表面活性剂含量测定方法

表面活性剂含量测定方法
表面活性剂含量测定方法

表面活性剂含量测定方法

1.阴离子表面活性剂含量测定(两相滴定)

1.1主要试剂

(1)十六烷基三甲基溴化铵(CTAB),分析纯;

(2)十二烷基磺酸钠,分析纯;

(3)二氯甲烷(CH2Cl2)、硫酸钠、浓硫酸,百里酚蓝(T.B.)、次甲基蓝(M.B.)分析纯;

(4)百里酚蓝(T.B.)贮藏液:称取0.05g百里酚蓝,溶于50ml20%乙醇中,待溶解后过滤,滤液用水稀释至500ml;

(5)次甲基蓝(M.B.)贮藏液:称取0.036g次甲基蓝,用蒸馏水溶解合并,转入1L容量瓶中,加水稀释至刻度;

(6)混合指示剂:混合225ml百里酚蓝(T.B.)贮藏液和30ml次甲基蓝(M.B.)贮藏液,用水稀释至500ml;

(7)酸性硫酸钠溶液:称取100g硫酸钠和12.6ml浓硫酸,用蒸馏水溶解合并,转入1L容量瓶中,加水稀释至刻度;

(8)十二烷基磺酸钠标准溶液:称取1.06~1.12g十二烷基磺酸钠(准确至0.0001g),用蒸馏水溶解,转入1L容量瓶中,加水稀释至刻度,

其浓度为C1=取样质量*样品纯度/272.38,单位mol/L;

(9)C TAB阳离子表面活性剂标准溶液:称取CTAB0.36~0.37g(准确至

0.0001g),用蒸馏水溶解,转入1L容量瓶中,加水稀释至刻度,其

准确浓度C2可用十二烷基磺酸钠标准溶液标定;

1.2实验原理

阴离子型表面活性剂的测量,其原理是亚甲基蓝无机酸盐属于阳离子染料,溶于水而不溶于氯仿,但阴离子活性物与亚甲基蓝反应生成的络合物溶于氯仿。用CTAB阳离子表面活性剂标准溶液滴定溶液中的阴离子活性物,当接近终点时,

阳离子表面活性剂与络合物发生复分解反应,释放出亚甲基蓝,蓝色逐渐从氯仿层转移到水层,当氯仿层与水层为同一蓝色时为滴定终点。

1.3 实验步骤

取10ml阴离子表面活性剂溶液于100ml具塞量筒中(或碘量瓶、分液漏斗),加入混合指示剂及酸性硫酸钠各5ml,加水使水相保持在30ml,加入15ml二氯甲烷,摇匀后静置,用浓度为C2的CTAB标准溶液滴定,下相由浅紫灰色变为明亮的黄绿色即为终点,临近终点时上相逐渐变为无色,有助于避免滴定过量。

测定样品的浓度C=CTAB标准溶液体积*C2/10

注意:二氯甲烷具有弱毒性,且易于挥发,滴定过程应在通风橱中进行,操作人员需戴手套。

2.两性离子表面活性剂含量测定

2.1 所需试剂

(1)磷钨酸、盐酸、硝酸、硫酸、硝基苯均为分析纯;

(2)乙醇95%;

(3)海明1622、二硫化蓝VN-150;

(4)十二烷基硫酸钠,分析纯;

(5)溴化底米迪鎓;

(6)刚果红指示剂;

(7)苯并红紫4B指示剂(溶解0.1g苯并红紫4B(特级试剂)于纯水中,稀释至100mL)。

2.2.方法原理

在酸性条件下甜菜碱类两性活性剂和苯并红紫4B络合成盐。这种络盐溶在过量的两性表面活性剂中,即使酸性,在苯并红紫4B的变色范围也不呈酸性色。两性表面活性剂在等电点以下的pH溶液中呈阳离子性,所以同样能与磷钨酸定量反应,并生成络盐沉淀,而使色素不显酸性色。

用磷钨酸滴定含苯并红紫4B的两性活性剂盐酸酸性溶液时,首先和未与色素结合的两性活性剂络合成盐,继而两性表面活性剂-苯并红紫4B的络合物被磷钨酸分解,在酸性溶液中游离出色素,等电点时呈酸性色。

2.3.溶液配制

(1)0.006 mol/L磷钨酸溶液将25g磷钨酸(特级试剂 P

2O

5

﹒24WO

8

﹒mH

2

O,

m=26~30)溶液于1000ml蒸馏水中(如有沉淀,需过滤),放置数天待标定。

(2)海明1622溶液 0.02mol?L 称取9g 1622用蒸馏水配制在1000ml容量瓶中,稀释至刻度,摇匀配用。

(3)混合指示剂溶液称取0.5±0.005g溴化底米迪鎓于50ml烧杯中,在另一个50ml烧杯中,称取0.25±0.005g二硫化蓝VN-150,各加入20~30ml热的10%(体积比)乙醇水溶液,搅拌,搅拌至完全溶解,在将两种溶液转移至同一个250ml容量瓶中,用10%乙醇水溶液冲洗烧杯数次,溶液并入容量瓶中,然后稀释至刻度,摇匀配用。

(4)酸性混合指示剂量取20ml混合指示剂贮配液,移入500ml容量瓶中,加入200ml蒸馏水,加20ml2.5mol ? L硫酸,用蒸馏水稀释至刻度,摇匀配用。

(5)0.004 mol ?L十二烷基硫酸钠溶液溶液称取基准十二烷基硫酸钠0.557g, 称准至0.2mg,溶于蒸馏水,准确配制成500ml浓度C

1

为:

摩尔浓度按下式计算:

C

1

=0.557×2/288.4(mol ? L)

(6)0.004 mol ?L海明1622溶液配制用20ml移液管吸取0.02 mol ? L海明1622溶液于100ml 容量瓶内,并用蒸馏水稀释至刻度。

(7)0.004 mol ?L海明1622溶液标定用20ml移液管吸取0.04 mol ? L十二烷基硫酸钠溶液至1000ml具塞比色管中,加10ml蒸馏水、15ml氯仿和10ml 酸性指示剂,然后用0.004 mol ? L海明1622溶液滴定。开始阶段,每次加入2ml 左右滴定溶液后,塞上塞子,充分摇匀,静置分层。当接近终点时,振荡后形成乳化液,很容易破乳,继续滴加,每次数滴后振荡静置,当粉红色完全从氯仿层中消失,氯仿层变为模糊的灰蓝色,即为终点。若滴定过量,则氯仿层呈蓝色。

海明1622溶液浓度C

2

为:

C

2=C

1

×20/V

式中 V---海明1622消耗毫升数,ml.

