一种在该方法下,通过混凝效果比对、借助混凝曲线选择净水剂投量的方法。 1、试验方法 1.1 试验材料及设备 所需要试验材料及设备包括:(1)六联搅拌机;(2)pH计;(3)光电浊度仪; (4)1000mL烧杯、量筒;(5)1mL、2mL、5mL、50mL移液管;(6)混合器;(7)1%的PAFC(聚合氯化铝铁AL/Fe比为5/1,盐基度72%);(8)实验所需的玻璃仪器等。 本实验水源为黄河下游的引黄水库(济南鹊山水库)水,水质特点是:浊度低、高藻(叶绿素a含量17.1ug/L~36.9ug/L)处理难度大。取样地点为济南泓泉制水鹊华水厂1#源水取样点,时间是2010年7月8日早9:30。

混凝实验报告

混凝实验报告/正交设计 一、实验目的 1、通过实验,观察混凝现象,加深对混凝理论的理解。 2、选择和确定最佳混凝工艺条件。 二、实验原理 天然水中存在大量胶体颗粒,使原水产生浑浊度。我们进行水质处理的根本任务之一,则正是为了降低或消除水的浑浊度。 水中的胶体颗粒,主要是带负电的粘土颗粒。胶体间静电斥力、胶粒的布朗运动以及胶粒表面水化作用的存在,使得它具有分散稳定性。混凝剂的加入,破坏了胶体的散稳定性,使胶粒脱稳。同时,混凝剂也起吸附架桥作用,使脱稳后的细小胶体颗粒,在一定的水力条件下,凝聚成较大的絮状体(矾花)。由于矾花易于下沉,因此也就易于将其从水中分离出去,而使水得以澄清。 由于原水水质复杂,影响因素多,故在混凝过程中,对于混凝剂品种的选用和最佳投药量的决定,必需依靠原水和混凝实验来决定。混凝实验的目的即在于利用少量原水、少量药剂。 三、实验仪器及设备 1. 1000 ml烧杯1只 2. 500 ml矿泉水瓶6只 3. 100 ml烧杯2只 4. 5 ml移液管1只 5. 400 ml烧杯2只 6. 5ml量筒1台

7. 吸耳球1个 8. 温度计(0-50℃)1只 9. 100 ml量筒1个 10. 10 ml;量筒1只 四、实验试剂 本实验用三氯化铁作混凝剂,配制浓度2g/L,800ml;以阴型聚丙烯酰胺为助凝剂,配制浓度0.05g/L,500 ml。三氯化铁用量2g,阴离子聚丙烯酰胺用量 0.0250 g 五、实验步骤 (一)配置药品 1、用台秤称取2g三氯化铁,溶解,配置1000 ml,三氯化铁配制浓度2 g/L;用电子天平称取0.05g阴离子聚丙烯酰胺,溶解,配置1000 ml,阴型聚丙烯酰胺配制浓度0.05 g/L。 2、测定原水特征。 (二)混凝剂最小投加量的确定 1、取6个500 ml瓶子,分别取400 ml原水。 2、分别向烧杯中加入氯化铁,每次加入1.0 ml,同时进行搅拌,直至出现矾花,在表1中记录投加量和矾花描述。 3、停止搅拌,静止10min。 4、根据矾花描述确定最小投加量A。 (三)混凝剂的最佳投加量的选择 1、用6个500 ml瓶子,分别取400 ml原水。

