气固相催化反应实验-预习

气固相催化反应实验-预习
气固相催化反应实验-预习

化工专业实验预习报告

实验名称 气固相催化反应实验 班级

姓名

学号 成绩 实验时间 同组成员

一、实验预习 1.实验目的

(1)掌握乙醇脱水实验的反应过程和反应机理、特点。 (2)学习气固管式催化反应器的构造、原理和使用方法。 (3)学习如何对实验体系进行物料衡算,确定收率和转化率。

(4)学习气体在线分析的方法和定性、定量分析,学习手动进样分析液体成分。 (5)学习微量泵的使用,学会使用湿式流量计测量气体流量。

2.实验原理

1)乙醇脱水反应历程

实验表明,乙醇脱水可生成乙烯和乙醚两种化合物,但在浓硫酸或三氧化二铝催化下,控制温度可使反应生成其中一种化合物为主,反应如下:

可见,乙醇的脱水方式随反应温度而异,在较高温度时主要发生分子内脱水生成乙烯,在较低温度下则发生分子间脱水生成乙醚。对于乙醇脱水反应,由于对机理及动力学的研究结论很难达成一致,

主要存在两方面的争论:○1乙醇脱水机理是连串反应机理、平行反应机理还是平行-连串反应机理;○

2反应机理是吸附于催化剂上的两个临近乙醇分子间进行的L-H 模型,还是一个气相乙醇分子和一个催

化剂上处于吸附态的乙醇分子之间进行的R-E 模型。乙醇脱水反应的催化剂主要由

γ-Al 2O 3和酸性ZSM-5分子筛两大类。Blaszkowski 和Van Santen 指出:氧化铝型催化剂的催化机理和分子筛不同,γ-Al 2O 3的催化活性与其表面脱氢过程中形成的Lewis 酸-Lewis 碱对有关,富电子的阴离子氧表现出碱的特性,缺电子的阳离子铝表现出酸的特性。相反,酸性分子筛的催化活性与Bronst 酸-Lewis 碱对有关,Bronst 酸发生氢转移,而它邻近的Lewis 碱能接受质子。在此基础上,Cory B.Phillips 等以ZSM-5分子筛为催化剂,提出乙醇脱水反应属于平行反应,会生成乙氧基这一中间产物,并且他们认为生成乙醚的过程与甲醇脱水生成二甲醚的过程非常相似。Junko N.Kondo 等利用原位红外检测也证实在反应过程中乙氧基这一中间产物的存在。Chang 等提出只要催化剂上存在足够多的酸性位,乙醇可以直接反应生成乙烯。R. Le Van Mao 等在ZSM-5分子筛基础上提出在523~598 K 范围内乙醇直接生成乙烯,448~498 K 范围内乙醇生成乙醚,而498~523K 范围内生成乙烯和乙醚,反应是在Bronst 酸中心上进行的。河北工业大学及上海石油化工研究院等对乙醇脱水反应进行了研究,同样

认为乙醇脱水反应符合平行反应机理。实验以改性分子筛为催化剂,在消除内外扩散的前提下,对乙醇脱水反应的机理进行了研究。结合文献,对本体系条件下提出如下反应机理:乙醇脱水生成乙烯和乙醚的反应属于平行反应,反应机理模型是吸附于催化剂上的2 个邻近乙醇分子之间进行的L-H 模型,具体反应历程如下:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

反应(3)、(7)或(8)、(12)分别为乙醇吸附、表面反应、水脱附的反应,均有可能成为反应的控制步骤,其余步骤为快速平衡的过程。

2)乙醇脱水反应所采用的催化剂

目前已报道的乙醇脱水催化剂有: 白土、活性氧化铝、氧化硅、磷酸、硫酸、氧化钍、氧化镉、

氧化锆、磷酸钙、杂多酸盐、分子筛、铝酸锌、Al2O3 /SiO2、Al2O3 /Cr2O3、Al2O32MgO /SiO2等,在工业上有应用报道的乙醇脱水催化剂主要有:活性氧化铝、活性白土、Al2O3 /SiO2、Al2O32MgO /SiO2等。

本实验采用的催化剂(ZSM-5分子筛)。

ZSM一5沸石分子筛的晶体,具有丰富的微孔通道和孔穴,在ZSM一5分子筛中进行的催化反应面临以下三种不同的条件和结果(即选择性):

(1) 由于大多数活性中心都已被限制在孔结构之内,所以,只有那些半径与分子筛孔径相当(较大或略大)的反应物分子,才有可能进入孔内,并在其中的活性中心上发生反应。而无法进入孔内的反应物,只有在为数很少的外表面的活性中心上反应。

(2) 只有那些进入孔后而又能再从孔中扩散出来的分子,才可能作为产品出现。当然,这种分子也只占一部分,而其余的产物分子,或者体积较大,或裂解成堵塞孔道、或使催化剂失活的小分子,则也不能从孔中排除作为产物出现。

(3) 某些孔内反应,因为需要形成体积较大的过度状态(或中间态)分子,由于它们受到分子筛孔道孔穴尺寸的约束和限制,使得这些过度态的中间产物,难以在孔中形成;反之,分子较小的过度态产物,则可以形成。

由于ZSM-5分子筛具有巨大的内表面,因此分子筛的活性中心不仅存在于分子筛表面上,而且内表面业存在催化活性中心起到催化作用。在实验中,由于反应生成的产物乙醚和未反应的乙醇留在了液体冷凝器中,而其他几个产物都是挥发气体,进入尾气湿式流量计计量总体积后排出。

对于不同的反应温度,通过计算不同的转化率和反应速率,可以得到不同反应温度下的反应速率常数,并得到温度的关联式。

3.实验仪器和药品

仪器:乙醇脱水气固反应器、气相色谱及计算机数据采集和处理系统、精密微量液体泵。

药品:乙醇脱水催化剂、化学纯乙醇、分析纯乙醚、蒸馏水。

4.实验步骤

(1)装填催化剂

(2)流量计准备

(3)安装反应器

(以上三步实验时已做好)

(4)打开电源总开关,按照实验要求,调整好色谱条件:载气;氢气(氢气发生器);柱箱温度:150 o C;进样器温度:150 o C;检测器温度:150 o C;色谱柱:乙醇脱水专用(内径4 mm,长3 m)。

(5)将反应器加热温度设定为260 o C,预热器温度设定为200 o C(可以根据反应器温度的分配情况调节)。温度设定无误后,打开加热开关,在开始加热时可用自整定设置。

(6)在温度达到设定值后,继续稳定10~20分钟,然后开始加入乙醇。乙醇的加料速度为0.5~1.5 mL/min。

(7)反应进行20分钟后,正式开始实验。先换掉反应器下的吸收瓶,并换上清洗干净的新瓶,检查升降台的高度,应该调节升降台,使冰水混合物尽可能多的浸没分离器。记录湿式流量计读数,应每隔一定时间记录反应温度,压力等实验条件。

(8)反应开始每隔10~20分钟取一次数据,每个温度至少取两个数据,粗产品从分离器中放入量筒内。

(9)取少量样品,用气相色谱分析其组成,并计算出各组分的百分含量。

(10)改变反应温度,每次提高20~30 o C,重复上述实验步骤,则得到不同反应温度下的原料转化率、产物乙烯,乙醚收率,并根据动力学模型,可以得到反应速率常数。

二、实验记录260°C:

280°C:

如有侵权请联系告知删除,感谢你们的配合!