(8)未稀释前海明1622溶液的标准浓度应为:

C

3=5×C

2

(9)0.006mol ?L磷钨酸溶液的标定用20ml移液管吸取已知浓度海明1622溶液20ml于100ml三角烧杯中,加2~3滴0.1%刚果红指示剂,加1mol ?L盐酸10滴,加硝基苯6~8滴,然后用磷钨酸滴定,由红色变为蓝色,即为终点。

C

4磷钨酸=C

3

×20/3V

式中 V----消耗磷钨酸毫升数,ml。

2.4 测定步骤

称取样品约0.2g于100ml三角烧杯内,加蒸馏水约40ml,加入4B指示剂2~3滴,加1mol ?L盐酸10滴,加硝基苯6~8滴,用0.006mol ?L磷钨酸溶液滴定至由红色变为蓝色,即为终点。

活性物含量%=C

4

﹒V﹒M×100×3/1000m

式中 V----耗用磷钨酸摩尔浓度,mol ?L;

m----- 样品内的质量,g;

M-----两性表面活性剂的摩尔质量,g ?mol;

3.非离子表面活性剂含量测定(光度法)

3.1 主要试剂及仪器

(1)紫外-可见分光光度计;

(2)3, 5-二溴-4-羟基苯基卟啉(T(DBHP)P)铅配合物显色剂:在250mL 烧杯,依次加入80mL0.04%T(DBHP)P,1600LgPb2+,30mL1.0mol/L

NaOH,20mL5%Na2SO3,加水200mL,电炉上加热煮沸5min即可,

冷却定容至250mL于冰箱内备用;

(3)空白液:与配制显色液的方法相同,仅不加铅离子;

(4)非离子表面性剂标准溶液的配制:称取一定量化学纯的表面活性剂溶

于水配1.0mg/mL的水溶液;

3.2 实验原理

根据朗伯(Lambert)-比尔(Beer)定律:A=abc,式中A为吸光度,b为溶液层厚度(cm),c为溶液的浓度(g/L),a为吸光系数。其中吸光系数与溶液的本性、温度以及波长等因素有关。溶液中其他组分(如溶剂等)对光的吸收可用空白液扣除。

由上式可知,当固定溶液层厚度b和吸光系数a时,吸光度A与溶液的浓度成线性关系。在定量分析时,首先需要测定溶液对不同波长光的吸收情况(吸收光谱),从中确定最大吸收波长,然后以此波长的光为光源,测定一系列已知浓度c溶液的吸光度A,作出A~c工作曲线。在分析未知溶液时,根据测量的吸光度A,查工作曲线即可确定出相应的浓度。

3.3 实验方法

在25mL的容量瓶中,加入2.5mL显色液,一定量的非离子表面活性剂溶液,用水稀释至25mL,以相应操作的空白液(2.5mL)为参比,在光度计上测定479nm处的吸光度。

生物表面活性剂和高分子表面活性剂

生物表面活性剂和高分子表面活性剂 摘要:表面活性剂是由两种截然不同的粒子形成的分子,一种粒子具有极强的亲油性,另一种则具有极强的亲水性。溶解于水中以后,表面活性剂能降低水的表面张力,并提高有机化合物的可溶性。本文将就生物表面活性剂和高分子表面活性剂进行具体介绍,并且列举了部分它们在社会中的应用以及它们存在的问题和发展前景进行了简单的介绍。 关键词:表面活性剂;生物表面活性剂;高分子表面活性剂 Biological surfactant and polymer surfactant Abstract:Surfactant is composed of two distinct particles, a kind of particle has extremely strong lipophilicity, the other with strong hydrophilic. Dissolved in water, surfactants can reduce the surface tension of the water, and increase of soluble organic compounds. This article will discuss biosurfactant and polymeric surfactants are detailed introduction, and lists the part of their application in society and their existing problems and development prospects were simply introduced. Keyword:The surfactant; Biosurfactant; Polymer surfactant

高分子表面活性剂在表面施胶中的应用

摘要:表面活性剂在造纸中有很大的应用,例如在制浆、湿部、脱墨、涂布加工等方面。本文主要综述了几种主要的高分子表面活性剂如:阳离子淀粉,AKD 专用高分子表面活性剂,壳聚糖,聚乙烯醇,羧甲基纤维素等在表面施胶中的应用。 关键词:造纸、高分子表面活性剂、表面施胶。 表面施胶也叫纸面施胶,纸页形成后在半干或干燥后的纸页或纸板的表面均匀涂上胶料。施胶剂分松香型和非松香型两大类,非松香型施胶剂主要用于表面施胶。常用的表面施胶剂含有疏水基和亲水基,因此广义地说都是表面活性剂。表面施胶剂主要有变性淀粉、聚乙烯醇(PVA)、羧甲基纤维素(CMC)和聚丙烯酰胺(PAM)等。可根据不同的需要选择不同的表面活性剂,如:提高抗水性,可用AKD、分散松香、石蜡、硬脂酸氯化铬、苯乙烯马来酸酐共聚物及其他合成树脂胶乳等;提高抗油性,可加入有机氟化合物,如全氟烷基丙烯酸酯共聚物,全氟辛酸铬配合物,全氟烷基磷酸盐等;增加防黏性,可加入有机硅树脂;改善印刷性能,主要用变性淀粉、CMC、PVA等[1];改进干湿强度,可加入PAM、变性淀粉等;改善印刷光泽度和印刷发色性,主要用CMC、海藻酸钠、甲基纤维素、氧化淀粉等。为了提高表面施胶效果,通常采用两种或几种表面活性剂共用的方法。 1. 淀粉是一种天然高分子化合物,它是一种重要的表面施胶剂和纸张增强剂。在造纸工业中,薯类淀粉使用效果较好。天然未改性的淀粉粘度较高,流动性差,容易凝聚,用水稀释后易沉淀,故在表面施胶中常用各种改性淀粉。改性淀粉在较高浓度时仍有较低的粘度,并保持良好的溶解性、粘着力和成膜性能。用于表面施胶的改性淀粉主要有氧化淀粉、阳离子淀粉、阳离子型磷酸酯淀粉、羟烷基淀粉、双醛淀粉、乙酸酯淀粉、酸解淀粉。以下主要介绍阳离子淀粉。 阳离子淀粉通常是指淀粉在一定条件下与阳离子试剂反应制得的产物,阳离子试剂主要有叔胺盐类和季铵盐类阳离子试剂。阳离子淀粉还可以通过淀粉与阳离子型乙烯基单体通过自由基共聚法制得。阳离子淀粉作为表面施胶液的固含量和取代度DS(Degree of Substitutio)是影响表面施胶性能的两个非常重要的因素。阳离子淀粉的品种很多,按取代度来分,主要有低取代度(DS<0.1)和高取代

