塑料橡胶常规力学性能测试实验

塑料橡胶常规力学性能测试实验
塑料橡胶常规力学性能测试实验

第二章塑料橡胶常规力学性能测试实验材料在外力作用下所表现的力学行为称为材料的力学性能。材料力学实验的目的在于通过测定材料的强度和刚度等基本性能,得到生产质量的控制和质量验收的依据,同时实验结果还可作为材料应用中使用性能指标和工程设计的基本数据。高分子材料的使用总是要求具有必要的力学性能,而且对大部分应用来说,力学性能比其它物理性能显得更为重要。

高分子材料具有所有已知材料中可变范围最宽的力学性能,这种性能上的多样性为高分子材料在不同领域的应用提供了广泛的选择余地。然而,与其它材料相比,高分子材料结构的多分散性、粘弹行为以及松弛特性,使得高聚物对机械应力的反映性相差较大。实验表明影响高分子材料力学性能测试结果的因素很多,内在因素有:材料本身化学组分,分子量及其分布,结构的规整性,取向及结晶程度,增塑和填充以及内部存在各种缺陷的多少等。外部因素如:测试温度、湿度、外力施加的频率以及试样的形状尺寸和加工质量等。塑料橡胶常规力学性能包括塑料拉伸、压缩、弯曲、冲击、剪切性能,橡胶的拉伸、撕裂性能等,为了使测试结果真实反应性能本质,且测试数据具有较好的重复可比性,要求测试方法的技术条件和操作步骤统一化、标准化、仪器设备定型化。因此,这些性能的测试都有相应的国家或部颁标准。此外,国家标准还对塑料橡胶力学性能测试的方法制定了总则,提出了塑料橡胶力学性能实验中对试样、测试环境的要求。其内容如下:

1、试样制备

⑴薄膜试样:用锋利的刀片裁切或者用所需形状的冲切刀冲切。

⑵软板、片试样:用锋利的切样刀在衬垫物上冲切。衬垫物的硬度为70~95(邵氏A)。

⑶模塑试样:按有关标准或协议模塑。

⑷硬质板材试样:用机械加工法加工。加工时不应使试样受到过分的冲击、挤压和受热。加工面应光洁。

⑸各向异性的材料应沿纵横方向分别取样。

2、试样外观检查

试样表面应平整、无气泡、裂纹、分层、明显杂质和加工缺陷。

3、实验环境

温度:热塑性塑料为25±2℃;

热固性塑料为25±5℃。

湿度:相对湿度为65±5%

4、试样预处理

将试样放置在第3条规定的环境中,使其表面尽可能暴露在环境里,不同厚度(d)的试样其处理时间如下:

d≤0.25的试样不少于4个小时;

0.25<d<2的试样不少于8小时;

d≥2的试样不少于16小时。

5、材料实验机定期经国家计量部门鉴定。

6、实验的负荷值应选在每级表盘满量程的10%~90%,不得小于实验机最大负荷的4%,指示值误差应在±1%以内。

7、实验若有特殊要求时,可按产品规定进行。

在测试塑料各种力学性能时,应严格遵循上述规定,使各种影响因素所造成的实验误差趋于最小。

实验八塑料拉伸强度实验

(Tensile Strength Test of Plastics)

一、实验目的

1、明确塑料拉伸强度、断裂伸长率及拉伸弹性模量的物理意义。

2、了解不同塑料拉伸实验的条件以及影响塑料拉伸性能的因素。

3、掌握拉伸实验的基本操作,按GB/T 1040-92测定硬质PVC的拉伸强度、

断裂伸长率。

二、实验原理

拉伸实验是最基本、用途最广泛的一种材料力学实验。其基本过程是在拉伸实验机上对试样施加载荷直至断裂,由此来测量试样所能承受的最大载荷及相应的形变。通过拉伸实验可得到材料的拉伸强度、断裂伸长率以及拉伸弹性模量。