第四章气-固相催化反应宏观动力学

第四章 气-固相催化反应宏观动力学 在多孔催化剂进行的气-固相催化反应由下列几个步骤所组成: ① 反应物从气相主体扩散到催化剂颗粒的外表面。 ② 反应物从外表面向催化剂的孔道内部扩散。 ③ 在催化剂内部孔道所组成的那表面上进行催化反应。 ④ 产物从那表面扩散到外表面。 ⑤ 产物从外表面扩散到气流主体。 ①、⑤称为外扩散;②、④称为内扩散;③为本征动力学所描述,存在传质、传热现象(传质系数、传热系数), 描述以上五个步骤的模型称为宏观动力学模型。 §4.1气-固相催化反应的宏观过程 一、气-固相催化反应过程中反应组分的浓度分布 以催化活性组分均匀分布的球形催化剂为例,说明催化反应过程中反应物的浓度分布。 死区:可逆反应,催化剂颗粒中反应物可能的最小浓度是颗粒温度夏的平衡浓度C *A ,如果在距中心半径R d 处反应物的浓度接近平衡浓度,此时,在半径R d 颗粒内催化反应速率接近于零,这部分区域称为“死区”。 二、 内扩散有效固子与总体速率 内扩散 内表面上的催化反应 }同时进行,使催化剂内各部分的反映速率并不一致,越接近于外表面,反 应物浓度↗,产物浓度↘,颗粒处于等温时,越接近于外表面,单位内表面上催化反应速率↗,内扩散有效因子(或内表面利用率)ζ: 等温催化剂单位时间颗粒中实际反应量与按外表面组分浓度及颗粒内表面积计算的反应量之比。 i A s S A s S C f k dS C f k i )()(0 ?= ζ K S 为按单位内表面积计算的催化反应速率常数。 S i 为单位体积催化床中催化剂的内表面积。 定态下,单位时间内催化剂颗粒外表面由扩散作用进入催化剂内部的反应组分量与单位时间内整个催化剂颗粒中实际反应的组分量相等,所以 速率 及内表面积计算的反映按反应组分外表面浓度梯度计算的扩散速率按反应组分外表面浓度= ζ 即单位时间内从气流主体扩散到催化剂外表面的反应组分量也必等于颗粒内实际反应量, C A C C C C C C A P P

KH-HC309气固相流化床催化反应实验装置

KH-HC309气固相流化床催化反应实验装置 一、气固相流化床催化反应实验装置功能 1、了解流化床反应器的工作原理及结构。 2、加氢、脱氢、氧化、烃化、芳构化、氨化等有机催化反应。 二、气固相流化床催化反应实验装置主要配置 流化床反应器、加热炉、预热器、蠕动泵、质量流量计、湿式气体流量计、压力表、温度传感器、中央处理器、触摸屏、高品质铝合金型材框架。 水:装置需冷却水,自带和自来水管相连的接口。 电:电压AC380V,功率4.0KW,标准三相四线制。每个实验室需配置1~2个接地点(安全地及信号地)。 三、气固相流化床催化反应实验装置技术参数 1、流化床反应器:稀、浓相段直径:Φ20mm、高350mm,扩大段直径:Φ57mm,长200mm;热电偶套管,Φ3mm,内插Φ1mm热电偶,316L不锈钢材质。催化剂装载量:10-50ml。 2、反应器加热炉:ф300×600mm,开启式,加热功率(三段加热)各1KW,加热形式:碳化硅炉管+金属内衬。内层为保温层,外层为网孔防护层。最高使用温度,900℃。

3、预热器:不锈钢,内径φ10mm,长度250mm,内有防返混及防沟流装置;使用温度:室温-400℃,使用压力:常压。 4、2 路气体管路,气体质量流量控制器控制气体流量,流量规格:300ml/min,N2标定,准确度:±1%F.S。 5、加料罐:体积1000ml,材质:石英玻璃,数量1个。 6、液体混合器:50 ml,材质:316L不锈钢,数量1个。 7、产品冷凝器:316L卫生级不锈钢,Φ76×200mm(316L内盘管)。 8、气液分离器:500mL,316L卫生级不锈钢。 9、液体泵:蠕动泵,转速范围0.1~50rpm,流量:0.2-10ml/min,4~20mA远程输出控制,数量1台。 10、湿式气体流量计:额定流量:0.2m3/h,容积:2L,精度:±1%。 11、不锈钢防震指针压力表0-0.25MPa,数量3个。 12、温度传感器:K热电偶,显示分度0.1℃。 13、管路阀门:316L不锈钢精密卡套管和阀门。 14、节能环保冷凝系统:温度范围-10~20℃,容积5L,控温精度±0.5℃。 15、中央处理器:执行速度0.64μs,内存容量16K,内建Ethernet支持Modbus TCP及Ethernet/IP通讯协议;功能:数据处理运算。 16、模拟量模块:高达16位分辨率,总和精度±0.5%,内建RS485通讯模式。 17、温度模块:分辨率0.1℃,精度0.5%,内建RS485通讯模式。 18、采用一体机平板触摸电脑,全程数字化触摸屏控制操作。HMI:投射式触控技术,5000万次触摸点,内存4G,功能:中央处理器数据显示控制。 19、额定电压:380V,总功率:4.0KW。 20、外形尺寸:1500×550×1800mm(长×宽×高),外形为可移动式设计,带刹车轮,高品质铝合金型材框架,无焊接点,安装拆卸方便,水平调节支撑型脚轮。 21、工程化标识:包含设备位号、管路流向箭头及标识、阀门位号等工程化设备理念配套,使学生处于安全的实验操作环境中,学会工程化管路标识认知,培养学生工程化理念。 22、配数据采集软件一套,在线工业组态软件一套。