17种常用表面活性剂

17种常用表面活性剂 月桂基磺化琥珀酸单酯二钠(DLS) 一、英文名:Disodium Monolauryl Sulfosuccinate 二、化学名:月桂基磺化琥珀酸单酯二钠 三、化学结构式: ROCO-CH2-CH(SO3Na)-COONa 四、产品特性 1. 常温下为白色细腻膏体,加热后(>70℃)为透明液体; 2. 泡沫细密丰富;无滑腻感,非常容易冲洗; 3. 去污力强,脱脂力低,属常见的温和性表面活性剂; 4. 能与其它表面活性剂配伍,并降低其刺激性; 5. 耐硬水,生物降解性好,性能价格比高。 五、技术指标: 1.外观(25℃)纯白色细腻膏状体 2.含量(%):48.0—50.0 3.Na2SO3(%):≤0.50 4.PH值(1%水溶液): 5.5—7.0 六、用途与用量: 1.用途:配制温和高粘度高度清洁的洗手膏(液)、泡沫洁面膏、泡沫洁面乳、泡沫剃须膏,也可配制爽洁无滑腻的泡沫沐浴露、珠光香波等。 2.推荐用量:10—60%。 脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠MES 一、英文名:Disodium Laureth(3) Sulfosuccinate 二、化学名:脂肪醇聚氧乙烯醚(3)磺基琥珀酸单酯二钠 三、化学结构式:RO(CH2CH2O)3COCH2CH(SO3Na)COONa 四、产品特性: 1.具有优良的洗涤、乳化、分散、润湿、增溶性能; 2.刺激性低,且能显著降低其他表面活性剂的刺激性; 3.泡沫丰富细密稳定;性能价格比高; 4.有优良的钙皂分散和抗硬水性能; 5.复配性能好,能与多种表面活性剂和植物提取液(如皂角、首乌)复配,形成十分稳定的体系,创制天然用品; 6.脱脂力低,去污力适中,极易冲洗且无滑腻感。 五、技术指标:

表面活性剂期末论文

表面活性剂在石油工业中的应用 班别:10化本3班学号:2010364330 姓名:王梅珍 表面活性剂特定的分子结构—具有亲水和憎水基团—赋予这类分子许多特性。表面活性 剂能够富集在液/液、液/气和液/固界面,降低界面能,显著改变界面的状态和性质。 依用途而分,表面活性剂市场可以分为居室中应用和居室外应用两大类。前者是表面活 性剂的传统市场,主要用于制造各种洗涤用品;后者是正在不断开拓的十分活跃的市场。二 表面活性剂在能源和选矿工业中的应用属于居室外的应用,因此前景十分广阔。下面将粗略 介绍表面活性剂在能源和选矿工业中的应用。 一、表面活性剂在石油工业中的应用 1、在钻井泥浆中的应用 高分子表面活性剂是钻将泥浆——钻井液中的重要组成成分,对钻井液的性能控制起着 至关重要的作用。 (1)钻井液滤失性的调整剂 据文献报道,能显著降低钻井泥浆滤失量(滤失性:钻井液滤失量大小,与井壁所形成 滤饼质量有关。)的多为高分子表面活性剂化合物,这类化合物都有吸附基和水化基,座位 吸附基的主要有-OH、-COOH、-CONH 等,依靠氢键吸附在粘土粒子上;作为水化基的主要有- 2 -等,能形成水化膜。 COO-、-SO 3 (2)钻井液流变性的调整剂 表征钻井液流变性的主要指标有粘度、切应力、动塑比、流性指数和稠度系数。在钻井 过程中通常出现粘度、切应力过大或过小问题,需要在钻井过程中不断调整。表面活性剂对 钻井液流变性的作用主要表现在:表面活性剂通过形成降粘剂(分散型降粘剂和聚合物型降 粘剂)以降低钻井液中网架结构引起的粘度和切应力。当钻井液的粘度过低时,就有必要提 高钻井液的粘度,此时不能依靠增加粘土含量,而是依靠加入增粘剂;下面以Na-CMC为代表说明:25℃时Na-CMC的水溶液粘度不同,可划分为低粘(2%水溶液粘度 <50mPa·s),中粘(2%水溶液粘度为 50—270mPa·s),高粘(1%水溶液粘度为 400-500mPa·s)等三种。前 两种作降失水剂用,后者作增粘剂用。他们引起增粘的作用归纳为三点:①通过羟基使Na-CMC分子吸附在粘土离子表面,加上分子的水化基团的水化膜增加粘土粒子的流体力学体积,提高粘度;②一个Na-CMC分子可吸附多个粘土粒子形成网状结构;③使钻井液液相粘度增大。 在钻井过程中,钻柱与钻井液之间,钻柱与井壁接触点之间以及钻井液与井壁之间处于 不断运动状态而产生摩擦,衡量指标是摩擦因数。对于打定向井和水平井,钻井润滑性尤为 重要。钻井润滑剂通常为表面活性剂。表面活性剂的作用主要在摩擦界面上形成一层吸附膜,降低固体表面自由能。另外还可加入表面活性剂使泥浆中矿物油形成O/W型乳状液,并以细 小油珠分散在泥浆中作为润滑剂用。 除了以上几种作用,表面活性剂对钻井液流变性的影响作用还有乳化剂、起泡剂和泡沫 钻井液、消泡剂、缓蚀剂等等。

表面活性剂洗涤剂的成分及性能

表面活性剂洗涤剂的成分及性能 表面活性剂洗涤剂又称水剂清洗剂,一般是由表面活性剂、洗涤助剂和添加剂组成的; 一、表面活性剂 1.主要表面活性剂品种 表面活性剂是水剂清洗剂中的主要成分,通常使用的主要有以下品种。 (阴离子表面活性剂目前洗涤剂中仍大量使用阴离子表面活性剂,而非离子表面活性剂的用量正在日益增加,阳离子和两性离子表面活性剂则使用量较少。这主要是由表面活性剂的性能和经济成本决定的 最早使用的阴离子表面活性剂是肥皂,曲于它对硬水比较敏感,生成的钙、镁皂会沉积在织物和洗涤用具的器壁上影响清洗效果,因此已被其他表面活性剂所取代。目前肥皂主要在粉状洗涤剂做泡抹调节剂使用,由于它易于与碱土金属离子结合,所以在与其他表面活性剂结合使用时,可起到“牺牲剂”作用,以保证其他表面活性剂作用充分发挥。 直链烷基苯磺酸钠盐(LAS) 由于有良好的水溶性,较好的去污和泡沫性,比四聚丙烯烷基苯磺酸盐(ABS)的生物降解性好,而且价格较低,所以是目前洗涤剂配方中使用最多的阴离子表面活性剂。 其他一些常用的阴离子表面活性剂有仲烷基磺酸盐(SAS)、α—烯烃磺酸盐(AOS)、醇硫酸盐(FAS)、—磺基脂肪酸酯盐(MES)、脂肪酸聚氧乙烯醚硫酸盐(AES),虽然可以渭单独作为洗涤剂主成分,但通常是与直链烷基苯磺酸盐配合使用。 其中仲烷基磺酸盐(SAS)水溶性比LAS好,不会水解广陛能稳定,常用于配制液体浙溜α—烯烃磺酸盐(AOS)抗硬水性、泡沫性、去污性好,对皮肤刺激性低牛因此多用于皮肤清洁剂。其中尤以含碳原子数在14~18的α—烯烃磺酸盐性能最好。 脂肪醇硫酸盐(FAS)是重垢洗涤剂中常用的阴离子表面活性剂,有去污力强的优点厂它的缺点是对硬水比较敏感,因此使用的配方中必须加螯合剂。 d—磺基脂肪酸酯盐(MES)是以油脂等天然原料制成的,生物降解性好,对人体安全,是近年来开发的新品种,随着人们对保护环境的重视,它日益受到人们的重视二MES是一种对硬水敏感性低、钙皂分散力好,洗涤性能优良的新品种,缺点是会水解,使用时要加入适当稳定剂。 脂肪醇聚氧乙烯醚硫酸盐(AES),兼有阴离子非离子表面活性剂的特点,在硬水中仍有较好的去污力,形成的泡沫稳定,在液体状态下有较高稳定性,因此广泛用于配制各种液体洗涤剂。 (2)非离子表面活性剂洗涤剂中使用最多的非离子表面活性剂是脂肪醇聚氧乙烯醚(AEO)。它在较低浓度下就有良好的去污能力和对污垢的分散力,而且抗硬水性能好,具有独特的抗污垢再沉积作用。 过去常使用的烷基酚聚氧乙烯醚(APEO)虽然与脂肪醇,聚氧乙烯醚有类似的性能,但由于其生物降解性能差,目前在洗涤剂中用量正在减少。 烷醇酰胺配制的洗涤剂有丰富而稳定的泡沫,而且与其他表面活性剂有良好协同作、用,有利改进洗涤剂在低浓度和低温下的去污力,因此常做洗涤剂的配伍成分。 氧化胺水溶性好,与LAS配伍好,对皮肤刺激性低,有良好的泡沫稳定作用。缺点是热稳定性差,价格高,目前多用于配制液体洗涤剂。 两性离子表面活性剂虽然有良好的去污能力,但由于价格较高,目前只在个人卫生用品和特殊用途洗涤剂中有少量使用。阳离子表面活性剂去污性较差但柔软、杀菌、抗静电性能优良,因此把阳离子表面活性剂和非离子表面活性剂配合可制成兼有洗涤功能与柔软、消毒