拉伸强度(tensile strenth):在实验过程中,试样的有效部分原始横截面单位面积所承受最大负荷。

断裂伸长率(elongation at break):由拉伸负荷使试样有效部分标线间距离的增量与原始标距之比的百分率。

应力-应变曲线(tensile stress-strain curve):以拉伸应力为纵坐标所得到的拉伸特性曲线称为应力-应变曲线。它往往是通过拉力机在一定的拉伸速度下自动记录拉伸负荷-形变曲线,经变换而得。

影响拉伸实验的因素主要有以下几方面:

1、试样材料的组成如化学成分、交联、增塑、结晶、取向及分子量分布等。

2、试样尺寸如宽度、厚度等。通常试样尺寸大,其表面积大,气泡、杂质及局部应力集中等缺陷存在的几率就高,强度相对低。

3、拉伸速度的大小直接影响材料分子的变形过程。拉伸速度大,材料分子来不及变形,则导致材料向脆而硬发展,通常造成拉伸强度、模量提高,断裂伸长率降低。

4、环境温度和湿度提高,一般使材料强度、模量减小,延伸率增大。升高温度和降低拉伸速度在一定程度上是等效的,增加湿度与增塑在一定程度上是等效的,但不同材料对各因素的依赖程度有所不同。

5、试样在加工中易产生内应力,实验前对材料进行预处理可消除局部应力集中,从而对材料拉伸性能测试结果有一定影响。

三、实验条件

表2-1Ⅰ型试样的尺寸

表2-2 Ⅱ型试样的尺寸

Ⅲ型试样见图2-3

表2-4Ⅳ型试样的尺寸

注:①纱布增强的热固性塑料板试样宽度采用50mm;②玻璃纤维增强的热固性塑料板试样宽度采用25mm;③除有争议外对玻璃纤维增强材料可省去加强片。

⑵试样选择及速度

①试样选择见表2-5

表2-5试样选择

②实验速度设有以下九种:

速度A 1mm/min±50%;速度F 50mm/min±10%;

速度B 2mm/min±20%;速度G 100mm/min±10%;

速度C 5mm/min±20%;速度H 200mm/min±10%;

速度D 10mm/min±20%;速度I 500mm/min±10%;

速度E 20mm/min±10%;

⑶试样数量:每组不少于5个。

2、实验环境

⑴温度:25±2℃ ⑵湿度:65±5% 3、实验设备及仪器

⑴ 机械拉力机(LJ -1000) ⑵ 拉力实验夹具一套 ⑶ 调温调湿箱(CS362) ⑷ 千分尺、游标卡尺 ⑸ 实验标准:GH/T1040-92

四、实验内容和步骤

1、检查设备运转情况及速度转换是否正常可靠。

2、根据材料的强度和试样的种类、大小,选择合适的砝码的数量;

3、开启记录仪,调好零点,用标准砝码校正力值读数;

4、测量试样中间平直部分的宽度和厚度,精确至0.01mm ,Ⅱ型试样中间平直部 分的宽度精确至0.05mm 。每个试样测量三点,取算术平均值。

5、测量伸长率时,应在试样平行部分作标线,此标线对测量结果应无影响。

6、 调试实验机的速度为所要求的速度。

7、 将试样夹持在夹具上,使试样纵轴与上、下夹具的中心连线相重合,且松紧 要适宜。

8、 开动实验机进行实验并记录下列数值。

⑴试样断裂时,记录负荷和标距伸长; 试样出现屈服,记录屈服时的负荷;测量模量时,记录负荷和相应形变值。

⑵试样断裂在标距之外,此试样作废,另取试样补做。

9、 实验中用记录仪记录负荷-形变曲线。经变换可得拉伸应力-应变曲线。 10、处理实验结果,写出实验报告并进行相关问题的讨论。

五、实验数据处理

1、拉伸强度、拉伸屈服应力按式2-1计算: bd

p

t =

σ (2-1) 式中:t σ—拉伸强度或拉伸屈服应力,Mpa ;

P —最大负荷或屈服负荷,N ;

b —试样宽度,mm ; d —试样厚度,mm 。

实验结果以每组试样测定的算术平均值表示,取三位有效数字。 2、断裂伸长率按式2-2计算: 0

L L L t -=

ε (2-2) 式中:t ε—断裂伸长率,%;

L —试样断裂时标线间距离,mm ; L 0—试样原始标距,mm .