气固相催化反应固定床装置操作说明

气固相催化反应固定床装置 一、前言 本装置由管式炉加热固定床、流化床催化反应器组成,是有机化工、精细化工、石油化工等部门的主要实验设备,尤其在反应工程和催化工程及化工工艺、生化工程、环境保护专业中使用的相当广泛。该实验装置可进行加氢、脱氢、氧化、卤化、芳构化、烃化、歧化、氨化等各种催化反应的科研与教学工作。它能准确地测定和评价催化剂活性、寿命、找出最适宜的工艺条件,同时也能测取反应动力学和工业放大所需数据,是化工研究方面不可缺少的手段。 本装置由反应系统和控制系统组成:反应系统的反应器为管式反应器和流化床反应器,由不绣钢材料制。 气固相催化反应固定床装置是管式反应器,床内有直径3mm0勺不绣钢套管穿过反应器的上下两端,并在管内插入直径1mm勺垲装热电偶,通过上下拉动热偶而测出床层各不同高度勺反应温度。加热炉采用三段加热控温方式,上下段温度控制灵活,恒温区较宽。控制系统勺温度控制采用高精度勺智能化仪表,有三位半勺数字显示, 通过参数改变能适用各种测温传感器,并且控温与测温数据准确可靠。 气固相催化反应流化床是一种在反应器内由气流作用使催化剂细粒子上下翻滚作剧烈运动勺床型。流化床也为不锈钢制,床下部有填装勺陶瓷环做预热段,中下部为流化膨胀勺催化剂浓相段,中上部为稀相段,顶部为扩大段。也采用三段控温方法。控制系统勺温度控制采用高精度勺智能化仪表,有三位半勺数字显示,通过参数改变能适用各种测温传感器,并且控温与测温数据准确可靠。它勺换热效果比固定床优越,能及时把反应热移走,床层温度均匀,避免产物产生过热现象,提高了催化剂勺反应效率。故流化床在许多有机反应中得到应用,如丙烯氨氧化制丙烯晴、丁烷或苯氧化制顺酐、二甲苯或萘氧化制苯酐、乙烯氯化、石油催化裂化、烷烃催化脱氢、二氧化硫氧化等都有工业规模生产,在实验室用流化床研究催化剂和工艺条件对产品开发有重大作用。 整机流程设计合理,设备安装紧凑,操作方便,性能稳定,重现性好。此 外,还有与计算机联机的接口,可安装软件能在计算机上显示与存储有关数据实现计

1气固催化反应的七个步骤

1气固催化反应的七个步骤 1)气体反应物通过滞留膜向催化剂颗粒表面的传质(外扩散) 2) 气体沿微孔向颗粒内的传质(内扩散) 3)气体反应物在微孔表面的吸附 4)吸附反应物在催化剂表面的反应 5)吸附产物的脱附 6)气体产物沿微孔向外扩散(内扩散) 7)气体产物穿过滞流膜扩散到气流主体(外扩散) 1,7为外扩散过程 2,6为内扩散过程 3,4,5为化学动力学过程 (本征动力学) 2颗粒反应速率 外扩散很慢 c A0>>c As ≈c A ≈0 r ≈N A =k G c A0 外扩散(external transfer)的速率: N A = k G a(c Ag -c As ) N A = k g a(p Ag -p As ) 传质 传热(T s -T 0)max =(k G /h) (-?H) (c A0-c Ae ) 内扩散很慢 c A0 ≈ c As > c A r=ηr s (c As ) ≈ ηr s (c A0) 3分子内扩散 气体在催化剂内的扩散属孔内扩散,根据孔的大小分为两类:孔径较大时,为一般意义上的分子扩散;孔径较小时,属克努森(Knudson )扩散 费克(Fick )扩散定律 ※当微孔孔径远大于分子平均自由程时,扩散过程与孔径无关,属分子扩散。 ※努森扩散 、 D K,j 为克努森扩散系数; T 为温度, K r 为微孔半径,cm M j 为组分j 的相对分子质量 ※综合扩散 有效扩散系数:Dej = ( 12A A A A s cm :d d d d --=扩散系数D z c S D t n ∑≠-=N j k jk k j jm D y y D 111()123,0s cm /107.910-?=>j j K M T r D d 时λ()j K jm j D D D a N N y N N N N a D ay D D ,B A A B A A B AB A kj 1 110A B A ,1/1/11+==-=+=-+=,等分子扩散,率组分在气相中的摩尔分:组分的扩散通量,:

气固相催化反应固定床装置操作说明

气固相催化反应固定床 装置操作说明 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

气固相催化反应固定床装置 一、前言 本装置由管式炉加热固定床、流化床催化反应器组成,是有机化工、精细化工、石油化工等部门的主要实验设备,尤其在反应工程和催化工程及化工工艺、生化工程、环境保护专业中使用的相当广泛。该实验装置可进行加氢、脱氢、氧化、卤化、芳构化、烃化、歧化、氨化等各种催化反应的科研与教学工作。它能准确地测定和评价催化剂活性、寿命、找出最适宜的工艺条件,同时也能测取反应动力学和工业放大所需数据,是化工研究方面不可缺少的手段。 本装置由反应系统和控制系统组成:反应系统的反应器为管式反应器和流化床反应器,由不绣钢材料制。 气固相催化反应固定床装置是管式反应器,床内有直径3mm的不绣钢套管穿过反应器的上下两端,并在管内插入直径1mm的垲装热电偶,通过上下拉动热偶而测出床层各不同高度的反应温度。加热炉采用三段加热控温方式,上下段温度控制灵活,恒温区较宽。控制系统的温度控制采用高精度的智能化仪表,有三位半的数字显示,通过参数改变能适用各种测温传感器,并且控温与测温数据准确可靠。 气固相催化反应流化床是一种在反应器内由气流作用使催化剂细粒子上下翻滚作剧烈运动的床型。流化床也为不锈钢制,床下部有填装的陶瓷环做预热段,中下部为流化膨胀的催化剂浓相段,中上部为稀相段,顶部为扩大段。也采用三段控温方法。控制系统的温度控制采用高精度的智能化仪表,有三位半的数字显示,通过参数改变能适用各种测温传感器,并且控温与测温数据准确可靠。它的换热效果比固定床优越,能及时把反应热移走,床层温度均匀,避免产物产生过热现象,提高了催化剂的反应效率。故流化床在许多有机反应中得到应用,如丙烯氨氧化制丙烯晴、丁烷或苯氧化制顺酐、二甲苯或萘氧化制苯酐、乙烯氯化、石油催化裂化、烷烃催化脱氢、二氧化硫氧化等都有工业规模生产,在实验室用流化床研究催化剂和工艺条件对产品开发有重大作用。