混凝实验指导书

《混凝沉淀实验》 一、实验目的 (1)熟悉混凝操作,观察混凝现象,深入理解混凝机理。 (2)确定混凝剂的最佳投药量。 (3)计算反应过程的G值和GT值。 二、实验原理 水中的胶体颗粒,主要是带负电的黏土颗粒。胶体间的静电斥力,胶粒的布朗运动及胶粒表面的水化作用,使得胶粒具有分散稳定性,三者中以静电斥力影响最大。因此,胶体颗粒靠自然沉淀是不能除去的。向水中投加的混凝剂能提供大量的正离子,压缩胶团的扩散层使ζ电位降低,静电斥力减少。此时,布朗运动由稳定因素转变为不稳定因素,也有利于胶粒的吸附凝聚。水化胶中的水分子与胶粒有固定联系,具有弹性和较高的黏度,把这些分子排挤出去需要克服特殊的阻力,阻碍胶粒直接接触。有些水化膜的存在决定于双电层状态,投加混凝剂降低电动电位,有可能使水化作用减弱,混凝剂水解后形成的高分子物质或直接加入水中的高分子物质一般具有链状结构,在胶粒与胶粒间起吸附架桥作用。 混凝是凝聚和絮凝的总称。向水中投加混凝剂,可以使胶体颗粒脱稳,脱稳后的胶粒后相互聚结形成微絮粒的过程,称为凝聚;微絮粒相互粘附聚集或通过高分子物质吸附架桥作用而使微粒相互黏结,而形成絮凝体的过程,称为絮凝。根据混凝过程的特点,混凝操作分为两个阶段,即混合阶段和絮凝阶段,两个阶段的操作要求明显不同。混合阶段的操作要求是快速(1min之内)和剧烈搅拌(速度梯度G在500~1000s-1),而絮凝反应阶段的操作要求是反应时间较长(15~30min),搅拌强度较小(速度梯度G为10~70s-1),一般Gt值应控制在104~105之间。 三、实验设备与试剂 (1) 无级调速六联混凝搅拌机。 (2) pH酸度计。 (3 )浊度计。 (4) 1ml,2ml,5ml,10ml, 移液管各1支。 (5) 200mL、500ml烧杯,1000ml量筒,吸耳球等。 (6)混凝剂为硫酸铝(AS)和聚合氯化铝(PAC),使用时分别配置成10g/L的溶液。 (7) 10%的NaOH溶液和l0%HCI溶液500mL各l瓶。 (8) 实验原水为高岭土悬浊液,进行混凝操作前将原水pH值调节至6-8之间。 四、实验步骤 (1)测定原水的浊度,将原水pH值调节至6-8之间。 (2)用1000mL量简量取6份水样至6个1000mL烧杯中,将装有水样的烧杯放在搅拌器下,保持各烧杯中的搅拌器位置相同

混凝搅拌实验报告

混凝搅拌实验报告 时间:2016年4月23日 实验人员: 一、实验目的及要求 1、通过实验观察矾花生成过程,加深对絮凝理论的理解; 2、确定混凝的最佳用量及最佳pH值; 3、了解影响混凝效果的因素。 二、实验原理 混凝是用来去除水中无机物和有机的胶体悬浮物。通常在废水中所见到的胶体颗粒其大小变化约在100nm-10nm之间,而其τ电位在15-20毫伏之间。胶体悬浮物的稳定性是由于高τ电位引起的斥力,或者是由于在亲水的胶体上吸附了一层非离子的聚合物所造成的。混凝过程包括胶体悬浮物的脱稳和接着发生的使颗粒增大的凝聚作用。随后这些大颗粒可以用沉淀、悬浮和过滤等方法去除。 脱稳是通过投加强的用离子电解质如Al3+、Fe3+或阳离子高分子电解质来降低τ电位,或者由于形成了带正电荷的含水氧化物如Al x(OH)Y+而吸附于胶体上,或者是通过阴离子和阳离子高分子电解质的自然凝聚,或是由于胶体悬浮物被围于含水氧化物的矾花内等方式来完成的。 形成矾花最佳的条件是要求pH值在等电离点或接近等电离点(对于铝来说,要求pH值得范围为5.0-7.0),同混凝剂的反应必须有足够的碱度,对于碱度不够的废水应该投加Na2CO3、NaOH或石灰。 最有效的脱稳是使胶体颗粒同小的带正电荷含水氧化物的微小矾花接触,这种氧化物的微小矾花是在小于0.1s的时间内产生的,因此要在短时间内剧烈搅拌,在脱稳之后,凝聚促使矾花增大,从而使矾花能从水中去除。铝和铁的矾花在搅拌时较容易破碎和离散。投加2-5ml/L活性硅有可能提高矾花的强度。在凝聚阶段将近结束时,投加0.2-1.0ml/L长链阴离子或非离子聚合物,通过桥联吸附作用,有助于矾花的聚集和长大。所需混凝剂的投加量将由于盐和阴离子表面活性剂的存在而增加。脱稳也能通过投加阳离子聚合物来完成。 混凝的通常顺序是: 1、将混凝剂与水迅速剧烈的搅拌。如果水中碱度不够,则要在快速搅拌之前投加碱性助凝剂。 2、如果使用活性硅和阳离子高分子电解质,则它们应在快速搅拌将近结束时投加。使用阴离子高分子电解质,应在凝聚阶段的中期投加。 3、需要20-30min的凝聚时间,以促使大矾花的产生,在这一过程中,要