3、若要求计算标准偏(S ),可按式2-3计算:

1

)(2

--∑=

n x x S (2-3) 式中:x —单个测定值;

x —组测定值的算术平均值; n —测定值的个数。

4、列表记录与计算 ⑴ 拉伸速度,走纸速度; ⑵ 试样编号;

⑶ 试样尺寸包括宽度、厚度、截面积和平行部分原始长度; ⑷ 断裂最大负荷和屈服时的负荷; ⑸ 断裂时试样长度; ⑹ 拉伸强度和屈服强度; ⑺ 断裂伸长率。

六、问题讨论

1、影响拉伸强度的因素有那些?如何影响?

2、由应力—应变曲线如何判断材料的性能?

实验九 塑料悬臂梁冲击强度实验(悬臂梁法)

(Izod Impact Strength Test of plastics)

一、概述

在研究塑料的力学性能时,除采用缓慢加荷的拉伸、弯曲、扭转、剪切等静力实验外,还常常进行动载荷实验,冲击实验就是常用的一种。冲击实验可按物体破坏时受冲击的方式不同分为:弯曲冲击、拉伸冲击、压缩冲击、扭转冲击及抗切冲击等,其中弯曲冲击应用最广。弯曲冲击实验最常用的是摆锤式冲击实验按被冲击试样夹持方式的不同其又分为简支梁法和悬臂梁法,本实验即属悬臂梁法。

冲击强度是度量材料在高速冲击状态下抵抗外力冲击损坏的能力,它可以理解为 试样受冲击破坏时,单位面积或单位标样宽度上消耗的能量。这种抵抗能力是由材料的许多性质决定的,也受到实验方法、试样形状、实验环境等因素的影响,再加上试样本身的不均匀性,应力分布不同,所以测得的结果往往重复性较差,因此资料上记载的数值只能做参考。冲击强度是材料的一个综合性能,又是一个使用性能,在实际应用中有很大意义,是工程材料设计中不可缺少的数据,它表明的是材料的强度和韧性,而不表明破裂时材料所受的应力大小,所以它与静力实验不同。悬臂梁法所得数据也与其它冲击法所得数据之间不存在相互比较的意义。所以真正设计时,最好根据实际情况自行测量。

二、实验目的

掌握用悬臂梁式冲击实验机测定高分子材料的冲击强度的原理、方法以及数据的 计算和处理。

三、实验方法

由已知能量的摆锤一次冲击垂直固定成悬臂梁的试样,测量试样破坏时所吸收的 能量,以试样冲断时缺口处单位宽度上所消耗的能量来衡量材料的冲击韧性。

四、仪器设备及原理

所用实验仪器:XJU —22J 型悬臂梁冲击实验机。

该仪器是按IZOD 冲击方法设计的,符合国标GB1843—80,其测量装置原理是: 当把摆锤从铅锤位置旋转到支锤轴上后,此时仰角为α,具有一定的位能,如任其自由落下,则此位能转化成动能,而将试样冲断。冲断试样后,摆锤即以剩下的能量升到某一高度,升角为β,按能量守恒关系可写出式2-4

22

1

)cos 1()cos 1(mV A A A WL WL +

+++-=-βαβα (2-4)

式中:W —冲击锤的重量,Kgf ; L —冲击摆锤的长度,cm ; α—冲击锤的预扬角,°;

β—冲击锤冲断试样后的升角,°; A — 冲断试样所消耗的能量,Kgf ·cm ;

A α、A β—摆锤在α—β角区段内克服空气阻力和摩擦阻力所消耗的能量,

Kgf ·cm ;

22

1

mV —试样冲断飞出时所具有的动能,Kgf ·cm 。 式中A α、A β可忽略不计或以后作能量损失修正,式中

22

1

mV 对非脆性 材料也可忽略不计或以后作抛掷试样自由端所消耗的能量修正。则有式2-5

)cos (cos αβ-=WL A (2-5)