光催化降解有机污染物

光催化降解有机污染物 19113219 高思睿 1、有机污染物处理的重要性 在21世纪,能源与环境问题已经成为世界关注的主题,如何减少污染,保护生态平衡,解决环保问题,已经引起各政府决策部门和学术研究部门的高度重视。 水和空气作为人类最宝贵的资源,随着工业进程的加快,大量的废水、废气被排入其中,其中的有毒有机化合物会在人体内富集,给健康带来巨大威胁。而且在这些化合物中,有部分化合物用平常的处理方法很难将其降解。 我国学者金奇庭等人通过研究观察发现:很多的有机化合物能使厌氧微生物产生明显的毒害作用。这些有机化合物必须通过一些其他的非生物的降解技术来除去。 光催化处理有机污染物的技术由于其价廉,无毒,节能,高效的优势逐渐成为各界人士研究的重点,光催化的研发也一跃成为当前国际热门研究领域之一。 自1972年日本学者藤島(Fujishima)和本田(Honda)发现TiO2单晶能光电催化分解水以来,光催化氧化还原技术,在污水处理、空气净化、抗菌杀毒、太阳能开发等方面具有广阔的应用前景,受到世界各国的广泛关注,并得到了迅速发展。 大量研究证实:染料、表面活性剂、有机卤化物、农药、油类、氰化物等许多难降解或用其它方法难以去除的有机污染物都能够通过光催化氧化反应有效的降解、脱色、去毒,并最终完全矿化为CO2、H2O及其他无机小分子物质,达到完全无机化的目的,从而消除对环境的污染。 2、光催化剂 主要的光催化剂类型: 1、金属氧化物或硫化物光催化剂 2、分子筛光催化剂 3、有机物光催化剂 在光催化中采用半导体物质作为光催化剂,有ZnO、CdS、WO3、TiO2等。由于TiO2具有价廉易得、使用稳定及光活性高等优点,所以在光催化降解中,一般采用它作为光催化剂。 1. TiO2的结构 二氧化钛是钛的氧化物。根据晶型可以划分为金红石型、锐钛矿型和板钛矿型三种。金红石矿在自然界中分布最广,锐钛矿型TiO2属于四方晶系,板钛矿型TiO2由于属于正交晶系很不稳定,金红石型TiO2相对于锐钛矿型和板钛矿型来说应用较广。

CEL-GPPCH气相光催化微型反应装置是在GPPC气相催化装

CEL-GPPCH 气相光催化微型反应装置是在GPPC气相催化装置上的跨越式升级。 气相光催化在线测试系统主要应用于连续相光催化,气固相光催化,气液反应光催化,在污染物降解,催化合成,硫化反应,热催化等领域获得很好的应用;尤其在光催化二氧化碳CO2还原、光电催化活性评价、VOC的降解分析(非甲烷总烃的降解分析)、苯系物的降解分析、国标乙醛的降解分析、甲醛的光催化、汽车尾气氮氧化物的降解分析、光催化的固氮反应等。 *CEL-GPPCH 气相光催化微型反应装置设计方案采用国际引进的标准PID工艺流程设计,装置主要元器件均采用国内外知名品牌:如气体减压阀、背压阀采用美国TESCOM、质量流量计采用Seven Star,压力表采用布莱迪,主要管阀件采用德国FITOK耐高温阀等。* 系统管路和阀门均采用耐高温材料,常温~200℃连续可调。 * 系统内的参数控制均由电脑软件反控控制(压力、温度、流速等)。 * 整套装置的反应器主体材质采用耐高温和耐腐蚀性能较好的不锈钢材质,其它主要材质采用316SS或316L的。 * 装置配置二个气路进料和一个液路进料。气路经过减压阀减压后提供给质量流量计控制和计量。预热器和预热炉采用立式安装,预热器采用盘管与混合罐一体的结构,可以增大其换热面积与混合效果,预热炉采用单段控温的筒式炉加热 * 控制仪表采用英国WEST品牌仪表与计算机联合控制。并设置多级关联的保护系统,确保装置系统的设备和操作人员的安全。 *装置框架设计采用国际化标准的铝合金型材搭建而成。 * 建立高质量高水平的,适应于不同条件下的实验装置。能够实现不同工艺条件下催化剂活性的评价;能够满足同种催化剂不同工艺的工艺条件的研究。

固相反应动力学.

实验四 固相反应动力学 一、目的: 1.探讨Na 2CO 3-SiO 2系统的固相反应动力学; 2.熟悉运用失重法进行固相反应的研究。 二、原理: 固态物质中的质点,在温度升高时,振动相应增大,而达到一定温度时,其中若干原子或离子具有一定的活度,以至可以跳离原来位置,与周围的其它离子产生换位作用。在一元系统中表现为烧结的开始,如果是二元或多元系统则表现为表面相接触的物质间有新化合物的产生,亦即固相反应的存在。这时的反应是在没有气相和液相参加的情况下进行的,反应发生的温度低于液相出现的温度。 测定固相反应速度的问题,实际上就是测定反应过程中各反应阶段的反应量的问题,因此有许多方法,对于反应中有气体产生的反应可以用重量法或量体积法即测量反应过程中生成的气体的量,进而计算出物质的反应量。 本实验是测定Na 2CO 3-SiO 2系统的固相反应速度,采用的方法是重量法,该反应式可以表示为: Na 2CO 3+SiO 2=Na 2O ·SiO 2+CO 2↑ 在反应进行的过程中,在某一温度下随时间的增长,Na 2SiO 2量增多,生成的CO 2气量也越多,若测得系统各时间下失去的CO 2的重量,则可按杨德公式的要求先算出各时间下对应的G 值,再根据杨德尔公式(1-31G -)2=K τ可求出(1-31G -)2~τ的关系曲线。若此曲线是一直线,则表示杨德尔公式具有正确性,说明K 是常数。 二、仪器装置: 1.WZK-1可控硅温度控制器; 2.1/万光电天平; 3.管式电阻炉; 4.温控热电偶 三、操作步骤: 1.用差重法准确称取按分子量比1:1配制成的Na 2CO 3+SiO 2混合物0.3-0.4克,置于小铂金皿中(注意:不可装得太满)。 2.打开WZK 温度控制器电源开关,将黑色定温指针定于700℃,将控制开关拨到 “手 图4-1 固相反应原理图 图4-2 固相反应装置