水厂混凝剂投加系统

LS-JY一体化药液投加装置 ?概述: LS-JY一体化药液投加装置主要是将药剂浓缩液或粉状药剂 配制成一定浓度的药液并将其准确投加至加药点的先进的加药 系统。 ?用途: 药液投加装置是是一种具投药、搅拌、输送液体、自动控制 与一体的成套设备,他被广泛应用于电厂的原水、锅炉给水、油 田地面集输脱水处理系统,石油化工各种加药系统和废水处理系统。如投加混凝剂、磷酸盐、氨液、石灰水、水质稳定剂(缓蚀剂)、阻垢剂、液体杀虫剂等。 ?工作结构原理: 加药装置主要由溶液池(箱)、搅拌池(箱)、计量泵、液位计、电控柜、管路、阀门、安全阀、止回阀、压力表、过滤器、底座、扶梯等组成(可根据用户实际要求配置)。 加药装置根据所需药剂浓度,在搅拌箱内配制,经搅拌器搅拌均匀后投入溶液箱、用计量泵(加药泵)向投药点或指定的系 统中输送所配制的溶液。成套加药装置具有结构紧凑、安全简单、操作使用简便等特点。该装置还可根据用户不同工艺流程的要求,进行有针对性的设计、配置必要的部件,实现功能适合(如自动远程控制)、经济实用。 ?加药装置选型注意事项: ?用户选用加药装置时,首先根据系统需要投加溶液量来确定选用规格(包括计量泵参数、搅拌箱容 积、溶液箱容积及现场条件),再根据投加情况、确定投加情况,确定投加方式(一般采用“一开一备”的方式); ?根据需要选取加药装置各部件的材质(不锈钢、碳钢、非金属材料)、计量泵型号(隔膜泵、柱塞泵) 或向我公司提供所加药剂的参数(名称、浓度、温度、密度、粘度、腐蚀性等); ?其他对加药装置的特殊要求。 ?安装、操作注意事项: ?检查加药装置的地脚平台是否在同一水平面上,泵出液口有丝扣连接,快速接头、法兰式接头、把 相应的接头接好,连接电源。 ?做好操作前的准备工作,计量泵箱体、减速机机箱内注入适量的和号机械油,以油位水平线为准, 关闭排污阀、管道阀,自动或手动加注药液,接通电源,电控柜电源指示灯亮表示电源已经接通。 按下搅拌电机按钮,搅拌机开始工作5~15分钟后打开管道阀门,按下半量泵启动按钮,计量泵开始工作。 ?定期检查计量泵进料口是否堵塞,对管线、过滤器定期清洗,以防堵塞。 ?定期检查搅拌装置,查看搅拌轴转动是否灵活,叶轮是否扭曲变形,连轴套是否松动,以免轴扭力 过大,损坏了应及时更换。 ?要定期对安全阀、安力表及各管线阀门旱灾行检查以免发生泄露。使用多泵加药应交替使用。

