平稳时间序列模型的建立

平稳时间序列模型的建立
平稳时间序列模型的建立

-0.8

-0.6-0.4-0.20.00.20.40.60.82

4

6

8

10

12

14

-0.8

-0.6-0.4-0.20.0

0.20.40.60.82

4

6

8

10

12

14

第四章 平稳时间序列模型的建立

本章讨论平稳时间序列的建模问题,也就是从观测到的有限样本数据出发,通过模型的识别、模型的定阶、参数估计和诊断校验等步骤,建立起适合的序列模型。学习重点为模型的识别和模型的检验。

第一节 模型识别

一、 识别依据

模型识别主要是依据SACF 和SPACF 的拖尾性与截尾性来完成。常见的一些ARMA 类型的SACF 和SPACF 的统计特征在下表中列出,可供建模时,进行对照选择。

表 ARIMA 过程与其自相关函数偏自相关函数特征

模 型 自相关函数特征 偏自相关函数特征 ARIMA(1,1,1)

? x t = ?1? x t -1 + u t + θ1u t -1 缓慢地线性衰减

AR (1) x t = ?1 x t -1 + u t

若?1 > 0,平滑地指数衰减

若?1 < 0,正负交替地指数衰减

-0.8

-0.6-0.4-0.20.00.20.40.60.82

4

6

8

10

12

14

若?11 > 0,k =1时有正峰值然后截尾

若?11 < 0,k =1时有负峰值然后截尾

-0.8

-0.6-0.4-0.20.00.20.40.60.82

4

6

8

10

12

14

MA (1) x t = u t + θ1 u t -1

若θ1 > 0,k =1时有正峰值然后截尾

若θ1 > 0,交替式指数衰减

-1.0

-0.5

0.0

0.5

1.02

4

6

8

10

12

14

-1.0

-0.5

0.0

0.5

1.0

2

4

6

8

10

12

14

-0.8

-0.6-0.4-0.20.00.20.40.60.82

4

6

8

10

12

14

若θ1 < 0,k =1时有负峰值然后截尾

-0.8

-0.6-0.4-0.20.00.20.40.60.82

4

6

8

10

12

14

-0.8

-0.6

-0.4-0.20.00.20.40.60.82

4

6

8

10

12

14

若θ1 < 0,负的平滑式指数衰减

-0.8

-0.6

-0.4-0.20.00.20.40.60.82

4

6

8

10

12

14

AR (2)

x t = ?1 x t -1 + ?2 x t -2 + u t

指数或正弦衰减

-0.8

-0.6-0.4-0.20.00.20.40.60.82

4

6

8

10

12

14

(两个特征根为实根)

-0.8

-0.6-0.4-0.20.00.20.40.60.82

4

6

8

10

12

14

(两个特征根为共轭复根)

k =1, 2时有两个峰值然后截尾

-0.8

-0.6-0.4-0.20.00.20.40.60.82

4

6

8

10

12

14

(?1 > 0,?2 > 0)

-0.8

-0.6-0.4-0.20.00.20.40.60.82468101214

(?1 > 0,?2 < 0) MA (2)

x t = u t + θ1 u t -1+ θ2 u t -2

k =1, 2有两个峰值然后截尾

-0.8

-0.6-0.4-0.20.00.20.40.60.82

4

6

8

10

12

14

(θ1 > 0,θ2 < 0)

-0.8

-0.6-0.4-0.20.00.20.40.60.82

4

6

8

10

12

14

(θ1 > 0,θ2 > 0)

指数或正弦衰减

-0.8

-0.6-0.4-0.20.00.20.40.60.82

4

6

8

10

12

14

(θ1 > 0,θ2 < 0)

-0.8

-0.6-0.4-0.20.00.20.40.60.82468101214

(θ1 > 0,θ2 > 0)

ARMA (1,1) x t = ?1 x t -1 + u t + θ1 u t -1

k =1有峰值然后按指数衰减

-0.50.00.5

1.024******** k =1有峰值然后按指数衰减

-0.5

0.0

0.5

1.024********

(?1 > 0,θ1 > 0)

-0.8

-0.6-0.4-0.20.00.20.40.60.82

4

6

8

10

12

14

(?1 > 0,θ1 < 0)

(?1 > 0,θ1 > 0)

-0.8

-0.6-0.4-0.20.00.20.40.60.82

4

6

8

10

12

14

(?1 > 0,θ1 < 0)

ARMA (2,1)

x t = ?1 x t -1+ ?2 x t -2+ u t + θ1 u t -1

k =1有峰值然后按指数或正弦衰减

-0.8

-0.6-0.4-0.20.00.20.40.60.82

4

6

8

10

12

14

(?1 > 0,?2 < 0,θ1 > 0)

k =1, 2有两个峰值然后按指数衰减

-0.8

-0.6-0.4-0.20.00.20.40.60.82

4

6

8

10

12

14

(?1 > 0,?2 < 0,θ1 > 0) ARMA (1,2)

x t = ?1 x t -1+ u t + θ1 u t -1+ θ2 u t -2

k =1, 2有两个峰值然后按指数衰减

-0.8

-0.6-0.4-0.20.00.20.40.60.82

4

6

8

10

12

14

(?1 > 0,θ1 > 0,θ2 < 0)

-0.8

-0.6-0.4-0.20.00.20.40.60.81.02

4

6

8

10

12

14

(?1 > 0,θ1 > 0,θ2 >0)

k =1有峰值然后按指数或正弦衰减

-0.8

-0.6-0.4-0.20.00.20.40.60.82

4

6

8

10

12

14

(?1 > 0,θ1 > 0,θ2 < 0)

-0.8

-0.6-0.4-0.20.00.20.40.60.81.02

4

6

8

10

12

14

(?1 > 0,θ1 > 0,θ2 > 0)

ARMA (2,2)

x t =?1x t -1+?2x t -2+ u t +θ1u t -1+θ2u t -2 k =1, 2有两个峰值然后按指数或正弦

衰减

-0.6

-0.4-0.20.00.20.40.62

4

6

8

10

12

14

(?1 > 0,?2 < 0,θ1 > 0,θ2 < 0)

-0.8

-0.6-0.4-0.20.00.20.40.60.82

4

6

8

10

12

14

(?1 > 0,?2 < 0,θ1 > 0,θ2 > 0) k =1, 2有两个峰值然后按指数或正弦衰减

-0.8

-0.6-0.4-0.20.00.20.40.60.82

4

6

8

10

12

14

(?1 > 0,?2 < 0,θ1 > 0,θ2 < 0)

-0.8

-0.40.00.4

0.8

2

4

6

8

10

12

14

(?1 > 0,?2 < 0,θ1 > 0,θ2 > 0)

二、 拖尾性与截尾性的判定

理论上,对于MA(q)过程,其自相关函数k ρ在q 步之后全部为零,实际上并非如此,因为?k ρ

为样本

数据的估计值。同样地,偏自相关函数?kk

φ也存在类似的问题。 判定k ρ在m 步之后截尾的做法是:

))21(1

,0(~?1

2∑=+m

l l k N N ρρ

?%3.68)?21(1?12=???