气固相催化反应固定床装置操作说明修订版

气固相催化反应固定床 装置操作说明修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

气固相催化反应固定床装置 一、前言 本装置由管式炉加热固定床、流化床催化反应器组成,是有机化工、精细化工、石油化工等部门的主要实验设备,尤其在反应工程和催化工程及化工工艺、生化工程、环境保护专业中使用的相当广泛。该实验装置可进行加氢、脱氢、氧化、卤化、芳构化、烃化、歧化、氨化等各种催化反应的科研与教学工作。它能准确地测定和评价催化剂活性、寿命、找出最适宜的工艺条件,同时也能测取反应动力学和工业放大所需数据,是化工研究方面不可缺少的手段。 本装置由反应系统和控制系统组成:反应系统的反应器为管式反应器和流化床反应器,由不绣钢材料制。 气固相催化反应固定床装置是管式反应器,床内有直径3mm的不绣钢套管穿过反应器的上下两端,并在管内插入直径1mm的垲装热电偶,通过上下拉动热偶而测出床层各不同高度的反应温度。加热炉采用三段加热控温方式,上下段温度控制灵活,恒温区较宽。控制系统的温度控制采用高精度的智能化仪表,有三位半的数字显示,通过参数改变能适用各种测温传感器,并且控温与测温数据准确可靠。 气固相催化反应流化床是一种在反应器内由气流作用使催化剂细粒子上下翻滚作剧烈运动的床型。流化床也为不锈钢制,床下部有填装的陶瓷环做预热段,中下部为流化膨胀的催化剂浓相段,中上部为稀相段,顶部为扩大段。也采用三段控温方法。控制系统的温度控制采用高精度的智能化仪表,有三位半的数字显示,通过参数改变能适用各种测温传感器,并且控温与测温数据准确可靠。它的换热效果比固定床优越,能及时把反应热移走,床层温度均匀,避免产物产生过热现象,提高了催化剂的反应效率。故流化床在许多有机反应中得到应用,如丙烯氨氧化制丙烯晴、丁烷或苯氧化制顺酐、二甲苯或萘氧化制苯酐、乙烯氯化、石油催化裂化、烷烃催化脱氢、二氧化硫氧化等都有工业规模生产,在实验室用流化床研究催化剂和工艺条件对产品开发有重大作用。

固相反应动力学

实验20 固相反应动力学 一、实验目的 验证固相反应理论,通过本实验达到进一步了解固相反应机理。通过测定BaCO3-SiO2系统中给定组成的固相反应速度常数,熟悉测定固相反应速度的仪器及方法。 二、实验内容 1.原理 固态物质中的质点(分子、原子或离子)是不断振动的(除绝对零度外),随着温度升高,振幅增大,当达到一定温度时(各种物质不同),由于存在热起伏,使某些质点具有了一定的能量,以至于可以跳离其原来的位置,而产生质点的迁移。这一过程对于单元系统来说就是烧结的开始。这一过程在无气相和液相时也能进行,这就是狭义的固相反应。从广义上讲,所谓固相反应就是有固体物质参加的反应。 固相反应全部过程可分为扩散过程、反应过程及晶核形成过程这三个部分。其中进行得最慢的一个过程控制着整个过程的进行。许多固相反应是由扩散过程控制的,在这种情况下,等温固相反应动力学有三种可能性: 1. 1.新形成的反应产物层阻碍扩散作用:此时反应速度与产物层的厚度y成反比: dy/dt=K/y (1) 2. 2.新形成的反应产物层与扩散作用无关: dy/dt=K (2) 3..新形成的反应产物层能促进扩散作用: dy/dt=Ky (3) 实际上大部分固相反应属于第一种类型.由(1)式积分得: y2=Kt (4) 由于实际测量反应产物层厚度比较困难,因此,通常用反应产物百分数x来表示反应程度.设颗粒为球形且反应物与产物的比重相等,则可推得如下方程: [1-3 100 100x ]2=Kt 对于BaCO3-SiO2系统,可以用测量反应时放出得气体体积或系统重量损失(重量法)来计算反应产物百分数。但因重量法灵敏度差,故常采用量气法。 量气法一般都在负压下(-40mmHg)进行,这样实验结果准确度高。本实验为便于控制和操作,在常压下进行。 2. 实验装置 实验装置如图20-1所示。 3. 实验步骤 (1) 在分析天平上称0.4~0.5克样品于白金小筒内,塌实,接上悬丝,然后置于炉内反应管中,挂于小钩上。 (2) 检查仪器密封情况,不漏气方可进行实验。采用提高(或降低)水准瓶,使之产生一个水位差(压力差)的方法来检查漏气情况。 (3) 检查线路后,接通电源,按10℃/min的升温速度升温至800℃,并保温10分钟,旋三通开关使反应管与量气筒接通(到指定温度前,反应管放空),记下量气筒的起始读数。(4) 作好准备工作后,将悬丝脱开,使白金小量筒落到反应管中,同时按动秒表记录时间。第一分钟内每20秒记录一次量气管上的读数。注意读数时应将水准瓶与量气管中的液面保持在同一水平上(为什么?),一分钟以后,每分钟读一次,10分钟后二分钟读一次,20分钟后每5分钟读一次,至60分钟实验结束。 注意整个实验中应严格控制温度,波动范围为<5℃。