WL 是冲击摆锤力矩,为冲击常数。α为冲击前摆锤的扬角,为160°也是已知

的,因此要测出冲断试样后的升角β即可根据公式计算出试样冲断时所消耗的能量来,或根据升角把刻度盘读数换算为冲击消耗能,直接读出消耗能,

XJU —22J 型悬臂梁冲击实验机就是根据此原理设计的,刻度盘上有三种能量级

刻度,用5.5J 摆锤,读0—5.5J 刻度,用11J 摆锤,读0—11J 刻度,用22J 摆锤,读0—22J 刻度。

计算试样冲击强度的公式见式2-6

b

A A a x

k -=

(2-6) 式中:α—冲击强度,J/m ;

A K —刻度盘上读出的冲击消耗能,J ; A X —能量损失修正值,J ; b —试样厚度,m 。

能量损失修正值的计算公式见式2—6

000160160ββ

βαβα++=++?

=A A A x (2-6)

式中:A 0—为空击能量损失值,J ;

βO —为空击能量损失角,°;

β—冲断试样后的升角,°。

从刻度盘上读出的冲击消耗能A,减去能量损失修正值A X就是真正冲断试样所消

材厚度超过12.7mm时,需单面加工到12.7mm。缺口均加工在板材的侧面。

⑶模塑成型的试样,厚度d=12.7mm,缺口加工在较窄的侧面上,保证缺口处试样的剩余宽度为10.16±0.05mm。

⑷试样表面应平整、无气泡、裂纹分层、明显杂质和加工损伤等缺陷。

⑸对于各向异性的板材,需从板材的纵横两个方向各取一组试样,每组试样不少于5个。

四、实验步骤

1、制取试样:板材在万能制样机上按试样尺寸要求加工并打缺口,用量具测量各部尺寸。检查外观。符合要求时,记录缺口处试样厚度和宽度,读数精确到0.05毫米。模塑试条若无缺口,也需在万能制样机上开缺口。

2、选择适宜的摆锤:使试样冲断所需要的能量在摆锤总能量的10~80%区间内。

3、检查摆锤铅锤位置:检查被动指针与主动指针靠紧时,指针指示位置应与0o角度重合(用目视)。

4、求空击能量损失值A0:将摆锤置于预扬角位置,释放摆锤后,由被动指针读

出摆锤空击的能量损失值A 0和相应的空击能量损失角β0 。

5、 夹持试样:松开旋转手轮,在右侧摆锤打击缺口的方向上用对中样板将试样 对中并保证垂直,用适宜的力旋转手轮,使试样夹紧。

6、 冲击实验:将摆锤从预扬角位置释放,读出试样冲击能量消耗指示值A K 和升 角值β,并根据β和空击实验所得A 0和β0根据公式求得冲击能量修正值A X 。

五、实验结果及报告

1、试样冲击强度的计算公式见式2-7

)/(m J b

A A x

k -=

α (2-7) 2、求同组试样冲击强度的算术平均值x 。

3、 求试样冲击强度的标准偏差值S ,见式(2-8)

1

)(2

--∑=n x x S i (2-8)

式中:X i —每个试样的冲击强度;

x —全组试样冲击强度的算术平均值;

n —试样个数。 4、 列表记录并计算:

⑴ 试样编号; ⑵ 缺口处厚度、宽度; ⑶ 空击损失能A 0和损失角β0;⑷ 冲击消耗值A k ; ⑸ 冲击后升角β; ⑹ 冲击损失值A x ; ⑺ 冲击强度。

八、问题讨论

⑴ 冲击过程中,哪些因素消耗了实验机摆锤的能量? ⑵ 试样上的缺口起什么作用?

⑶ 试样厚度变化及缺口形成方法不同时,对实验结果有何影响?