?

????+≤∑=m

l l k N P ρρ

%5.95)?21(2?12

=???

?

???

?+≤∑=m

l l

k N P ρρ

实际判断时,以频率代概率。 判定kk φ在n 步之后截尾的做法是:

)1

,0(~?N

N kk

φ ?%3.681?=??????≤N P kk φ

%5.952?

=?????

?≤N P kk φ

实际判断时,以频率代概率。 拖尾:即被负指数控制收敛于零。

三、 实例

【例4-1】现有磨轮资料250个,试判断该数据的零均值及平稳性。 1.时间序列趋势图

16

12

8

4

-4

50100150200250

X

2.零均值化后的图形

8

4

-4

-8

-12

50100150200250

Y

3.ACF与PACF图形

ACF

-0.2

-0.100.10.20.30.40.50.60.7123456789101112131415

PACF

-0.3

-0.2-0.100.10.20.30.40.50.60.71

2

3

4

5

6

7

8

9

10

11

12

13

14

15

第二节 模型定阶

一、 残差方差图法

基本思想:以AR 模型为例。对于时间序列}{t x ,如果其合理(真正的)阶数为p ,当我们用一个小

于p 的值为阶数去拟合它,所得到的剩余平方和必然偏大,2?σ

1

将比真正模型的2

σ大。原因在于它把模型

中原本有的一些高阶项给省略了,而这些项的存在对减小残差的方差是有明显贡献的。反之,如果我们用

一个大于p 的值作为阶数去拟合它(过度拟合),虽然剩余平方和减少,但已不明显,这时2

?σ可能还会增大。因此,我们可以用一系列阶数逐渐递增的模型对}{t x 进行拟合,每次都求出2

?σ,作出阶数n 和残差方差2

的图形,进行判断。 这种方法直观简单,但没有量的准则,具有主观性。

二、 自相关函数(ACF )和偏自相关函数(PACF )定阶法

它们不仅可以用来识别模型,而且还可以用来确定模型的阶。

三、 F 检验定阶法

基本思想:首先用ARMA(n,m)对}{t x 进行过度拟合,再令m n θφ,为零,用F 检验判定阶数降低之后的模型ARMA(n-1,m-1)与ARMA(n,m)之间是否存在显著性差异。如果有显著性差异,阶数能够升高;如果没有差异,阶数可以降低。

四、 最佳准则函数定阶法

最佳准则函数法,是构造一个准则函数,该函数既要考虑用某一模型对原始数据拟合的接近程度(残差的大小),同时又要考虑模型中所含待定参数的个数。建模时,根据函数的取值确定模型优劣,使准则函数值达到最小的模型是最佳模型。

准则函数法是日本学者赤池弘次(Akaike)最先提出。主要有FPE 准则,AIC 准则,BIC 准则,SC 准则。

1.

FPE 准则

1

k

N e

e -'=2?σ

,不仅受剩余平方和的影响,而且还受自由度的影响。

基本思想:根据模型的预报误差来判断自回归模型的阶数是否恰当,合理的阶数应该能够使得模型的最终预报误差最小。

基本理论:对于)(n AR 模型,时间序列{}t x 的一步预报误差的方差为:221

)/1()]1(?[σN n X X E t t +≈--,而

N

n /1?2-σ是2σ的无偏估计,于是

2221

?)/1()]1(?[σσn

N n N N n X X E t t -+=+≈-- (1) (1)中第一个因子n

N n

N -+,随着阶数的增加而增加;第二个因子2?σ

随着阶数的增加而减少。因此它实质上就是一个最佳准则函数。该最佳准则函数还可写成:

)()1)(1()(1

01

∑=---+=n i i i N n N n n FPE γ?γ2

基本操作:按照从低阶到高阶的方式建立AR 模型,并计算出相应的FPE 的值,从中选择最小的FPE 对应的n 作为模型的阶,即)(min )(0n FPE n FPE n

=。

2. AIC 准则(Akaike Information Criterion )

基本思想:建立模型时,根据准则函数取值来判断模型的优劣,使准则函数达到极小的是最佳模型,该准则是在模型极大似然估计的基础上建立起来的。

基本理论:最小信息准则AIC 函数的一般形式:

)()ln(2模型独立参数的个数模型的极大似然度+-=AIC (2)

在(2)式中“模型极大似然度”一般用似然函数表示,设样本长度N 充分大时,ARMA 模型得到近

似极大似然估计β

?的对数似然函数为: 2?ln 2?2)?(?ln 2ln 222N N S N L +=+≈σσ

βσ3 (3)

由于(3)中第二项与模型及参数个数无关,可以舍弃。于是得到采用ARMA (n,m )模型拟合的AIC 准则函数:

)1(2?ln ),(2+++=m n N m n AIC σ

4 (4) 使得AIC 信息量取值最小的n 和m ,即是模型理想的阶。由(4)可以看出AIC 信息量由两部分构成:前一部分体现模型的拟合好坏,后一部分表明模型参数的多少。显然我们希望模型拟合得越精确真好,但

2 详见教材中P103的证明。

3

详细的证明,参见顾岚:《时间序列分析——在经济中的应用》,中国统计出版社,1994年2月。 4 在EVIEWS 软件中的定义与此不同。

过高的精度要求又会导致参数的增多及模型的复杂,可能反而影响模型的拟合效果,因此,实质上,它就是对拟合精度和参数个数二者加以适当权重。可以想象,当模型中参数个数K 由少至多增加时,拟合误差改进显著,(4)中第一项起主要作用,AIC 明显下降;随着模型阶数增加,模型拟合残差改进甚微,AIC 上升。AIC 的最小值处对应着最佳模型的阶数。