SG-HC21 气固相流化床催化反应实验装置

SG-HC21 气固相流化床催化反应实验装置 技术指标说明 装置功能1、了解流化床反应器的工作原理及结构。

2、加氢、脱氢、氧化、烃化、芳构化、氨化等有机催化反应。 主要配置流化床反应器、加热炉、预热器、计量泵、风机、气体转子流量计、湿式气体流量计、温控仪表、压力表、不锈钢框架及控制屏。 公用设施水:装置需冷却水,自带和自来水管相连的接口。 电:电压AC220V,功率4.0KW,标准单相三线制。每个实验室需配置1~2个接地点(安全地及信号地)。 技术参数1、流化床反应器:稀、浓相段直径:Φ20mm、高350mm,扩大段直径:Φ57mm,长200mm;热电偶套管,Φ3mm,内插Φ1mm热电偶,不锈钢材质。催化剂装载量:10-50ml。 2、反应器加热炉:Φ260×500mm,开启式三段加热,总功率: 3KW,加热形式:碳化硅炉管+金属内衬,最高使用温度:600℃。 3、预热器:304不锈钢,内径Φ10mm,长度250mm,内有防返混及防沟流装置;使用温度:室温-400℃,使用压力:常压。 4、气体转子流量计量程:0.05-0.5L/min。 5、风机:采用空气旋涡泵;功率:370W;最大风压:11.76KPa;最大风量:48m3/h。 6、微型隔膜计量泵;功率:30W;最大流量:3L/h;冲程频率:120n/min。 7、湿式气体流量计:额定流量:0.5m3/h,容积:5L/r,精度: ±1%。 8、冷凝器:φ40×400mm;气液分离器:φ50×150mm。 9、各项操作及压力、流量的显示、调节、控制全在控制屏面板进行。 10、框架为304不锈钢材质,结构紧凑,外形美观,流程简单、操作方便。 11、外形尺寸:1600×600×1800mm(长×宽×高),外形为可移动式设计,带3寸双刹车轮。 测控组成变量检测机构显示机构执行机构气体流量转子流量计转子流量计手动阀控 液体加入量计量泵数字流量显示仪冲程频率调节 预热温度K型热电偶数字温度控制仪固态调压模块 加热炉温度K型热电偶数字温度控制仪固态调压模块 流化床反应温 度 K型热电偶数字温度仪表无 反应压力指针式压力表压力表就地显示无 SG-HC21/II数字型气固相流化床催化反应实验装置 测控组成变量检测机构显示机构执行机构气体流量转子流量计转子流量计手动阀控 液体加入量计量泵数字流量显示 仪,精度: 0.5%FS 冲程频率调节 预热温度K型热电偶数字温度控制 仪,精度: 固态调压模块

气固相法合成氯化聚氯乙烯树脂论文

气固相法合成氯化聚氯乙烯树脂 摘要:在流化床反应器中,研究了紫外光引发的氯化聚氯乙烯(cpvc)树脂的合成过程,考察了反应时间、反应温度、原料气中φ(cl2)和紫外光强度对产品w(cl)的影响。较佳的反应条件为:反应时间1.5 h, 反应温度110 ℃,原料气中φ(cl2)为30%,紫外光波长为300 nm,紫外光强度为211 μw/cm2。合成的cpvc产品中w(cl)可达68.48%,cpvc的力学性能比聚氯乙烯有较大提高。 关键词:氯化聚氯乙烯聚氯乙烯气固相光催化 abstract: the author studied the synthesis process of chlorinated polyvinyl chloride (cpvc) initiated by uv light in a fluidized bed and explored the influences on chlorine mass content of reaction time, reaction temperature, volume fraction of chlorine gas in feedstock and uv light intensity. the optimal reaction conditions includs: the reaction time 1.5 h, reaction temperature 110 ℃, volume fraction of chlorine gas in feedstock 30%, uv light wavelength 300 nm and uv light intensity 211 μw/cm2. the chlorine mass content of the composite cpvc could reach 68.48% and the mechanical properties of the cpvc improved more noticeable in comparison with polyvinyl chloride. keywords: chlorinated polyvinyl chloride;pvc;gas solid phase;photocatalysis

YUY-HY137气固相流化床催化反应实验装置

YUY-HY137气固相流化床催化反应实验装置 装置功能: 1、了解流化床反应器的工作原殿结构。 2、学习加氢、脱氢、氧化、烃化、芳构化、氨化等有机催化反应过程。 技术参数: 1、流化床反应器:稀、浓相段直径:Φ20mm、高350mm,扩大段直径:Φ57mm,长200mm;热电偶套管,Φ3mm,内插Φ1mm热电偶,316L不锈钢材质。催化剂装载量:10-50ml。 2、反应器加热炉:ф300×600mm,开启式,加热功率(三段加热)各1KW,加热形式:碳化硅炉管+金属内衬。内层为保温层,外层为网孔防护层。最高使用温度,900℃。 3、预热器:不锈钢,内径φ10mm,长度250mm,内有防返混及防沟流装置;使用温度:室温-400℃,使用压力:常压。 4、2 路气体管路,气体质量流量控制器控制气体流量,流量规格:300ml/min,N2标定,准确度:±1%F.S。 5、加料罐:体积1000ml,材质:石英玻璃,数量1个。 6、液体混合器:50 ml,材质:316L不锈钢,数量1个。 7、产品冷凝器:316L卫生级不锈钢,Φ76×200mm(316L内盘管)。 8、气液分离器:500mL,316L卫生级不锈钢。 9、液体泵:蠕动泵,转速范围0.1~50rpm,流量:0.2-10ml/min,4~20mA远程输出控制,数量1台。

10、湿式气体流量计:额定流量:0.2m3/h,容积:2L,精度:±1%。 11、不锈钢防震指针压力表0-0.25MPa,数量3个。 12、温度传感器:K热电偶,显示分度0.1℃。 13、管路阀门:316L不锈钢精密卡套管和阀门。 14、节能环保冷凝系统:温度范围-10~20℃,容积5L,控温精度±0.5℃。 15、中央处理器:执行速度0.64μs,内存容量16K,内建Ethernet支持Modbus TCP及Ethernet/IP 通讯协议;功能:数据处理运算。 16、模拟量模块:高达16位分辨率,总和精度±0.5%,内建RS485通讯模式。 17、温度模块:分辨率0.1℃,精度0.5%,内建RS485通讯模式。 18、采用一体机平板触摸电脑,全程数字化触摸屏控制操作。HMI:投射式触控技术,5000万次触摸点,内存4G,功能:中央处理器数据显示控制。 19、额定电压:380V,总功率:4.0KW。 20、外形尺寸:1500×550×1800mm(长×宽×高),外形为可移动式设计,带刹车轮,高品质铝合金型材框架,无焊接点,安装拆卸方便,水平调节支撑型脚轮。 21、工程化标识:包含设备位号、管路流向箭头及标识、阀门位号等工程化设备理念配套,使学生处于安全的实验操作环境中,学会工程化管路标识认知,培养学生工程化理念。 22、配数据采集软件一套,在线工业组态软件一套。