实验十简支梁冲击强度实验

(Charpy Impact Strength Test of Plastics)

一、实验目的

1、掌握用简支梁实验机测定塑料冲击强度的原理、方法和数据的处理。

2、掌握简支梁冲击实验机的使用方法。

二、仪器设备及原理

所用实验仪器为:XJJ-50型简支梁冲击实验机,该机设计原理同前。设有能量级刻度,用7.5J摆锤,读0—7.5J,用15J摆锤,读0—15J,用25J摆锤,读0—25J,用50J摆锤,读0—50J。

三、实验方法

本方法按GB/T1043-93进行,使用简支梁冲击实验机,对试样施加冲击弯曲负荷,使试样破裂,以试样单位截面积所消耗的功来衡量塑料材料的冲击韧性。

1、试样

简支梁冲击实验的试样可用模具经压塑或注塑成型;也可用压塑或注塑成型的板材经机械加工制得,试样为矩形截面的长条形,分有缺口和无缺口两种试样,其中包括3中不同的缺口类型和4中不同的尺寸类型。其具体规定见表2-6、表2-7和图2-6、图2-7和图2-8。标准试样尺寸:

表2-6 不同试样类型的尺寸mm

mm

表2-7缺口类型与尺寸

品标准没有规定,一般不用带模塑缺口的试样,因为模塑缺口试样和经机械加工的试样所得试样结果不能相比。由于A型缺口对多数材料所得数据的分散性小和重复性好,因此把A型缺口作为首选缺口,并把1型试样作为首选试样,此外实验方法还规定厚度小于3mm的试样不作冲击实验。

2、实验条件

⑴设备条件:冲击速度:3.8m/s ,摆锤预扬角:160°,摆锤中心到试样中心的距离:380mm ,钳口圆角半径:1mm ,冲击刀刃夹:30°,冲击刀刃圆角半径:2mm 。

⑵环境条件:热塑性塑料测试温度25±2℃,热固性塑料为25±5℃。相对湿度为65±5%。

四、实验操作步骤

1、测量试样尺寸:用卡尺测量试样中部(或缺口处)宽度b和厚度d,准确至0.05mm ,测三点取平均值。

2、选择能量级:根据试样予估计冲击强度范围选择摆锤,实验消耗的能量在摆锤总能量的10~85%范围内有效。如符合这一能量范围的不只一个摆锤时,应该用最大能量的摆锤。

3、调节能量度盘指针零点,使它在摆锤处于起始位置时与主动针接触,进行空击实验,保证总摩擦损失在0.5%以内。

4、安装试样:将试样宽面垂直紧帖支承面,缺口面或未加工面背向摆锤,用定位块将试样中部(或缺口)位置与摆锤对准。

5、冲击试样:将摆锤抬起并锁住,平稳释放摆锤,由被动指针读出试样冲击能量消耗值A K 。全部试样冲击完毕后,结束实验。

五、结果计算和报告

1、无缺口试样简支梁冲击强度a (KJ/m 2)的计算见式2-9

)/(1023m KJ bd

A

?=

α (2-9) 式中:A —试样吸收的冲击能量,J ;

b —试样宽度,mm ; d —试样厚度,mm 。

2、缺口试样简支梁冲击强度a k (KJ/m 2)的计算见式2-10

)/(1023m KJ d b A a K

K

K ??=

(2-10) 式中:A K —缺口试样吸收的冲击能量,J ;

b —试样宽度,mm ;

d K —缺口试样缺口处剩余厚度,mm 。

3、报告内容:

①材料名称

②试样制备方法、数量

③实验机型号及所用能量级

④实验温度

⑤列表计算:试样尺寸b、d,冲击消耗值A K,冲击强度a及其算术平均值和标准偏差S。

六、问题讨论

1、为什么不同厚度试样的冲击强度值不能相互比较?