3. BIC 准则

AIC 准则为时间序列模型定阶带来了许多方便,但AIC 准则也有不足之处。从理论上已证明了AIC 准则不能给出模型阶数的相容估计,即当样本趋于无穷大时,由AIC 准则选择的模型阶数不能收敛到其真值(通常比真值高)。Akaike 于1976年提出了BIC 准则弥补了AIC 准则的不足。

定义:N K K N K BIC ln )(?ln )(2+=σ

,其中K 是模型的自由参数个数,对于ARMA(n,m)模型,1++=m n K 。

从理论上已证明,BIC 准则确定的模型阶数是真实阶数的相容估计。

若)(min )()

(0

K BIC K BIC N M K ∈=',则0K '是要选择的最佳阶数。 注:①0

K '与0K 的关系见图,用AIC 准则往往比用BIC 准则确定的阶数高。

②我们还可以定义其它类型的准则函数,如

)ln(ln )(?ln )(21N CK K N K BIC +=σ

(5) 其中C 是选定的常数。定义不同的准则函数是为了对拟合残差与参数个数之间进行不同的权衡,以体现使用者对于二者重要性的不同侧重。当然,对于同一数据序列使用不同准则挑选的最优模型不同,其渐近性质也不同。

③在实际问题中,相应于不同阶数的准则函数值往往不是理想的下凸函数,而是总的趋势符合下凸函数变化规律,同时有随机起伏,有时可能出现准则函数下降到某值后,没有明显的增长趋势,而是随机的起伏摆动。遇到这种情形,如果适当地增大(5)中常数系数C 的值,可以使准则函数在后一段有明显的2?ln σ

N K N ?ln

K ?2

K

K 0/

K 0

增长趋势。

五、实例

【例4-2】沿用例4-1中的数据,进行模型的定阶。

第三节 参数估计

一、 矩估计

1.自回归模型的参数估计:采用YULE-WALK 方程

??

????

?+++=+++=+++=----0

22112

22112112011ρφρφρφρρφρφρφρρφρφρφρkk k k k k k k kk k k k kk k k ΛM ΛΛ (1) 2.移动平均模型的参数估计:

??

?

??>≤≤+++-==+++==-++m

k m k k k m k k k k m k 01)(0

)1(2

11122

210σθθθθθγσθθγγΛΛ5 (2) (1)直接解法 (2)线性迭代法 (3)牛顿-拉普森算法6

3.自回归移动平均模型的参数估计:

将模型分成两个部分,先对AR 部分应用YULE-WALK 方程,计算得到剩余序列,对剩余序列应用MA 模型的参数估计方法。

二、 最小二乘估计(LS )

1.线性最小二乘估计

2.非线性最小二乘估计:高斯-牛顿法;最速下降法;

三、 极大似然估计(ML )

对于时间序列模型,一般采用极大似然法估计参数。对于一组相互独立的随机变量x t ,(t = 1, 2, …, T ),当得到一个样本 (x 1, x 2, …, x T ) 时,似然函数可表示为

L ( | x 1, x 2, …, x T ) = f (x 1|

) f (x 2|

) … f (x T |

) =

∏=T

t t

x

f 1

(| ) (1)

其中 =(γ1, γ2, …, γk )是一组未知参数。对数似然函数是

5

可采用:直接法、迭代法、牛顿-拉普森算法。 6 详见顾岚:《时间序列分析在经济中的应用》,中国统计出版社,P120。

log L = ∑=T

t log 1

f (x t

|

),

通过选择

使上式达到最大,从而求的极大似然估计值 γ?。具体步骤是用上述对数似然函数对每个未知

参数求偏导数并令其为零,即

1

log γ??L

= 0, :

k

L

γ??log = 0, (k 个方程联立) 一般来说似然函数是非线性的,必须采用迭代计算的方法求参数的极大似然估计值。极大似然估计量 (MLE) 具有一致性和渐近有效性。

现在讨论怎样对时间序列模型的参数进行极大似然估计。

对于非平稳过程y t ,假定经过d 次差分之后可以表达为一个平稳、可逆的自回归移动平均过程x t ,

Φ (L ) ?d y t = Φ (L ) x t = Θ (L ) u t . (2)

对于y t 假定可以观测到T + d 个观测值,即y - d +1, …, y 0, y 1, …, y T ,则经过d 次差分之后, x t 的样本容量为T 。 以 {x 1, …, x T }为样本估计ARMA (p , q ) 模型参数 (

1, …, φp , θ1, …, θq )。

对随机过程{x t }的参数

估计就如对回归模型的参数估计一样,目的是使x t 与其拟合值t x

?的残差平方和

∑-t

t t

x

x

2)?(= ∑

t

t u

2?. 最小。把 (2) 式改写为 u t =

t x L L )

()

(ΘΦ . (3) 若用i φ?,i

θ?和t u ?分别表示对i ,

i 和u t 的估计,则使下式最小。

∑t

t

u 2

?

= S (1?φ, …, p φ?, 1?θ, …, q

θ?) (4) 假定u t

N (0, σu 2), t = 1, … T ,且不存在自相关,则条件对数似然函数为

log L = -T log σu -

2

2

2?

u t

t

u σ∑ (5)

之所以称之为条件对数似然函数是因为

∑2

?

t

u 依赖于过去的不可知观测值x 0, x -1, …, x - p +1和u 0, u -1, …, u - q

+1。比如

u 1 = x 1 - φ1 x 0 - φ2 x -1 - … - φp x -p +1 - θ1u 0 - …- θq u - q +1. (6)

应用时间序列分析习题答案解析整理

第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列 LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 解:1()0.7()()t t t E x E x E ε-=?+ 0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01( t t t B B B x εε)7.07.01()7.01(221Λ+++=-=- 229608.149 .011 )(εεσσ=-= t x Var 49.00212==ρφρ 022=φ 3.2 解:对于AR (2)模型: ?? ?=+=+==+=+=-3.05 .02110211212112011φρφρφρφρρφφρφρφρ 解得:???==15/115 /72 1φφ 3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E 原模型可变为:t t t t x x x ε+-=--2115.08.0 2212122 ) 1)(1)(1(1)(σφφφφφφ-+--+-= t x Var 2) 15.08.01)(15.08.01)(15.01() 15.01(σ+++--+= =1.98232σ ?????=+==+==-=2209.04066.06957.0)1/(1221302112211ρφρφρρφρφρφφρ ?? ? ??=-====015.06957.033222111φφφρφ