气固相法合成氯化聚氯乙烯树脂的工艺研究

气固相法合成氯化聚氯乙烯树脂的工艺研究 摘要:氯化聚氯乙烯树脂的合成主要依靠流化床反应器来完成,整个合成过程 反应类型复杂,控制难度较高,需要综合考虑多方面因素对产品产生的影响。本 文首先介绍了氯化聚氯乙烯树脂的特征、设备以及制备的流程,其次对氯化聚氯 乙烯树脂的反应机理、综合性能进行了分析,希望可以有效提升氯化聚氯乙烯树 脂的生产工艺水平,为促进行业的可持续健康发展创造良好的条件。 关键词:气固相;氯化聚氯乙烯树脂;工业合成 引言 氯化聚氯乙烯树脂在合成过程中会受到各种因素的影响,氯化过程中通过氯 化改性技术,能够有效提升产物的整体性质,将PVC中氯含量进行调整,我国的 管材、型材当中氯化聚氯乙烯树脂都具有广泛的应用。为了进一步探讨氯化聚氯 乙烯树脂的生产反应机理,现就氯化聚氯乙烯树脂的生产工艺流程分析如下。 一、氯化聚氯乙烯生产工艺概述 氯化聚氯乙烯树脂在工业生产中具有广泛的应用,其定义与特征包括如下 内容。 1.基本特征 氯化聚氯乙烯树脂通过聚氯乙烯改性的模式获得的产物,相比于改性前而言,氯化聚氯乙烯树脂具有许多性能优势,包括优良的物理机械性能、阻燃性能,同时还具有很强的耐腐蚀性能。现阶段,我国的材料大部分应用于型材、管材等 领域,一些副产品当中氯化聚氯乙烯树脂也具有广泛的应用。根据生产工艺特征 的差别,氯化聚氯乙烯树脂的生产可以划分为溶剂生产技术、水相悬浮生产技术 以及气固相生产技术。整体来说,水相生产模式的优势明显,不但产品性能突出,同时还具有稳定性好、生产操作流程简单等。但是,生产过程中存在流程长、废 水与废料较多的情况。国内一些企业采取气固相搅拌生产模式替代该技术,取得 了良好的效果,实现了污染物的合理控制,不过在热传导性能方面存在一些风险,没有得到大规模的推广使用。 2.生产设备 氯化聚氯乙烯树脂的生产过程中需要可靠的设备与生产原材料,设备主要 包括气固流化床、电位滴定仪。原材料包括硝酸银、硫酸铁铵、硫氰酸铵等。 3.制备流程 称取PVC粉末后,将其置入流化床反应器进行反应。整个反应过程采用金 属镀膜加热模式,通入氮气后可以有效降低PVC氧化的可能性。在温度提升到一 定水平后,出现物料流化反应,此时需要进一步保持稳定性。等待氯化温度发生 变化,打开紫外线灯,继续通入氯气,此时进行氮气的开闭调整,重复操作后获 得中性颗粒,此时真空干燥处理后等待重量不在发生变化即可得到产品。为了进 一步确保活化水平,避免紫外线能量影响,需要选择能量相对合适的紫外线光来 进行持续照射,一般波长300nm即可满足要求。 二、气固相法合成氯化聚氯乙烯树脂的反应机理与综合性能 采取气固相法获取氯化聚氯乙烯树脂,需要了解其发生反应的基本机理才 能够满足生产优化的要求,现归纳总结如下。 1.反应机理 生产过程中借助于气固相光催化技术来实现氯化反应,该反应主要包括自 由基反应,引发、传递与终止是其核心环节。反应过程汇总,引发反应的类型包

第五章气固相催化反应本征动力学

第五章气固相催化反应本征动力学 5. 1气固相催化过程(自学) 5. 2固体催化剂(自学) 5.3气固催化反应本征动力学 以反应A =B 为例。 A 分子, A 分子, 吸附态的 B 分子, B 分子 多相催化反应过程示意图

整个多相催化反应过程可概括为下列七个步骤组成: 1、反应组分从流体主体扩散到固体催化剂的外表面(外扩散过 程); 2、反应物自催化剂外表面扩散到催化剂内部(内扩散过程); 3、反应物在催化剂的表面上被吸附(吸附过程); 4、吸附的反应物转换为吸附态的生成物(表面反应过程); 5、生成物从催化剂的表面上脱附下来(脱附过程); 6、脱附的产物分子由催化剂的孔道向外扩散到催化剂的外表面 (内扩散过程); 7、产物自催化剂的外表面扩散到流体主体(外扩散过程)。 什么是气固相催化反应本征动力学? 气固相催化反应本征动力学由如下三步构成(不包括扩散的影响):1)吸附—气相分子在催化剂表面上化学吸附形成吸附络合物。2)反应—吸附络合物之间相互反应生成产物络合物。 3)脱附—产物络合物由固体表面脱附出来。 5.3.1化学吸附与脱附 目的—由吸附、脱附速率方程求出: 1.θ~P的关系; 2.如果其为控制步骤时就认为是本正动力学速率。 一、化学吸附速率的一般表达式 A +A σ σ → θ ①组分A的吸附率(活性中心覆盖率) A

总的活性中心数 覆盖的活性中心数 被组分A A =θ 5.3—1 ②空位率V θ 总的活性中心数 心数气相分子覆盖的活性中未被 V =θ 5.3—2 设i θ为i 组分的覆盖率,则有下式: 1V i =θ+θ∑ 理论基础—表面质量作用定律:对如下的多相基元反应 dD cC bB aA +=+吸吸 反应速率r 与反应物的吸附量或覆盖度(吸附率)θ成正比,其覆盖度的指数等于相应的化学计量系数: b B a A k r θθ= 5.3—3 表面质量作用定律是理想吸附催化反应动力学的基础,它在多相催化反应动力学中的地位相当于质量作用定律在均相反应动力学中的地位。 化学吸附为何可用表面质量作用定律? —化学吸附作用为化学键力,相当于基元化学反应过程,因此可用表面质量作用定律。 对σ→σ+A A 吸附过程,吸附速率可写成: V A a 0a V A a a P )RT /E exp(k P k r θ-=θ= 5.3—4 式中:r a —吸附速率 E a —活化能