季铵盐型双子表面活性剂与十八醇的混合单分子膜_周栋梁

Vo.l 28 高等学校化学学报No .52007年5月 CHEM I CAL J OURNAL OF CH I NESE UN I VERSI T I E S 932~935季铵盐型双子表面活性剂与十八醇的混合单分子膜 周栋梁1,杨红伟1,朱谱新1,孙玉海2,冯玉军2,吴大诚1 (1.四川大学纺织研究所,成都610065;2.中国科学院成都有机化学研究所,成都610041)摘要 研究了双子表面活性剂12-2-16和12-2-12分别与十八醇(C 18H 37OH )在空气-水界面上混合单分子膜的P -A 等温线.在相分离表面压以下,比较了不同表面压下和不同混合比单分子膜的混合表面过剩自由能$G ex o M ,分析了双子表面活性剂与脂肪醇在空气-水界面上混合膜中的相容性.结果表明,12-2-16与C 18H 37OH 在所有混合摩尔比下随着表面压增高,自由能增大.12-2-12与C 18H 37OH 混合膜体系的相容性取决于两者的 混合比,$G exo M 随所加入C 18H 37OH 摩尔分数的增加逐渐增大,从异种分子间净的吸引作用转变到相互排斥 作用体系,转变点为C 18H 37OH 加入量的摩尔分数0165.当混合为热力学自发过程时,增大表面压将有利于混合;而对相互排斥体系,增加表面压将使体系内异种分子之间的相互排斥作用更大. 关键词 季铵盐型双子表面活性剂;十八醇;混合单分子膜;混合表面过剩自由能 中图分类号 O 647 文献标识码 A 文章编号 0251-0790(2007)05-0932-04 收稿日期:2006-07-05. 基金项目:国家自然科学基金(批准号:50673062)资助. 联系人简介:朱谱新(1956年出生),男,博士,教授,主要从事高分子材料结构与性能、表面与界面等方面的研究. E-m ai:l z hupxscu @163.co m 双子表面活性剂的结构特殊,表面活性更高,能有效地降低表面张力,易形成胶束、易溶解、润湿 性良好[1],因而成为研究的热点[2~11].季铵盐型双子表面活性剂是一种目前研究较多的阳离子型双子表面活性剂,对它的合成以及物理化学性能已有深入的研究[8~11].为了使双子表面活性剂能大规模的应用,人们探索了其与普通阴离子、阳离子、非离子和两性离子表面活性剂进行复配使用,并研究了 其混合体系溶液的表面性质[9~11].以Lang mu ir 膜天平为手段研究双子表面活性剂在空气-水界面的单 分子膜,可以了解其在溶液中的胶束行为.通常,两亲性分子铺展的单分子膜在压缩过程中处于亚稳态,当表面压较低时在缓慢压缩的时间尺度下,可以将压缩单分子膜看成是稳定的,因为铺展分子从 膜中向亚相溶解需要克服脱附能垒,达到平衡的过程很漫长[12].以往对于具有一定水溶性的两亲性分 子表面单分子膜的研究较少,而对此方面的研究可以得到表面单分子膜稳定性的很多信息.本文采用Lang m uir 膜天平分别测定了双子表面活性剂12-2-16和12-2-12与C 18H 37OH 混合膜在空气-水界面上混合膜的P -A 等温线,并计算混合表面过剩自由能,从而说明与极性有机分子C 18H 37OH 复配时,双子表面活性剂12-2-16和12-2-12形成的复合单分子膜的界面行为以及混合膜分子之间的相互作用.1 实验部分 1.1 试剂与仪器 双子表面活性剂12-2-16和12-2-12为自制[13],在丙酮和乙醇的混合溶剂中重结晶3次.在25e 时,12-2-16和12-2-12水溶液的临界胶束浓度分别为0116和0180mm o l/L [13].正十八醇(C 18H 37OH,分析纯,上海光铧科技有限公司);三氯甲烷(分析纯,成都长联化工试剂有限公司);无水乙醇(分析纯,沈阳化学试剂厂);实验用水为二次去离子水;LB 膜分析仪(KSV 2000-Ⅲ型,芬兰). 1.2 实验过程 分别配制12-2-16,12-2-12和C 18H 37OH 的三氯甲烷溶液,浓度约为1g /L ,再按一定摩尔比配成混合溶液.先用无水乙醇将Lang mu ir 槽(材质为聚四氟乙烯,内径尺寸700mm @120mm @10mm )清洗干净,再用二次去离子水冲洗,然后注满二次去离子水,用障条刮水面3次,以去除水面上的杂质.