平稳时间序列的模型

目录 摘要 (1) 第一章绪论 (2) 1.1 时间序列模型的发展及其作用 (2) 1.2 什么是时间序列模型 (2) 1.3 本文研究的主要方法和手段 (2) 1.4 本文主要研究思路及内容安排 (2) 第二章 ARMA模型 (4) 2.1 ARMA模型的基本原理 (4) 2.2 样本自协方差函数、自相关函数和偏相关函数 (4) 2.3 ARMA模型识别方法 (5) 2.4 模型参数估计 (6) 第三章实例分析 (7) 3.1 题目 (7) 3.2 问题分析 (7) 3.3 问题求解 (8) 3.3.1数据的观测 (8) 3.3.2数据处理 (8) 3.3.3求解自相关和偏相关函数 (8) 3.4 模型的识别及求解 (9) 3.5 结论 (11) 参考文献 (12) 附录 (12) 评阅书 (15)

《随机过程》课程设计任务书

摘要 ARMA模型是研究时间序列的重要方法,由自回归模型(简称AR模型)与滑动平均模型(简称MA模型)为基础“混合”构成。ARMA模型广泛应用在经济、工程等各个领域得益于其在具体预测方面的优势。在许多方面用该模型所作出的预测比其他传统经济计量方法更加精确。平稳时间序列模型主要有自回归模型(AR)、滑动平均模型(MA)和自回归滑动平均模型(ARMA)等,这些线性模型考虑因素较简单。自回归滑动平均模型(ARMA)计算简单,易于实时更新数据。 本文描述了ARMA模型的原理、自相关函数和偏相关函数的计算过程、模型的识别方法以及ARMA模型的计算过程。并给出一组平稳时间序列的数据,对数据进行分析和处理,求出自相关系数和偏相关,并利用MATLAB软件画出自相关系数和偏相关图形,有图可知它们都是拖尾的,因此可以确定是) ARMA模 p , (q 型。接下来就是确定) ARMA的阶数,本文采用了AIC准则确定模型的阶数, p , (q 在实际问题中,为使线性模型简单起见,通常p与q的数值被取得较小,却需都不为零。确定阶数后,就用我们学过的求解方法解出未知的参数,这样我们就得到了混合模型的表达式。 关键字:) ARMA模型,自相关函数,偏相关函数 p , (q

时间序列分析基于R——习题答案

第一章习题答案 略 第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 ()0t E x =,2 1 () 1.9610.7 t Var x ==-,220.70.49ρ==,220φ= 3.2 1715φ=,2115 φ= 3.3 ()0t E x =,10.15 () 1.98(10.15)(10.80.15)(10.80.15) t Var x += =--+++ 10.8 0.7010.15 ρ= =+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-= 1110.70φρ==,2220.15φφ==-,330φ= 3.4 10c -<<, 1121,1,2 k k k c c k ρρρρ--?=? -??=+≥? 3.5 证明: 该序列的特征方程为:32 --c 0c λλλ+=,解该特征方程得三个特征根: 11λ=,2c λ=3c λ=-

平稳时间序列模型的建立

-0.8 -0.6-0.4-0.20.00.20.40.60.82 4 6 8 10 12 14 -0.8 -0.6-0.4-0.20.0 0.20.40.60.82 4 6 8 10 12 14 第四章 平稳时间序列模型的建立 本章讨论平稳时间序列的建模问题,也就是从观测到的有限样本数据出发,通过模型的识别、模型的定阶、参数估计和诊断校验等步骤,建立起适合的序列模型。学习重点为模型的识别和模型的检验。 第一节 模型识别 一、 识别依据 模型识别主要是依据SACF 和SPACF 的拖尾性与截尾性来完成。常见的一些ARMA 类型的SACF 和SPACF 的统计特征在下表中列出,可供建模时,进行对照选择。 表 ARIMA 过程与其自相关函数偏自相关函数特征 模 型 自相关函数特征 偏自相关函数特征 ARIMA(1,1,1) ? x t = ?1? x t -1 + u t + θ1u t -1 缓慢地线性衰减 AR (1) x t = ?1 x t -1 + u t 若?1 > 0,平滑地指数衰减 若?1 < 0,正负交替地指数衰减 -0.8 -0.6-0.4-0.20.00.20.40.60.82 4 6 8 10 12 14 若?11 > 0,k =1时有正峰值然后截尾 若?11 < 0,k =1时有负峰值然后截尾 -0.8 -0.6-0.4-0.20.00.20.40.60.82 4 6 8 10 12 14 MA (1) x t = u t + θ1 u t -1 若θ1 > 0,k =1时有正峰值然后截尾 若θ1 > 0,交替式指数衰减 -1.0 -0.5 0.0 0.5 1.02 4 6 8 10 12 14 -1.0 -0.5 0.0 0.5 1.0 2 4 6 8 10 12 14

典型时间序列模型分析

实验1典型时间序列模型分析 1、实验目的 熟悉三种典型的时间序列模型: AR 模型,MA 模型与ARMA 模型,学会运用Matlab 工具对 对上述三种模型进行统计特性分析,通过对2阶模型的仿真分析,探讨几种模型的适用范围, 并且通过实验分析理论分析与实验结果之间的差异。 2、实验原理 AR 模型分析: 设有AR(2)模型, X( n)=-0.3X( n-1)-0.5X( n-2)+W( n) 其中:W(n)是零均值正态白噪声,方差为 4。 (1 )用MATLAB 模拟产生X(n)的500观测点的样本函数,并绘出波形 (2) 用产生的500个观测点估计X(n)的均值和方差 (3) 画出理论的功率谱 (4) 估计X(n)的相关函数和功率谱 【分析】给定二阶的 AR 过程,可以用递推公式得出最终的输出序列。或者按照一个白噪声 通过线性系统的方式得到,这个系统的传递函数为: 这是一个全极点的滤波器,具有无限长的冲激响应。 对于功率谱,可以这样得到, 可以看出, FX w 完全由两个极点位置决定。 对于AR 模型的自相关函数,有下面的公式: \(0) 打⑴ 匚⑴… ^(0) ■ 1' G 2 W 0 JAP) 人9-1)… 凉0) _ 这称为Yule-Walker 方程,当相关长度大于 p 时,由递推式求出: r (r) + -1) + -■ + (7r - JJ )= 0 这样,就可以求出理论的 AR 模型的自相关序列。 H(z) 二 1 1 0.3z , P x w +W 1 1 a 才 a 2z^