光催化剂降解有机污染物

光催化降解有机污染物 摘要:在21世纪的社会,能源与环境问题已经成为世界关注的主题,水和空气作为人类最宝贵的资源已日益受到重视。开发一种简便有效的方法来治理水体污染和大气污染是人类社会一个急需解决的问题。虽然目前已经有许多治理手段,但是光催化处理有机污染物的技术由于其价廉,无毒,节能,高效的优势逐渐成为各界人士研究的重点,光催化的研发也一跃成为当前国际热门研究领域之一。关键词:光催化,有机污染物,环境,二氧化钛 正文: 在21世纪的社会,能源与环境问题已经成为世界关注的主题,如何减少污染,保护生态平衡,解决环保问题,已经引起各政府决策部门和学术研究部门的高度重视。当今时代,我们在大力发展社会生产力,提高生活水平的同时,对环境也造成了严重的破坏,严重威胁着我们的生存。现如今,水和空气作为人类最宝贵的资源已日益受到重视。特别是随着工业进程的加快,水和空气中被排放了大量的废水、废气,其中含有大量的有毒有机化合物会在人体内富集,给人类的健康带来巨大的威胁[1-2]。而且在这些化合物中,有部分化合物用平常的处理方法很难将其降解[3]。我国学者金奇庭等人通过研究观察发现:很多的有机化合物能使厌氧微生物产生明显的毒害作用[4]。由实验结果可以看出,这些有机化合物必须通过一些其他的非生物的降解技术来除去。在我们的日常生活中,有大量的挥发性有机化合物(volatile organic compound,VOC)被排放到我们生活的环境中,不仅对环境造成了严重的破坏,而且使人类自己的健康乃至生命受到严重的威胁,例如,各种各样的的石油化工产品及会产生有毒气体的室内外装饰品、日常生活用品,特别是室内装饰经常使用的建筑材料像油漆、涂料等,这些化合物对环境造成严重的污染,对人类的健康造成严重的威害。因此,开发一种简便有效的方法来治理水体污染和大气污染是人类社会一个急需解决的问题。虽然目前已经有许多治理手段,但是光催化处理有机污染物的技术由于其价廉,无毒,节能,高效的优势逐渐成为各界人士研究的重点,光催化的研发也一跃成为当前国际热门研究领域之一。尽管纳米二氧化钛具有优良的光催化性能,但仍然有一些缺陷制约着光催化的大规模应用。主要由于其带隙较宽,导致其只能被太阳光谱中仅含有3%左右的紫外线激化,这一原因极大的限制了光催化技术的应用。目

固相反应动力学实验报告

固相反应动力学实验设计报告 一、实验具体项目 通过Na2CO3-SiO2系统的反应(Na2CO3+SiO2—→Na2SiO3+CO2↑)验证固相反应的动力学规律-金斯特林格方程。通过作图计算出反应的速度常数和反应的表观活化能。 二、实验方法 TG法。现代热重分析仪与微分装置连用,可同时得到TG-DTG 曲线,即得到固相反应系统的重量变化与时间的关系。 三、实验仪器和药品 Q600-SDT差示扫描量热/热重(DSC/TGA)同步热分析仪、铂金坩埚一只、不锈钢镊子两把、Na2CO3一瓶、SiO2一瓶(均为A·R级) 四、实验步骤 1、样品制备 将Na2CO3和SiO2分别在玛瑙研钵中研细,过250目筛。SiO2的筛下料在空气中加热至800℃,保温5h,Na2CO3筛下料在200℃烘箱中保温4h。把上述处理好的原料按Na2CO3:SiO2=1:1摩尔比配料,混合均匀,烘干,放入干燥器内备用。

2、测试步骤 1).检查周围环境及仪器状态:要求室内环境温度为23±5℃。在SDT和控制器之间进行所有必要的电缆连接,连接所有气体线路,检查并接通各个装置的电源,将控制器连接到仪器,熟悉控制器的操作,如果有必要,请校准SDT。 2).设置净化气体:主净化气体应该限制为常用的、最好是N2、Ar等惰性气体。推荐的流量设置为100ml/min。辅助净化气体主要为引入更具反应性的气体,其流速通常低于主净化气体,推荐的流量设置为20ml/min。 3).设定所需的SDT模式及要保存的信号(热流、重量或Delta/T)等。 4).选择并准备样品。包括准备一个适当大小的样品并将其放到测杯中。 5).记录数据:反应时间:t(min);坩埚与样品重量W1(g);CO2累计失重量W2(g);Na2CO3转化率G:[1-?G-(1-G)2/3]=Kkt Na2CO3~SiO2系统固相反应实验数据记录 反应时间t/min 初始质 量/mg 热重热重差 (CO2累计 失重量 W2/mg) NaCO3转化率 G/% D3=[1-(1-G)^ (1/3)]^2 D4=1-2/3G-(1-G)^(2/3) 0 9 0.62213 0 0 0 0 5 0.7553 6 0.13324 0.075494848 0.000666995 0.00065551 7 10 0.85410 0.23196 0.131487919 0.002107219 0.002042723 15 0.9795 8 0.35740 0.202621924 0.005284926 0.00502879 9 20 0.99389 0.37172 0.210742468 0.005754168 0.005463178 25 1.07849 0.45638 0.258717078 0.009019987 0.008448859

气固相催化反应宏观动力学

气固相催化反应宏观动力学 化学反应工程主要研究化学反应器的原理,研究物理因素对化学反应的影响,以研究反应动力学为主要内容,并据此进行工业反应器的设计及放大。工业中,气固相催化反应十分常见,如SO 2催化氧化、H 2和CO 低压合成甲醇、由乙炔合成醋酸乙烯等,所以气固相催化反应的宏观动力学是教学重点。但气固相催化反应宏观动力学这部分的知识较难理解,公式复杂,反应速率表达形式多,我们在教学过程中很难理解和掌握。以下就这部分知识进行说明和分析。 反应动力学有本征动力学和宏观动力学之分。在气固相催化反应中,反应发生在固体催化剂的内表面,完整的反应步骤有:反应物从气相主体扩散,穿过颗粒外气膜滞流层,达到颗粒外表面;反应物从颗粒外表面沿微孔向颗粒内表面扩散;反应物被催化剂颗粒内表面的活性中心吸附;被吸附的反应物在内表面上发生化学反应;产物由内表面上脱附;产物由微孔内向颗粒外表面扩散;产物由外表面穿过气膜层向气流主体扩散。因此,完整的反应包含了颗粒外的气相扩散、颗粒内的气相扩散和表面催化反应过程。而扩散现象的存在必然会对反应速率造成影响。外扩散是纯传质的物理过程,内扩散与表面催化反应是同时进行的,所有又称“内扩散-反应过程”。如仅研究表面反应过程,即排除内、外扩散影响下的催化剂表面与所接触的气体间的反应情况的动力学,则为本征动力学。而将所有扩散影响考虑在内的情况,则为宏观动力学。宏观反应速率不仅和化学反应本征反应速率有关,而且与过程的扩散速率有关。如当外扩散为控制步骤时,反应的宏观速率就仅取决于传质扩散速率。 1、反应速率的表达及反应速率常数间的相互关系 对气固相催化反应,反应速率的表达可以用体积反应速率、表面积反应速率或质量反应速率,即反应区可以用不同的基准,相应地化学反应速率常数的基准也有很多。 体积反应速率的表达为:dV dF r i i v ±= (1) 式中反应区体积可以指催化剂颗粒床层的堆体积,或者是床层中催化剂颗粒的体积。催化剂床层的堆体积V B 与床层中催化剂颗粒的体积V 、床层中催化剂颗粒的内表面积S 、床层中催化剂颗粒的质量W 存在如下的关系。

相关文档
最新文档