生物表面活性剂研究进展

生物表面活性剂研究进展 杨齐峰 (黄石理工学院,湖北,435000) 【摘要】:生物表面活性剂是由微生物分泌的天然产物,它无毒,可以生物降解,对环境影响很小,具有高效的表面活性,因此是合成表面活性剂的理想代替品。介绍了生物表面活性剂的特性及其生产制备方法,综述了近年生物表面活性剂在石油、洗涤、医药、食品等工业领域的应用与研究进展,主要介绍了利用生物表面活性剂在提高石油采收率等方面的应用,探讨了今后生物表面活性剂的主要发展方向。 【关键词】:生物表面活性剂;微生物;应用;发展趋势 Biosurfactant research progress Yangqifeng (Huangshi Institute of Technology School Hubei 435003)abstract:Biological surfactant is secreted by microbial natural products,it is avirulent,can biodegradation,a little influence and efficient surface activity,and is thus synthesis of surfactants ideal replacement. Introduces the characteristics and its biosurfactant production preparation methods,this paper reviews biosurfactant in petroleum,washing,pharmaceutical,food and other industrial areas of application and research progress,mainly introduced the use of biological surfactants in enhanced oil recovery of application,discusses the future biosurfactant the main development direction。 key words:biosurfactant;Microbial;application;development tendency 表面活性剂是一类能显著降低溶剂表面张力的物质,化学合成的表面活性剂都是以石油为原料化学合成而来的,在生产和使用过程中常常会给人类生存环境带来严重的污染,对人类的身体健康产生很大威胁。生物表面活性剂是从20世

苯乙烯-丙烯酸(SAE)聚合物表面施胶剂与AKD表面施胶剂的区别

苯乙烯-丙烯酸(SAE)聚合物表面施胶剂与AKD表面施胶剂的区别 2010年4月19日 一、前言: 在生产、储存和使用的过程中,纸张纤维都会吸收空气和环境中的水蒸气因而导致纸张水分增加、强度降低,进而影响纸张的使用性能。尤其是包装纸箱所用的牛皮纸、瓦楞纸和箱板纸,吸潮后会导致纸板、纸箱变软;在贮存、使用和运输过程中,纸箱变形,影响包装箱的外观质量、影响包装物的储存和码垛;甚至还会损坏包装箱内的商品。 为了解决纸张吸水和返潮的问题,通常要在造纸过程中添加抗水性能的化学品,即术语所称“施胶剂”。最初的施胶工艺,主要是在纸浆的制浆过程中,直接在浆内添加胶体材料,即“浆内施胶”,这样可以提高纸张的抗水性,避免包装纸吸潮后影响其使用性能。但是,经过多年的实践后发现,“浆内施胶”存在两个问题,一是浆内施胶会影响纸张纤维之间的结合力,会降低包装纸的强度;二是浆内施胶量较大,额外增加了过多的成本。另外,包装纸在印刷过程中,经常会出现掉粉、掉渣(纤维脱落)以及油墨吸收不均匀和渗透等现象,影响包装纸的印刷质量,浆内施胶无法改善这种现象。为此,开始尝试在纸张的表面涂覆一层胶体材料,可以起到防止掉粉、掉渣以及提高纸张印刷质量的作用,同时还能阻止水蒸气渗透到纸张内部,起到了浆内施胶的作用,因此,“表面施胶剂”应运而生。 表面施胶剂(简称表胶)是指在纸张表面涂加的旨在增加纸张抗水性的一种化学胶剂,既可以提高纸张的印刷性能,同时还可以防止纸张吸水返潮而导致强度降低。相对于浆内施胶,表面施胶剂的成本只是浆内施胶的15-30%,具有很好的性价比,自2002年以后,发展迅速。 长期以来,低档包装纸例如普通瓦楞纸、箱板纸均不施胶,随着越来越多的大型纸机投产,产能相对过剩,大型纸机生产的低克重表胶纸能够取代小厂生产的高克重无表胶的普通纸,例如75克表胶高强瓦楞纸可以取代90-100克的无表胶普通瓦楞纸。因此从金融危机之后,低速纸机生产的未表胶的低档纸正陆续被替代,一些小厂在先进产能淘汰落后产能的客观规律作用下而相继倒闭。近年来新上的中速纸机大多增加了表面施胶的装置,因此表面施胶是包装纸施胶的发展趋势。同时,由于浆内施胶量大成本高,正在逐步被表面施胶剂取代。总体而言,表面施胶剂市场前景广阔。 二、表面施胶剂的简要介绍: 表面施胶剂的种类很多,大体可分为天然高分子和化学合成高分子两大类。淀粉及改性淀粉是典型的天然高分子,但其性能有很大的局限性;目前将淀粉及改性淀粉与化学合成高分子配合起来使用,已取得了良好的效果。从离子型方面,表面施胶剂又分为阳离子型、阴离子型和非离子型表面施胶剂。 实践表明,用于包装纸的表面施胶剂,阳离子型效果最好。目前最为普及的是阳离子型苯乙烯丙烯酸酯聚合物乳液(简称苯丙乳液);这类产品合成工艺稳定、操作简便,在表面施胶后成膜性和抗水性好,是应用和发展最快的品种。 在表面施胶的机理方面,业内人士已普遍达成了如下共识: 1)阳离子表面施胶剂,要与配合施胶的大量淀粉链状分子进行交联反应,形成以聚合物高分子为核心节点的网状结构覆盖在纸张的表面,并形成一个致密的抗水薄膜,从而阻止水蒸气进入与纸张内部与纤维结合,防止纸张返潮;同时还可以防止纸张掉粉掉渣提高印刷质量。2)表面施胶剂的聚合物高分子还需要与纸张纤维有良好的结合,减少表面施胶剂向纸张内

新型双子表面活性剂的制备及性能研究_顾义师

新型双子表面活性剂的制备及性能研究 顾义师黄丹 * (江南大学生态纺织科学与技术教育部重点实验室 无锡 214122) 南通苏州大学纺织研究院开放课题(NS1211)资助2013-01-15收稿,2013-03-11接受 摘要制备了一系列羧基支化改性双子表面活性剂,其利用马来酸酐将2个疏水性基团和2个亲水性 基团通过弱酯键连接基团连接在一起,以反丁烯二酸为羧化试剂在过氧化自由基的引发下进行羧化接枝反应接入了阴离子亲水基团。用红外光谱和核磁共振表征了合成物的分子结构。测定了合成产物的表面张力、胶团形貌、疏水性能、泡沫性能、润湿性能、乳化性能和分散性能。结果显示所合成的双子表面活性具有优异的表面性能。 关键词 双子表面活性剂 表面性能 表面张力 分散性能 Preparation and Properties of Novel Gemini Surfactant Gu Yishi ,Huang Dan * (Education Ministry Key Laboratory of Science &Technology for Eco-textiles ,Jiangnan University ,Wuxi 214122) Abstract A series of carboxyl branch modified Gemini surfactants were prepared.These cleavable surfactants possess two identical hydrophobic alkyl group moieties ,two hydrophilic polyethylene glycol group moieties and a succinic acid spacer as weak ester linkage.Nonionic hydrophilic moieties had been added by reacting fumaric acid in the presence of a peroxy-type free radical initiator to form a carboxylic acid groups.The structures of these compounds were confirmed through IR and NMR.The physical and chemical properties of synthetic products ,including surface tension ,micelles morphology ,hydrophilicity ,foam property ,wetting property ,emulsifying property and dispersion property were determined.The results showed that the as-prepared Gemini surfactants have excellent surface properties. Keywords Gemini surfactant ,Surface properties ,Surface tension ,Dispersion properties 双子表面活性剂(Gemini surfactant )在结构上是由2个亲水基团和2个疏水基团在连接基团的作用下形成的。其有着比传统表面活性剂不止2倍的性能提升且表面张力更低、临界胶束浓度(CMC )更低的特点。由于其结构的“非常规”性,使得其在生物医学、纺织染整、三次采油上有着独特的应用 [1 5] 。 聚醚马来酸双酯是一种双子表面活性剂[6,7] ,其利用顺丁烯二酸为连接基团将2个聚醚单体在其 亲水基部位或靠近其亲水基部位通过化学键连在一起,形成1个具有2个亲水基团和2个亲油基团的结构, 由于桥基的作用,使得聚醚单体连接得相当紧密,从而使其碳链之间的作用力增强,而且亲水基(—CH 2CH 2O —)部分的斥力由于桥基的存在而大大减弱,这就使得其活性远大于一般的表面活性剂。在过氧化自由基的作用下,以反丁烯二酸为羧化试剂在聚氧乙烯链上进行羧化接枝,使分子链上带有大量的水溶性羧酸基团。这样的亲水基团和疏水基团的交错排列使得其性能相比传统表面活性剂更为优异。之前有研究者以月桂醇聚醚来合成这类表面活性剂,包括对称[8] 和不对称 [9] 双酯,但由于结构中 含有芳香基团,生物降解性能不好。本研究以硬脂醇聚醚为原料合成羧化硬脂醇聚醚马来酸双酯 Gemini 表面活性剂,性能更优异,更易生物降解。 · 735·http ://www.hxtb.org 化学通报2013年第76卷第6期DOI:10.14159/https://www.360docs.net/doc/188452648.html,ki.0441-3776.2013.06.016