大学生混凝土坍落度实验报告

混凝土坍落度实验 试验单位:云南工商学院建筑工程学院 试验班级:2012级土木工程5班 组号:第1组 组长:金端斌 成员:金端斌,陈飞,马伊帅,唐国银,柳帅,熊安林,李雄伟,饶启彬。 指导老师:肖松涛 一.混凝土坍落度。 混凝土坍落度主要是指混凝土的塑化性能和可泵性能,影响混凝土坍落度主要有级配变化、含水量、衡器的称量偏差,外加剂的用量容易被忽视的还有水泥的温度几个方面。坍落度是指混凝土的和易性,具体来说就是保证施工的正常进行,其中包括混凝土的保水性,流动性和粘聚性。 和易性是指混凝土是否易于施工操作和均匀密实的性能,是一个很综合的性能其中包含流动性、粘聚性和保水性。影响和易性主要有用水量、水灰比、砂率以及包括水泥品种、骨料条件、时间和温度、外加剂等几个方面。 混凝土的坍落度,应根据建筑物的结构断面、钢筋含量、运输距离、浇注方法、运输方式、振捣能力和气候等条件决定,在选定配合比时应综合考虑,并宜采用较小的坍落度。 二.实验目的。 混凝土由各组成材料按一定比例配合、搅拌而成。混凝土拌和物的和易性是一项综合性的指标,它包括流动性、粘聚性和保水性等三方面的性能。由于它的内涵较为复杂,根据我国的现行标准规定,采用“坍落度”和“维脖稠度”来测定混凝土拌和物的流动性。这里先进行“坍落度”试验。 试验设备和器材:坍落度筒和弹头型捣棒、铁锹、卷尺、镘刀、磅称等。 适用范围:适用于坍落度大于10mm,集料公称最大粒径不大于31.5mm水泥混凝土的坍落度。 三.试验步骤: 1.先用湿布抹湿坍落筒,铁锹,拌和板等用具。坍落筒为上口直径100mm,下口直径200mm,高300mm,呈喇叭状。 2.称量材料: (1)C42.5的普通硅酸盐水泥:5.6Kg; (2)砂子:11.2Kg; (3)石子:20.7Kg(最大粒径不得超过40mm);

混凝沉淀实验

水污染控制工程实验2010/2011第二学期 实验一、混凝沉淀实验 实验安排 2011、5、10星期二、环境08--2班30人分4组 实验地点:二实验楼;C区107实验室 一组A1和二组B1、下午2:00---4:00大约15人左右。 三组A2和四组B2、下午4:30---6:30大约15人左右。 2011、5、11星期三、环境08--1班35人分4组 实验地点:二实验楼;C区107实验室 一组A1和二组B1、上午9:00---11:00大约18人左右。 三组A2和四组B2、中午11:30---1:30大约16人左右。 2011、5、11星期三、环境08--3班32人分4组 实验地点:二实验楼;C区107实验室 一组A1和二组B1、下午2:30---4:30大约16人左右。 三组A2和四组B2、下午5:00---7:00大约16人左右。 注意: 1、A组、B组的同学用不同的混凝剂。(A1做三氯化铁最佳投加量的确定,A2在A1的基础上做ph值的影响。B1做自制混凝剂的最佳投加量,B2在B1的基础上,做PH值的影响。) 2、实验完毕后填好实验报告。