1. 产生样本函数,并画出波形 2. 题目中的AR过程相当于一个零均值正态白噪声通过线性系统后的输出,可以按照上面的方法进行描述。 clear all; b=[1]; a=[1 0.3 0.5]; % 由描述的差分方程,得到系统传递函数 h=impz(b,a,20); % 得到系统的单位冲激函数,在20点处已经可以认为值是0 randn('state',0); w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为 2 x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的2阶AR过程 plot(x,'r'); ylabel('x(n)'); title(' 邹先雄——产生的AR随机序列'); grid on; 得到的输出序列波形为: 邹先雄——产生的AR随机序列 2. 估计均值和方差 可以首先计算出理论输出的均值和方差,得到m x =0 ,对于方差可以先求出理论自相 关输出,然后取零点的值。

时间序列分析基于R——习题答案

第一章习题答案 第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 Au+ocorreliil. i ons Correlation -1 M 7 6 5 4 3 2 1 0 I ; 3 4 5 6 7 9 9 1 1.00000■Hi ■ K. B H,J B ik L L1■* J.1 jA1-.IM L L* rn^rp ■ i>i?iTwin H'iTiii M[lrp i,*nfr 'TirjlvTilT'1 iBrp O.7QOO0■ill. Ii ill ■ _.ill?L■ ill iL si ill .la11 ■ fall■ 1 ■ rpTirp Tp和阳申■丽轉■晒?|?卉(ft 0.41212■强:料榊<牌■ 0.14343'■讯榊* -.07078■ -.25758, WWHOHHf ■ -.375761 marks two 总t and&rd errors 2.2 (1) 非平稳,时序图如下 (2) - ( 3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

Ctorrelat ion LOOOOO n.A'7F1 0.72171 0.51252 Q,34982 0.24600 0.20309 0.?1021 0.26429 0.36433 0.49472 0.58456 0.60198 0.51841 Q ?菲晡 日 0.20671 0.0013& -,03243 -.02710 Q.01124 0,08275 0.17011 Autocorrel at ions raarka two standard errors 2.3 (1) 自相关系数为: 0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2 )平稳序列 (3) 白噪声序列 2.4 LB=4.83 , LB 统计量对应的分位点为 0.9634 , P 值为0.0363。显著性水平 :-=0.05,序列 不能视为纯随机序列。 2.5 (1) 时序图与样本自相关图如下 AuEocorreI ati ons 弗卅制iti 电卅栅冷卅樹 側樹 榊 惟 1 ■ liihCidi iliihQriHi il>LljU_nll Hnlidiili Hialli iT ,, T^,, T^s ?T* iTijTirr ,^T 1 IT * -i> ■> - ■ ■ *畑** ? ■ ■ 耶曲邯 ? ■ ■ ■ >|{和怦I {册卅KHi 笊出恸 mrpmrp 山!rpEHi erp . 卑*寧* a 1 *

时间序列模型的构建和预测

时间序列模型的构建和预测 Box Jenkins Methodology) 步骤1:识别。观察相关图和偏相关图 步骤2:估计。估计模型中所包含的自回归系数和移动平均系数,可以用OLS 来估计 步骤3:诊断检验。选一个最适合数据的模型,检查从这模型中估计到的残差是否白噪声,如果不是的话,我们必须从头来过 步骤 4 :预测。在很多情况下,这种方法得到的预测结果要比其它计量模型得到的要准确 识别 检查时间序列是否平稳 - 如果自相关函数衰退的很慢,则序列可能是非平稳 - 如果时间序列为一非平稳过程,应该运用差分的形式使它变为平稳过程 - 在检验了一个时间序列的平稳性之后,我们应该用相

关图和偏相关图检验ARMA模型中的阶数p和q 模型 ARIMA(1,1,1) .■: x t = ■ 1. x t-1 + u t + ru t-1 自相关函数特征 缓慢地线性衰减 1.0 偏自相关函数特征 AR( 1) x t = -1 X t-1 + u t 右;1 > 0,平滑地指数衰减若-11 > 0,k=1时有正峰值然后截尾 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 2 - 4 6 - 8 10 12 ?14 MA ( 1) X t = U t + 71 U t- 1 AR( 2) x t = ;1 x t-1 + 2 X t-2 + u t 若;i < 0,正负交替地指数衰减 0.8 若71 > 0,k=1时有正峰值然后截尾 若71 < 0,k=1时有负峰值然后截尾 指数或正弦衰减 若-11 < 0,k=1时有负峰值然后截尾 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 若?冷> 0,交替式指数衰减 0.8 若3<0,负的平滑式指数衰减 k=1,2时有两个峰值然后截尾

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事! Long long ago,有多long估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。

好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。 2、统计时序分析 (1)频域分析方法 原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动 发展过程: 1)早期的频域分析方法借助富里埃分析从频率的角度揭示时间序列的规律 2)后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数 3)20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶段 特点:非常有用的动态数据分析方法,但是由于分析方法复杂,结果抽象,有一定的使用局限性 (2)时域分析方法