生物表面活性剂

生物表面活性剂及其应用 谈到学科知识应用,我第一反应是把其与人或自然界中实际存在的生物联系在一起,进而得出既有意义又有趣的结论和现象。在学习完物理化学表面化学部分后我们知道,表面活性剂(surfactant)是指加入少量能使其溶液体系的界面状态发生明显变化的物质。具有固定的亲水亲油基团,在溶液的表面能定向排列。表面活性剂的分子结构具有两亲性。表面活性剂分为离子型表面活性剂(包括阳离子表面活性剂与阴离子表面活性剂)、非离子型表面活性剂、两性表面活性剂、复配表面活性剂、其他表面活性剂等。但是目前大多数表面活性剂主要以石油为原料经化学合成而来,由于受化工原料、产品的理化特性及其在生产和使用过程对环境造成严重污染等原因,使表面活性剂的应用前景受到极大的挑战。因此寻找一种新型高效低污染的表面活性剂是一个尤为重要的举措。 生物表面活性剂就是一类性能较为优异的表面活性剂。查阅文献可知他们是指利用酶或微生物通过生物催化和生物合成法得到的具有一定表面活性的代谢产物。它们在结构上与一般表面活性剂分子类似,即在分子中不仅有脂肪烃链构成的非极性憎水基,而且含有极性的亲水基,如磷酸根或多烃基基团,是集亲水基和憎水基结构于一身的两亲化合物。它们不仅具有化学表面活性剂具有的各种表面性能,而且还拥有下列优点:①选择性广,对环境友好;②庞大而复杂的化学结构使得表面活性和乳化能力更强;③分子结构类型多样,具有许多特殊的官能团,专一性强;④原料在自然界广泛存在且价廉;⑤发酵生产是典型的“绿色”工艺等。 生物产生的生物表面活性剂包括许多不同的种类。依据他们的化学组成和微生物来源可分为糖脂、脂肽和脂蛋白、脂肪酸和磷脂、聚合物和全胞表面本身等五大类。于是我们可以明显知道这些生物表面活性剂是对生物和环境极其友好,相较与普通的化学表面活性剂有更广阔的应用范围。 微生物强化采油(MEOR技术)是生物表面活性剂最为重要的应用领域。在油田中注入一些微生物和其生长所必须的营养物质,微生物在生长的同时,可以产生生物表面活性剂,这些生物表面活性剂能降低原油和水两相界面的张力,从而提高原油的开采量。与化学合成生物表面活性剂相比,生物表面活性剂可被微生物降解,不会对环境造成污染。微生物驱油和化学驱油最大的不同是微生物不但可沿注水压差方向运移,还可在油层中纵深迁移,大大提高了水驱或化学驱的效率。 利用生物表面活性剂能够增强水性化合物的亲水性和生物利用度,还可以使环境污染物不断降解,该技术称为生物修复。我觉得在不远的未来这个技术能有更大的应用和发展前景。 针铁矿(Fe(OH)3) 是一种非常重要的矿产资源,可以吸附土壤和工业废水中有毒的金属离子。用针铁矿吸附、共沉淀金属离子,再用生物表面活性剂作为絮凝剂载体,可将金属离子分离出来。资源问题一直是当今世界重视的难题,利用生物表面活性剂将环境保护和资源采集率两个方面同时兼顾,这将是我们对抗环境恶化的重要手段。 资源的紧缺以及人类环保意识的加强,将进一步推动绿色表面活性剂工业的发展。当前,世界表面活性剂市场呈稳定而缓慢的增长趋势,更多新型、性能优良、易生物降解、高效、安全的表面活性剂出现,会给人们的生活和工业生产注入新的活力。根据国外一些大公司及专家预测,未来表面活性剂工业发展趋向主

苯丙乳液类施胶剂相关介绍2012.03.10

苯丙乳液类(SAE)阳离子表面施胶剂与AKD 表面施胶剂的区别 一、前言: 在生产、储存和使用的过程中,纸张纤维都会吸收空气和环境中的水蒸气因而导致纸张水分增加、强度降低,进而影响纸张的使用性能。尤其是包装纸箱所用的牛皮纸、瓦楞纸和箱板纸,吸潮后会导致纸板、纸箱变软;在贮存、使用和运输过程中,纸箱变形,影响包装箱的外观质量、影响包装物的储存和码垛;甚至还会损坏包装箱内的商品。 为了解决纸张吸水和返潮的问题,通常要在造纸过程中添加抗水性能的化学品,即术语所称“施胶剂”。施胶方式可分为浆内施胶和表面施胶。这样可以提高纸张的抗水性,避免包装纸吸潮后影响其使用性能。但是,经过多年的实践后发现,“浆内施胶”存在两个问题,一是浆内施胶会影响纸张纤维之间的结合力,会降低包装纸的强度;二是浆内施胶量较大,额外增加了过多的成本。另外,包装纸在印刷过程中,经常会出现掉粉、掉渣(纤维脱落)以及油墨吸收不均匀和渗透等现象,影响包装纸的印刷质量,浆内施胶无法改善这种现象。为此,开始尝试在纸张的表面涂覆一层胶体材料,可以起到防止掉粉、掉渣以及提高纸张印刷质量的作用,同时还能阻止水蒸气渗透到纸张内部,起到了浆内施胶的作用。因此,“表面施胶剂”应运而生。 表面施胶剂(简称表胶)是指在纸张表面涂加的旨在增加纸张抗水性的一种化学胶剂,既可以提高纸张的印刷性能,同时还可以防止纸张吸水返潮而导致强度降低。相对于浆内施胶,表面施胶剂的成本只是浆内施胶的15-30%,具有很好的性价比,自2002 年以后,发展迅速。 长期以来,低档包装纸例如普通瓦楞纸、箱板纸均不施胶,随着越来越多的大型纸机投产,产能相对过剩,大型纸机生产的低克重表胶纸能够取代小厂生产的高克重无表胶的普通纸,例如75 克表胶高强瓦楞纸可以取代90-100 克的无表胶普通瓦楞纸。因此从金融危机之后,低速纸机生产的未表胶的低档纸正陆续被替代,一些小厂在先进产能淘汰落后产能的客观规律作用下而相继倒闭。近年来新上的中速纸机大多增加了表面施胶的装置,因此表面施胶是包装纸施胶的发展趋势。同时,由于浆内施胶量大成本高,正在逐步被表面施胶剂取代。 二、表面施胶剂的简要介绍: 表面施胶剂的种类很多,大体可分为天然高分子和化学合成高分子两大类。淀粉及改性淀粉是典型的天然高分子,但其性能有很大的局限性;目前将淀粉及改性淀粉与化学合成高分子配合起来使用,已取得了良好的效果。从离子型方面,表面施胶剂又分为阳离子型、阴离子型和非离子型表面施胶剂。 实践表明,用于包装纸的表面施胶剂,阳离子型效果最好。目前最为普及的是阳离子型苯乙烯丙烯酸酯聚合物乳液(简称苯丙乳液);这类产品合成工艺稳定、操作简便,在表面施胶后成膜性和抗水性好,是应用和发展最快的品种。 1)阳离子表面施胶剂,要与配合施胶的大量淀粉链状分子进行交联反应,形成以聚合物高 分子为核心节点的网状结构覆盖在纸张的表面,并形成一个致密的抗水薄膜,从而阻止水蒸气进入纸张内部与纤维结合,防止纸张返潮;同时还可以防止纸张掉粉掉渣提高印刷质量。 2)表面施胶剂的聚合物高分子还需要与纸张纤维有良好的结合,减少表面施胶