实验一:混凝沉淀实验 一、实验目的: 1、通过实验观察混凝现象、加深对混凝理论的理解; 2、选择和确定最佳混凝工艺条件。 3、了解影响混凝条件的相关因数。 4、通过对比传统混凝剂的混凝效果了解粉煤灰及混凝剂的混凝效果,并确定最佳混凝剂投加量。 二、实验原理 混凝阶段所处理的对象主要是水中悬浮物和胶体杂质,是水处理工艺中十分重要的一个环节。水中较大颗粒悬浮物可在自身重力作用下沉降,而胶体颗粒不能靠自然沉降得以去除。胶体表面的电荷值常用电动电位ξ表示,又称为Zeta 电位。一般天然水中的胶体颗粒的Zeta电位约在-30mV以上,投加混凝剂之后,只要该电位降到-15mV左右即可得到较好的混凝效果。相反,当电位降到零,往往不是最佳混凝状态。因为水中的胶体颗粒主要是带负电的粘土颗粒。胶体间存在着静电斥力,胶粒的布朗运动,胶粒表面的水化作用,使胶粒具有分散稳定性,三者中以静电斥力影响最大,若向水中投加混凝剂能提供大量的正离子,能加速胶体的凝结和沉降。水化膜中的水分子与胶粒有固定联系,具有弹性较高的粘度,把这些水分子排挤出去需克服特殊的阻力,这种阻力阻碍胶粒直接接触。有些水化膜的存在决定于双电层状态。若投加混凝结降低ζ电位,有可能是水化作用减弱,混凝剂水解后形成的高分子物质在胶粒与胶粒之间起着吸附架桥作用。即使ζ电位没有降低或降低不多,胶粒不能相互接触,通过高分子链状物吸附胶粒,一般形成絮凝体。消除或降低胶体颗粒稳定因素的过程叫脱稳。脱稳后的胶粒,在一定的水利条件下,才能形成较大的絮凝体,俗称矾花,自投加混凝剂直至形成矾花的过程叫混凝。 投加混凝剂的多少,直接影响混凝效果。水质是千变万化的,最佳的投药量各不相同,必须通过实验方可确定。 在水中投加混凝剂如 A1 2(SO 4 ) 3 、 FeCl 3 后,生成的AI、 Fe的化合物对胶体的脱稳 效果不仅受投加的剂量、水中胶体颗粒的浓度、水温的影响,还受水的 pH值影响。如果pH值过低(小于4),则混凝剂水解受到限制,其化合物中很少有高分子物质存在,絮凝作用较差。如果pH值过高(大于9—10),它们就会出现溶解现象,生成带负电荷的络合离子,也不能很好地发挥絮凝作用。 投加了混凝剂的水中,胶体颗粒脱稳后相互聚结,逐渐变成大的絮凝体,这时,水流速度梯度G值的大小起着主要的作用。 三、实验水样:黄河水

沉淀反应实验报告

实验蛋白质的沉淀反应与颜色反应 一、实验目的 掌握鉴定蛋白质的原理和方法。熟悉蛋白质的沉淀反应,进一步熟悉蛋白质的有关反应。 二、实验原理 蛋白质分子中某种或某些集团可与显色剂作用,产生颜色。不同的蛋白质由于所含的氨 基酸不完全相同,颜色反应亦不完全相同。颜色反应不是蛋白质的专一反应,一些非蛋白物 质也可产生同样的颜色反应,因此不能根据颜色反应的结果来决定被测物是否为蛋白质。另 外,颜色反应也可作为一些常用蛋白质定量测定的依据。蛋白质是亲水性胶体,在溶液中的 稳定性与质点大小、电荷、水化作用有关,但其稳定性是有条件的,相对的。如果条件发生 了变化,破坏了蛋白质的稳定性,蛋白质就会从溶液中沉淀出来。 三、实验仪器 1、吸管 2、滴管 3、试管 4、电炉 5、ph试纸 6、水浴锅 7、移液管 四、实验试剂 1、卵清蛋白液:鸡蛋清用蒸馏水稀释10-20倍,3-4层纱布过滤,滤液放在冰箱里冷藏 备用。 2、 0.5%苯酚:1g苯酚加蒸馏水稀释至200ml。 3、millon’s试剂:40g汞溶于60ml浓硝酸(水浴加温助溶)溶解后,冷却,加二倍体 积的蒸馏水,混匀,取上清夜备用。此试剂可长期保存。 4、尿素晶体 5、1%cuso:1g cuso晶体溶于蒸馏水,稀释至100ml 44 6、10%naoh:10g naoh溶于蒸馏水,稀释至100ml 7、浓硝酸 8、0.1%茚三酮溶液:0.1g茚三酮溶于95%的乙醇并稀释至100ml. 9、冰醋酸 10、浓硫酸 11、饱和硫酸铵溶液:100ml蒸馏水中加硫酸铵至饱和。 12、硫酸铵晶体:用研钵研成碎末。 13、95%乙醇。 14、醋酸铅溶液:1g醋酸铅溶于蒸馏水并稀释至100ml 15、氯化钠晶体 16、10%三氯乙酸溶液:10g三氯乙酸溶于蒸馏水中并稀释至100ml 17、饱和苦味酸溶液:100ml蒸馏水中加苦味酸至饱和。 18、1%醋酸溶液。 五、实验步骤 蛋白质的颜色反应 (一)米伦(millon’s)反应 1、苯酚实验:取0.5%苯酚溶液1ml于试管中,加millon’s试剂0.5ml,电炉小心加热 观察颜色变化。 2、蛋白质实验:取2ml蛋白液,加millon’s试剂0.5ml,出现白色的蛋白质沉淀,小 心加热,观察现象。 (二)双缩脲反应 1、取少量尿素晶体放在干燥的试管中,微火加热熔化,至重新结晶时冷却。然后加 10%naoh溶液1ml,摇匀,再加2-4滴1% cuso4溶液,混匀,观察现象。 2、取蛋白液1ml,加10%naoh溶液1ml,摇匀,再加2-4滴1% cuso4溶液,混匀,观察 现象。