基于时间序列模型的中国GDP增长预测分析

第33卷 第178期2012年7月 财经理论与实践(双月刊) THE THEORY AND PRACTICE OF FINANCE AND ECONOMICS Vol.33 No.178 Jul. 2012 ·信息与统计· 基于时间序列模型的中国GDP增长预测分析 何新易 (南通大学商学院,江苏南通 226019)* 摘 要:作为度量一个国家或地区所有常住单位在一定时期之内所生产和所提供的最终产品或服务的重要总量指标,如果能够对GDP做出正确的预测,必然可以有效引导宏观经济健康发展,为高层管理部门提供决策依据。选用适合短期预测的ARIMA模型对中国1952~2010年的GDP进行计量建模分析,预测结果认为未来五年中国的经济增长仍将处于一个水平较高的上升通道。 关键词:时间序列模型;GDP;预测 中图分类号:F234 文献标识码: A 文章编号:1003-7217(2012)04-0096-04 一、引 言 作为度量一个国家或地区所有常住单位在一定时期之内所生产和所提供的最终产品或服务的重要总量指标,国内生产总值(Gross Domestic Product,GDP)对于判断经济态势运行、衡量经济综合实力、正确制定经济政策等诸多方面,以及在经济研究实际工作中,均起着不可替代的重要作用。 熊志斌(2011)深入分析了时间序列模型与神经网络(NN)模型的优势和劣势,按照两种模型的预测特性,在比较的基础之上,分别构建了ARIMA模型和NN模型,并根据一定算法对两种模型进行了集成。将GDP时间序列的数据结构,根据在非线性空间和线性空间的预测优势,进一步分解为线性非线性残差和自相关主体两部分,即首先用ARIMA分析技术构建线性主体模型,然后用NN模型估计非线性残差,再对序列的整个预测结果进行最终集成。仿真实证结果表明:与单一模型相比,集成模型的预测准确率显著提高,进行GDP预测当然使用集成模型更为有效[1]。桂文林和韩兆洲(2011)认为由于迄今为止,包括季度GDP在内的经季节调整之后的经济数据,中国政府尚未进行公布,不但无法进行国际之间的横向比较,也不利于监测中国宏观经济态势。本文运用1996年第1季度至2009年第4季度的中国实际GDP数据,构建了状态空间模型,使用卡尔曼滤波迭代算法对季节调整模型状态向量的 各分量,进行了最优平滑、预测和估计,并使用极大似然方法估计了超参数。经过对GDP的主要季节和趋势特征的分析,计算出了环比增长率指标来监测和分析经济走势,并与国际通用的TRAMO-SEATS季节调整模型进行了对比,以便鉴别趋势拐点,制定相关的经济政策[2]。高帆(2010)运用1952~2008年的上海GDP增长率数据,实证研究其内在变动机制,将GDP增长率分解为纯生产率效应、纯劳动投入效应、纯生产结构效应、纯劳动结构效应,并分析了这四种效应之间的交互影响。结果表明:在上海GDP增长率提高的四种效应之中,纯生产率效应起到了关键作用。上海GDP增长率自1978年改革开放之后,在整体上对纯生产率效应的依赖度趋于增强。在1978~1989年期间,纯劳动结构效应是GDP增长的主要因素,由于市场化改革的进一步加大,劳动力跨部门流转在很大程度上得以实现。在1990~2008年期间,纯生产率效应是GDP增长的主要因素,正是由于在此历史阶段,由于资本深化进一步加速,从而有效提高了部门劳动生产率。基于实证的研究结论,可以针对性地制定出今后上海市经济实现持续增长的若干宏观政策[3]。腾格尔和何跃(2010)利用中国季度GDP数据分别构建了ARIMA和ARCH模型,同时利用GMDH自组织方法尝试建模,经过Bon-ferroni-Dunn检验,表明与单一模型相比,组合模型的拟合能力更强。研究表明,基于GMDH组合的GDP模 *收稿日期: 2012-02-12 作者简介: 何新易(1966—),男,湖北武汉人,南通大学商学院副教授,经济学博士,研究方向:宏观国民经济问题、中国企业集团融资和投资。

实验十时间序列模型

实验十时间序列模型 10.1 实验目的 掌握时间序列的基本理论,时间序列模型种类的识别、估计、诊断和预测方法,以及相应的EViews软件操作方法。 10.2 实验原理 时间序列分析方法由Box-Jenkins (1976) 年提出。它适用于各种领域的时间序列分析。 时间序列模型不同于经济计量模型的两个特点是: (1)这种建模方法不以经济理论为依据,而是依据变量自身的变化规律,利用外推机制描述时间序列的变化。 (2)明确考虑时间序列的非平稳性。如果时间序列非平稳,建立模型之前应先通过差分把它变换成平稳的时间序列,再考虑建模问题。 时间序列模型的应用: (1)研究时间序列本身的变化规律(建立何种结构模型,有无确定性趋势,有无单位根,有无季节性成分,估计参数)。 (2)在回归模型中的应用(预测回归模型中解释变量的值)。 (3)时间序列模型是非经典计量经济学的基础之一(不懂时间序列模型学不好非经典计量经济学)。 10.3 实验内容 建立中国人口时间序列模型。 表10.1给出了中国人口数据y t(1952-2004,单位万人),试建立y t的时间序列模型,并预测2005年中国人口总数。 表10.2

10.4 建模步骤 10.4.1 识别模型 利用表10.2数据建立y t序列图,如图10.20。 图10.20 中国人口序列(1952-2004) 从人口序列图可以看出我国人口总水平除在1960和1961两年出现回落外,其余年份基本上保持线性增长趋势。 察看序列的相关图,在序列窗口选择View/Correlogram,便会弹出如下窗口,见图10.21,选择滞后阶数(本例输入滞后期10),点击ok,得到如图10.22所示的序列y t的相关图和偏相关图。 图10.21 图10.22 y t的相关图,偏相关图 由y t的相关图,偏相关图判断y t为非平稳性序列。进一步考察其差分序列Dy t,序列图见图10.23,其相关图,偏相关图见图10.24。 图10.23 图10.24 Dy t的相关图,偏相关图 人口差分序列Dy t是平稳序列。应该用Dy t建立模型。因为Dy t均值非零,结合图2.14拟建立带有漂移项的AR(1)模型。 10.4.2 估计模型 采用AR(1)模型对Dy t进行估计,从EViews主菜单中点击Quick键,选择Estimate Equation功能。随即会弹出Equation specification对话框。输入漂移项非零的AR(1)模型估计命令(C表示漂移项)如下: D(Y) C AR(1) 结果如图10.25所示,整理如下: Dy t = 1374.097 + 0.6681 (Dy t-1– 1374.097) + v t

基于时间序列序列分析优秀论文

梧州学院 论文题目基于时间序列分析梧州市财政 收入研究 系别数理系 专业信息与计算科学 班级 09信息与计算科学 学号 200901106034 学生姓名胡莲珍 指导老师覃桂江 完成时间