表面活性剂论文

摘要:随着世界能源需求的增长,人们认识到提高石油开采率的重要性,三 次采油提高采收率主要是靠化学驱油技术,其中,表面活性剂是提高采收率幅 度较大、适用较广、具有发展潜力的一种化学驱油剂。采用表面活性剂驱油 为进一步开发利用现有原油储量展示了广阔的前景。文综述了表面活性剂的 种类、要求、驱油机理,并总结了国内表面活性剂驱在三次采油中的应用, 其发展前景。 关键词:三次采油表面活性剂应用驱油耐温抗盐 一、前言 石油资源是一种重要的战略资源, 对国家的经济发展和人民生活水平的提高具有重要作用。然而它并不是取之不尽, 用之不竭的, 随着勘探开发程度的加深, 开采难度会逐步加大, 因此提高石油采收率不仅是石油工业界, 而且是整个工业界普遍关心的问题。三次采油技术是中国近十年来发展起来的一项高新技术, 它的推广应用对提高原油采收率、稳定老油田原油产量起到了重要的作用。 二、三次采油简介 通常把利用油层能量开采石油称为一次采油;向油层注入水、气,给油层补充能量开采石油称为二次采油;采取物理—化学方法,改变流体的性质、相态和改变气—液,液—液,液—固相间界面作用,扩大注人水的波及范围以提高驱油效率,从而再一次大幅度提高采收率。称为三次采油。又称提高采收率(EOR)方法。常规的一、二次采油(POR和SOR) 总采油率不很高, 一般仅能达到 20 %~40% , 最高达到50 % ,还有50 %~80 %的原油未能采出。在能源日趋紧张的情况下, 提高采油率已成为石油开采研究的重大课题, 三次采油则是一种特别有效的提高采油率的方法。 三、三次采油分类 三次采油的方法很多, 主要有 4 大类: ①热力驱, 包括蒸气驱和火烧油层等; ②混相驱, 包括CO2 混相、烃混相及其他惰性气体混相驱,这些混相剂未达到混相压力之前为非混相气驱; ③化学驱, 包括聚合物驱、表面活性剂驱、碱驱和注浓硫酸驱等; ④微生物采油, 包括生物聚合物、微生物表面活性驱,年来又开发出了气一水交替驱(WAG驱)。目前,三次采油研究尤其以表面活性剂和微生物采油得到人们的普遍重视, 而表面活性剂驱则显示出明显的优越性。四、表面活性剂的结构、分类 表面活性剂单体是由一个非极性的亲油基和一个极性的亲水基构成。亲油基一般由长烃链组成。表面活性化合物的表面性质受制于其亲油和亲水特性的平衡。如果表面活性剂中的烃链少于12 个碳原子,则该表面活性剂为水溶性的,因为极性端基团把全部分子拉入水中。然而,当烃链长度大于14个碳原子时,则这种化合物称为水不溶性(油溶性) 的表面活性剂。图 1 为表面活性剂分子结构 图。表面活性剂的分子 结构不仅造成表面活 性剂在表面的集中并 降低溶剂的表面张力, 而且也影响分子在表 面的排列方向,其亲油 基在溶剂中,而亲水基 部分的取向则要离开

表面活性剂的理化性质

表面活性剂的理化性质和生物学性质 一、临界胶束浓度 当表面活性剂的正吸附到达饱和后继续加入表面活性剂,其分子则转入溶液中,因其亲油基团的存在,水分子与表面活性剂分子相互间的排斥力远大于吸引力,导致表面活性剂分子自身依赖范德华力相互聚集,形成亲油基团向内,亲水基团向外、在水中稳定分散、大小在胶体粒子范围的胶束(micelles)。在一定温度和一定的浓度范围内,表面活性剂胶束有一定的分子缔合数,但不同表面活性剂胶束的分子缔合数各不相同,离子表面活性剂的缔合数约在10~100,少数大于1000。非离子表面活性剂的缔合数一般较大,例如月桂醇聚氧乙烯醚在25℃的缔合数为5000。表面活性剂分子缔合形成胶束的最低浓度即为临界胶束浓度(critical micell concentration, CMC),不同表面活性剂的CMC不同,见表4-2。具有相同亲水基的同系列表面活性剂,若亲油基团越大,则CMC越小。在CMC 时,溶液的表面张力基本上到达最低值。在CMC到达后的一定范围内,单位体积内胶束数量和表面活性剂的总浓度几乎成正比。 表4-2 常用表面活性剂的临界胶束浓度 CMC/molL-1 名称测定温度/℃CMC/molL-1 名称测定温度 /℃ 25 1.6×10-2 辛烷基磺酸钠25 1.50×10-1氯化十二烷基 铵 辛烷基硫酸钠40 1.36×10-1月桂酸蔗糖 2.38×10-6 酯

十二烷基硫酸 钠40 8.60×10-3棕榈酸蔗糖 酯 9.5×10-5 十四烷基硫酸 钠40 2.40×10-3硬脂酸蔗糖 酯 6.6×10-5 十六烷基硫酸 钠40 5.80×10-4吐温20 25 6.0×10-2 (g/L,以下同) 十八烷基硫酸 钠 40 1.70×10-4吐温40 25 3.1×10-2 硬脂酸钾50 4.50×10-45吐温60 25 2.8×10-2油酸钾50 1.20×10-3吐温65 25 5.0×10-2月桂酸钾25 1.25×10-2吐温80 25 1.4×10-2 十二烷基磺酸 钠 25 9.0×10-3吐温85 25 2.3×10-2 (二)胶束的结构 在一定浓度范围的表面活性剂溶液中,胶束呈球形结构(图4-1a),其碳氢链无序缠绕构成内核,具非极性液态性质。碳氢链上一些与亲水基相邻的次甲基形成整齐排列的栅状层。亲水基则分布在胶束表面,由于亲水基与水分子的相互