混凝剂加药量实验指导书

实验一混凝剂加药量实验指导书 1. 目的要求 (1)观察混凝现象,从而加深对混凝理论的理解; (2)确定水样的最佳投药量。 2. 方法原理 水中粒径小的悬浮物以及胶体物质,由于微粒的布朗运动,胶体颗粒间的静电斥力和胶体表面的水化作用,致使水中胶体颗粒稳定的分散在水中,不能采用自然沉降的方法去除。向水中投加混凝剂后,首先发生的是电离和水解反应。如以硫酸铝[Al2(SO4)3·18H2O]作混凝剂为例,则生成氢氧化铝。 电离: Al2(SO4)3→2Al3+ + 3SO42- 水解: Al3+ + 3H2O→Al(OH)3 + 3H+ 电离、水解过程很快,通常在30s内即可完成。氢氧化铝是溶解度很小的化合物,当水的pH值合适时,即从水中析出带正电胶体的A1(OH)3胶体。在一系列物理、化学作用下,析出的A1(OH)3胶体于水中的胶体颗粒结合,凝聚成粗大的絮状物(通常称为矾花),然后在重力的作用下沉降,使水中的胶体和悬浮物得到去除。 3. 实验仪器及药品 混凝搅拌器、浊度仪、温度计、烧杯、量筒、移液管、10g/L硫酸铝溶液 4. 实验步骤 (1)了解混凝搅拌器的使用方法。 (2) 测定原水的浊度和水温。 (3) 量取200mL水样至烧杯中,确定原水能够形成矾花的近似最小混凝剂量。方法是缓慢搅拌水样,用移液管每次增加0.5mL的混凝剂直至出现矾花为止。这时的混凝剂量作为形成矾花的最小投加量。 (4)量取6份1000mL水样至烧杯中。注意:所取水样要搅拌均匀,要一次量取,以尽量减少取样浓度上的误差。 (5) 以形成矾花的最小投加量的1/4为最小加药量,形成矾花的最小投加量的2倍为最大加药量,平均把混凝剂加入到6份水样中。 (6) 启动搅拌器。首先以150r/min的速度快速搅拌3-5min,再以50-80r/min的速度搅拌20min。搅拌过程中,注意观察并记录“矾花”形成的过程,“矾花”形成的快慢、外观、大小、密实程度、下沉快慢等。 (7) 搅拌过程完成后,水样静沉15min,用医用针筒在6个水样中依次取出约20mL的上清液,置于浊度仪的水样瓶中,用浊度仪测出其浊度。 (8) 以投药量为横座标,剩余浊度为纵座标,绘制混凝曲线图,从混凝曲线图对最佳

相关文档
最新文档