摘要 梧州市财政收入主要来源于基金收入,地方税收收入和非税收收入等几方面。近年来梧州市在自治区党委、自治区政府和市委的正确领导下,全市广大干部群众深入贯彻落实科学发展观,抢抓机遇,开拓进取,克难攻坚,使得全市经济连续几年快速发展,全市人民的生活水平也大幅度提高,但伴随着发展的同时也存在一些问题,本文主要通过研究分析梧州财政收入近几年的状况,根据采用时间序列分析中的一次简单滑动平均法研究分析梧州市财政收入和支出的情况,得到的结果是梧州市财政收入呈现下降状态,而财政支出却逐年上涨,这种状况将导致梧州市人民生活水平下降,影响梧州市各方面的发展。给予一些有益于梧州市财政发展的建议。本文首先介绍主要运用的时间序列分析的概念及其一次简单滑动平均法的方法,再用图表说明了梧州市财政近几年的财政收入和支出状况,然后建立模型,分析由时间序列分析方法得出的对2012年财政收入状况的预测结果,最后,鉴于提高梧州市财政收入的思想,给予了一些合理性建议,比如:积极实施工业强县战略,壮大工业主导财源;大力发展第三产业,强化地方财源建设;完善公共财政支出机制,着力构建和谐社会。 关键词:梧州市;财政收入;时间序列分析;建立模型;建议

Based onThe Time Series Analysis of Wuzhou city Finance Income Studies Abstract Wuzhou city, fiscal revenue mainly comes from fund income, local tax revenue and the tax revenue etc. Wuzhou city in recent years in the autonomous region party committee, the government of the autonomous region and the municipal party committee under the correct leadership, the cadres and masses thoroughly apply the scientific outlook on development, catch every opportunity, pioneering and enterprising, g hard, make the crucial economic rapid development for several years, the people's living standard has also increased significantly, but with the development at the same time, there are also some problems, this paper mainly through the research and analysis the condition of wuzhou fiscal revenue in recent years, according to the time series analysis of a simple moving average method research and analysis of financial income and expenditure wuzhou city, the result obtained is wuzhou city, fiscal revenue decline present condition, and fiscal spending is rising year by year, the situation will lead to wuzhou city, the people's living standards decline, influence all aspects of wuzhou city development. Give some Suggestions on the development of the financial benefit wuzhou city. This paper first introduces the main use of the time series analysis of the concept and a simple moving average method method, reoccupy chart illustrates the wuzhou city, in recent years the financial revenue and expenditure situation, then set a model, analysis the time series analysis method to draw 2012 fiscal income condition prediction results, finally, in view of wuzhou city, improve the financial income thoughts, give some advice, for instance: rationality vigorously implement the strategy of industrial county, strengthen the industry leading financial sources, A vigorous development of the third industry, and to strengthen the construction of local revenue;

平稳时间序列模型及其特征

第一章平稳时间序列模型及其特征 第一节模型类型及其表示 一、自回归模型(AR) 由于经济系统惯性的作用,经济时间序列往往存在着前后依存关系。最简单的一种前后依存关系就是变量当前的取值主要与其前一时期的取值状况有关。用数学模型来描述这种关系就是如下的一阶自回归模型: X t=φX t-1+εt(2.1.1)常记作AR(1)。其中{X t}为零均值(即已中心化处理)平稳序列,φ为X t对X t-1的依赖程度,εt为随机扰动项序列(外部冲击)。 如果X t 与过去时期直到X t-p的取值相关,则需要使用包含X t- X t-p在内的p阶自回归模型来加以刻画。P阶自回归模型的一1 ,…… 般形式为: X t=φ1 X t-1+φ2 X t-2+…+φp X t-p+εt(2.1.2)为了简便运算和行文方便,我们引入滞后算子来简记模型。设B 为滞后算子,即BX t=X t-1, 则B(B k-1X t)=B k X t=X t-k B(C)=C(C为常数)。利用这些记号,(2.1.2)式可化为: X t=φ1BX t+φ2B2X t+φ3B3X t+……+φp B p X t+εt 从而有: (1-φ1B-φ2B2-……-φp B p)X t=εt 记算子多项式φ(B)=(1-φ1B-φ2B2-……-φp B P),则模型可以表

示成 φ(B)X t=εt (2.1.3) 例如,二阶自回归模型X t=0.7X t-1+0.3X t-2+0.3X t-3+εt可写成(1-0.7B-0.3B2)X t=εt 二、滑动平均模型(MA) 有时,序列X t的记忆是关于过去外部冲击值的记忆,在这种情况下,X t可以表示成过去冲击值和现在冲击值的线性组合,即 X t=εt-θ1εt-1-θ2εt-2-……-θqεt-q (2.1.4) 此模型常称为序列X t的滑动平均模型,记为MA(q),其中q为滑动平均的阶数,θ1,θ2…θq为参滑动平均的权数。相应的序列X t称为滑动平均序列。 使用滞后算子记号,(2.1.4)可写成 X t=(1-θ1B-θ2B2-……- θq B q)q t=θ(B)εt (2.1.5) 三、自回归滑动平均模型 如果序列{X t}的当前值不仅与自身的过去值有关,而且还与其以前进入系统的外部冲击存在一定依存关系,则在用模型刻画这种动态特征时,模型中既包括自身的滞后项,也包括过去的外部冲击,这种模型叫做自回归滑动平均模型,其一般结构为: X t=φ1X t-1+φ2X t-2+……+φp X t-p+εt-θ1εt-1-θ2εt-2-……-θqεt-q (2.1.6) 简记为ARMA(p, q)。利用滞后算子,此模型可写为 φ(B)X t=θ(B)εt(2.1.7)

时间序列分析ARMA模型实验

基于ARMA模型的社会融资规模增长分析 ————ARMA模型实验

第一部分实验分析目的及方法 一般说来,若时间序列满足平稳随机过程的性质,则可用经典的ARMA模型进行建模和预则。但是, 由于金融时间序列随机波动较大,很少满足ARMA模型的适用条件,无法直接采用该模型进行处理。通过对数化及差分处理后,将原本非平稳的序列处理为近似平稳的序列,可以采用ARMA模型进行建模和分析。 第二部分实验数据 2.1数据来源 数据来源于中经网统计数据库。具体数据见附录表5.1 。 2.2所选数据变量 社会融资规模指一定时期内(每月、每季或每年)实体经济从金融体系获得的全部资金总额,为一增量概念,即期末余额减去期初余额的差额,或当期发行或发生额扣除当期兑付或偿还额的差额。社会融资规模作为重要的宏观监测指标,由实体经济需求所决定,反映金融体系对实体经济的资金量支持。 本实验拟选取2005年11月到2014年9月我国以月为单位的社会融资规模的数据来构建ARMA模型,并利用该模型进行分析预测。 第三部分 ARMA模型构建 3.1判断序列的平稳性 首先绘制出M的折线图,结果如下图:

图3.1 社会融资规模M曲线图 从图中可以看出,社会融资规模M序列具有一定的趋势性,由此可以初步判断该序列是非平稳的。此外,m在每年同时期出现相同的变动趋势,表明m还存在季节特征。下面对m的平稳性和季节性·进行进一步检验。 为了减少m的变动趋势以及异方差性,先对m进行对数化处理,记为lm,其时序图如下: 图3.2 lm曲线图

对数化后的趋势性减弱,但仍存在一定的趋势性,下面观察lm的自相关图 表3.1 lm的自相关图 上表可以看出,该lm序列的PACF只在滞后一期、二期和三期是显著的,ACF随着滞后结束的增加慢慢衰减至0,由此可以看出该序列表现出一定的平稳性。进一步进行单位根检验,由于存在较弱的趋势性且均值不为零,选择存在趋势项的形式,并根据AIC自动选择之后结束,单位根检验结果如下: 表3.2 单位根输出结果 Null Hypothesis: LM has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=12) t-Statistic Prob.*

基于时间序列模型与线性回归模型的历史数据预测

基于时间序列模型与线性回归模型的历史数据预测 摘要:本文通过具体案例,简要说明根据时间序列数据建立和相应经济理论建立线性回归模型的简要步骤及基本原则,并着重介绍了在模型建立和模型有效性检验过程中需要注意的三个主要问题,最后简单介绍了进行模型修正的相应方法。 一、引言 多元线性回归模型的一般形式为: Y=β0+β1X1+β2X2+…+βkXk+μi(k,i=1,2,…,n) 其中k为解释变量的数目,βk(k=1,2,…,n)称为回归系数,上式也被称为总体回归函数的随机表达式。 从统计意义上说,所谓时间序列模型就是将某一个指标在不同时间上的不同数值,按照时间的先后顺序排列而成的数列。这种数列由于受到各种偶然因素的影响,往往表现出某种随机性,彼此之间存在着统计上的依赖关系。从数学意义上说,如果我们对某一过程中的某一个变量或一组变量X(t)进行观察测量,在一系列时刻t1,t2,…,tn(t为自变量,且t1

平稳时间序列预测法

7 平稳时间序列预测法 7.1 概述 7.2 时间序列的自相关分析 7.3 单位根检验和协整检验 7.4 ARMA模型的建模 回总目录 7.1 概述 时间序列取自某一个随机过程,则称: 一、平稳时间序列 过程是平稳的――随机过程的随机特征不随时间变化而变化过程是非平稳的――随机过程的随机特征随时间变化而变化回总目录 回本章目录 宽平稳时间序列的定义: 设时间序列 ,对于任意的t,k和m,满足: 则称宽平稳。 回总目录

回本章目录 Box-Jenkins方法是一种理论较为完善的统计预测方法。 他们的工作为实际工作者提供了对时间序列进行分析、预测,以及对ARMA模型识别、估计和诊断的系统方 法。使ARMA模型的建立有了一套完整、正规、结构 化的建模方法,并且具有统计上的完善性和牢固的理 论基础。 ARMA模型是描述平稳随机序列的最常用的一种模型; 回总目录 回本章目录 ARMA模型三种基本形式: 自回归模型(AR:Auto-regressive); 移动平均模型(MA:Moving-Average); 混合模型(ARMA:Auto-regressive Moving-Average)。回总目录 回本章目录 如果时间序列满足 其中是独立同分布的随机变量序列,且满足:

则称时间序列服从p阶自回归模型。 二、自回归模型 回总目录 回本章目录 自回归模型的平稳条件: 滞后算子多项式 的根均在单位圆外,即 的根大于1。 回总目录 回本章目录 如果时间序列满足 则称时间序列服从q阶移动平均模型。或者记为。 平稳条件:任何条件下都平稳。

三、移动平均模型MA(q) 回总目录 回本章目录 四、ARMA(p,q)模型 如果时间序列 满足: 则称时间序列服从(p,q)阶自回归移动平均模型。 或者记为: 回总目录 回本章目录 q=0,模型即为AR(p); p=0,模型即为MA(q)。 ARMA(p,q)模型特殊情况: 回总目录 回本章目录 例题分析 设 ,其中A与B 为两个独立的零均值随机变量,方差为1;

ARMA模型的eviews的建立--时间序列分析实验指导

时间序列分析 实验指导 4 2 -2 -4 50100150200250

统计与应用数学学院

前言 随着计算机技术的飞跃发展以及应用软件的普及,对高等院校的实验教学提出了越来越高的要求。为实现教育思想与教学理念的不断更新,在教学中必须注重对大学生动手能力的培训和创新思维的培养,注重学生知识、能力、素质的综合协调发展。为此,我们组织统计与应用数学学院的部分教师编写了系列实验教学指导书。 这套实验教学指导书具有以下特点: ①理论与实践相结合,书中的大量经济案例紧密联系我国的经济发展实际,有利于提高学生分析问题解决问题的能力。 ②理论教学与应用软件相结合,我们根据不同的课程分别介绍了SPSS、SAS、MATLAB、EVIEWS等软件的使用方法,有利于提高学生建立数学模型并能正确求解的能力。 这套实验教学指导书在编写的过程中始终得到安徽财经大学教务处、实验室管理处以及统计与应用数学学院的关心、帮助和大力支持,对此我们表示衷心的感谢! 限于我们的水平,欢迎各方面对教材存在的错误和不当之处予以批评指正。 统计与数学模型分析实验中心 2007年2月

目录 实验一 EVIEWS中时间序列相关函数操作···························- 1 - 实验二确定性时间序列建模方法 ····································- 8 - 实验三时间序列随机性和平稳性检验 ···························· - 18 - 实验四时间序列季节性、可逆性检验 ···························· - 21 - 实验五 ARMA模型的建立、识别、检验···························· - 27 - 实验六 ARMA模型的诊断性检验····································· - 30 - 实验七 ARMA模型的预测·············································· - 31 - 实验八复习ARMA建模过程·········································· - 33 - 实验九时间序列非平稳性检验 ····································· - 35 -

相关文档
最新文档