表面活性剂含量测定方法

表面活性剂含量测定方法 1.阴离子表面活性剂含量测定(两相滴定) 1.1主要试剂 (1)十六烷基三甲基溴化铵(CTAB),分析纯; (2)十二烷基磺酸钠,分析纯; (3)二氯甲烷(CH2Cl2)、硫酸钠、浓硫酸,百里酚蓝(T.B.)、次甲基蓝(M.B.)分析纯; (4)百里酚蓝(T.B.)贮藏液:称取0.05g百里酚蓝,溶于50ml20%乙醇中,待溶解后过滤,滤液用水稀释至500ml; (5)次甲基蓝(M.B.)贮藏液:称取0.036g次甲基蓝,用蒸馏水溶解合并,转入1L容量瓶中,加水稀释至刻度; (6)混合指示剂:混合225ml百里酚蓝(T.B.)贮藏液和30ml次甲基蓝(M.B.)贮藏液,用水稀释至500ml; (7)酸性硫酸钠溶液:称取100g硫酸钠和12.6ml浓硫酸,用蒸馏水溶解合并,转入1L容量瓶中,加水稀释至刻度; (8)十二烷基磺酸钠标准溶液:称取1.06~1.12g十二烷基磺酸钠(准确至0.0001g),用蒸馏水溶解,转入1L容量瓶中,加水稀释至刻度, 其浓度为C1=取样质量*样品纯度/272.38,单位mol/L; (9)C TAB阳离子表面活性剂标准溶液:称取CTAB0.36~0.37g(准确至 0.0001g),用蒸馏水溶解,转入1L容量瓶中,加水稀释至刻度,其 准确浓度C2可用十二烷基磺酸钠标准溶液标定; 1.2实验原理 阴离子型表面活性剂的测量,其原理是亚甲基蓝无机酸盐属于阳离子染料,溶于水而不溶于氯仿,但阴离子活性物与亚甲基蓝反应生成的络合物溶于氯仿。用CTAB阳离子表面活性剂标准溶液滴定溶液中的阴离子活性物,当接近终点时,

阳离子表面活性剂与络合物发生复分解反应,释放出亚甲基蓝,蓝色逐渐从氯仿层转移到水层,当氯仿层与水层为同一蓝色时为滴定终点。 1.3 实验步骤 取10ml阴离子表面活性剂溶液于100ml具塞量筒中(或碘量瓶、分液漏斗),加入混合指示剂及酸性硫酸钠各5ml,加水使水相保持在30ml,加入15ml二氯甲烷,摇匀后静置,用浓度为C2的CTAB标准溶液滴定,下相由浅紫灰色变为明亮的黄绿色即为终点,临近终点时上相逐渐变为无色,有助于避免滴定过量。 测定样品的浓度C=CTAB标准溶液体积*C2/10 注意:二氯甲烷具有弱毒性,且易于挥发,滴定过程应在通风橱中进行,操作人员需戴手套。 2.两性离子表面活性剂含量测定 2.1 所需试剂 (1)磷钨酸、盐酸、硝酸、硫酸、硝基苯均为分析纯; (2)乙醇95%; (3)海明1622、二硫化蓝VN-150; (4)十二烷基硫酸钠,分析纯; (5)溴化底米迪鎓; (6)刚果红指示剂; (7)苯并红紫4B指示剂(溶解0.1g苯并红紫4B(特级试剂)于纯水中,稀释至100mL)。 2.2.方法原理 在酸性条件下甜菜碱类两性活性剂和苯并红紫4B络合成盐。这种络盐溶在过量的两性表面活性剂中,即使酸性,在苯并红紫4B的变色范围也不呈酸性色。两性表面活性剂在等电点以下的pH溶液中呈阳离子性,所以同样能与磷钨酸定量反应,并生成络盐沉淀,而使色素不显酸性色。

表面活性剂小论文

表面活性剂 摘要:随着社会进步科技发展,高新技术突出,化工产业为满足生产的高效率和能源最大效率的利用,减少能源损失和开发新产品,表面活性剂这一起着活性的物质日显重要。表面活性剂由于具有润湿或抗粘、乳化或破乳、起泡或消泡以及增溶、分散、洗涤、防腐、抗静电等一系列物理化学作用及相应的实际应用,成为一类灵活多样、用途广泛的精细化工产品。表面活性剂除了在日常生活中作为洗涤剂,其他应用几乎可以覆盖所有的精细化工领域。为了更好利用它,我们要对其有一个充分了解。本文从分类和作用、机理来分析。 关键词:表面活性剂、阴离子表面活性剂、阳离子表面活性剂、两性离子表面活性剂、非离子表面活性剂、基本性质、结构和应用 引言:要充分利用和把握表面活性剂我们首先就要了解其的基本性质和分类。我们从阴离子表面活性剂、阳离子表面活性剂、两性离子表面活性剂、非离子表面活性剂、基本性质来分析。 一、表面活性剂概述: 1.概念:表面活性剂(surfactant)是指具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。 2.组成:分子结构具有两亲性,非极性烃链: 8个碳原子以上烃链,极性基团:羧酸、磺酸、硫酸、氨基或胺基及其盐,也可是羟基、酰胺基、醚键等。 3.吸附性:溶液中的正吸附:增加润湿性、乳化性、起泡性,固体表面的吸附:非极性固体表面单层吸附,极性固体表面可发生多层吸附。 二、表面活性剂的分类 根据疏水基结构进行分类,分直链、支链、芳香链、含氟长链等;根据亲水基进行分类,分为羧酸盐、硫酸盐、季铵盐、PEO衍生物、内酯等;有些研究者根据其分子构成的离子性分成离子型、非离子型等,还有根据其水溶性、化学结构特征、原料来源等各种分类方法。但是众多分类方法都有其局限性,很难将表面活性剂合适定位,并在概念内涵上不发生重叠。 按极性基团的解离性质分类:1、阴离子表面活性剂:硬脂酸,十二烷基苯磺酸钠;2、阳离子表面活性剂:季铵化物; 3、两性离子表面活性剂:卵磷脂,氨基酸型,甜菜碱型;4、非离子表面活性剂:脂肪酸甘油酯,脂肪酸山梨坦(司盘),聚山梨酯(吐温) 三、阴离子表面活性剂 1、肥皂类 系高级脂肪酸的盐,通式: (RCOOˉ)n M。脂肪酸烃R一般为11~17个碳的长链,常见有硬脂酸、油酸、月桂酸。根据M代表的物质不同,又可分为碱金属皂、碱土金属皂和有机胺皂。它们均有良好的乳化性能和分散油的能力。但易被破坏,碱金属皂还可被钙、镁盐破坏,电解质亦可使之盐析。 碱金属皂:O/W;碱土金属皂:W/O;有机胺皂:三乙醇胺皂 2、硫酸化物 RO-SO3-M

相关文档
最新文档