2、分析试样断口形态和强度的关系。

最新金属的力学性能测试题及答案

第一章金属的力学性能 一、填空题 1、金属工艺学是研究工程上常用材料性能和___________的一门综合性的技术基础课。 2、金属材料的性能可分为两大类:一类叫_____________,反映材料在使用过程中表现出来的特性, 另一类叫__________,反映材料在加工过程中表现出来的特性。 3、金属在力作用下所显示与弹性和非弹性反应相关或涉及力—应变关系的性能,叫做金属________。 4、金属抵抗永久变形和断裂的能力称为强度,常用的强度判断依据是__________、___________等。 5、断裂前金属发生不可逆永久变形的能力成为塑性,常用的塑性判断依据是________和_________。 6、常用的硬度表示方法有__________、___________和维氏硬度。 二、单项选择题 7、下列不是金属力学性能的是() A、强度 B、硬度 C、韧性 D、压力加工性能 8、根据拉伸实验过程中拉伸实验力和伸长量关系,画出的力——伸长曲线(拉伸图)可以确定出金 属的() A、强度和硬度 B、强度和塑性 C、强度和韧性 D、塑性和韧性 9、试样拉断前所承受的最大标称拉应力为() A、抗压强度 B、屈服强度 C、疲劳强度 D、抗拉强度 10、拉伸实验中,试样所受的力为() A、冲击 B、多次冲击 C、交变载荷 D、静态力 11、属于材料物理性能的是() A、强度 B、硬度 C、热膨胀性 D、耐腐蚀性 12、常用的塑性判断依据是() A、断后伸长率和断面收缩率 B、塑性和韧性 C、断面收缩率和塑性 D、断后伸长率和塑性 13、工程上所用的材料,一般要求其屈强比() A、越大越好 B、越小越好 C、大些,但不可过大 D、小些,但不可过小 14、工程上一般规定,塑性材料的δ为() A、≥1% B、≥5% C、≥10% D、≥15% 15、适于测试硬质合金、表面淬火刚及薄片金属的硬度的测试方法是() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上方法都可以 16、不宜用于成品与表面薄层硬度测试方法() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上方法都不宜 17、用金刚石圆锥体作为压头可以用来测试() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上都可以 18、金属的韧性通常随加载速度提高、温度降低、应力集中程度加剧而() A、变好 B、变差 C、无影响 D、难以判断 19、判断韧性的依据是() A、强度和塑性 B、冲击韧度和塑性 C、冲击韧度和多冲抗力 D、冲击韧度和强度 20、金属疲劳的判断依据是() A、强度 B、塑性 C、抗拉强度 D、疲劳强度 21、材料的冲击韧度越大,其韧性就() A、越好 B、越差 C、无影响 D、难以确定 三、简答题 22、什么叫金属的力学性能?常用的金属力学性能有哪些?

橡胶力学性能测试标准

序号标准号:发布年份标准名称(仅供参考) 1 GB 1683-1981 硫化橡胶恒定形变压缩永久变形的测定方法 2 GB 1686-1985 硫化橡胶伸张时的有效弹性和滞后损失试验方法 3 GB 1689-1982 硫化橡胶耐磨性能的测定(用阿克隆磨耗机) 4 GB 532-1989 硫化橡胶与织物粘合强度的测定 5 GB 5602-1985 硫化橡胶多次压缩试验方法 6 GB 6028-1985 硫化橡胶中聚合物的鉴定裂解气相色谱法 7 GB 7535-1987 硫化橡胶分类分类系统的说明 8 GB/T 11206-1989 硫化橡胶老化表面龟裂试验方法 9 GB/T 11208-1989 硫化橡胶滑动磨耗的测定 10 GB/T 11210-1989 硫化橡胶抗静电和导电制品电阻的测定 11 GB/T 11211-1989 硫化橡胶与金属粘合强度测定方法拉伸法 12 GB/T 1232.1-2000 未硫化橡胶用圆盘剪切粘度计进行测定第1部分:门尼粘度的测定 13 GB/T 12585-2001 硫化橡胶或热塑性橡胶橡胶片材和橡胶涂覆织物挥发性液体透过速率的测定(质量法) 14 GB/T 12829-2006 硫化橡胶或热塑性橡胶小试样(德尔夫特试样)撕裂强度的测定 15 GB/T 12830-1991 硫化橡胶与金属粘合剪切强度测定方法四板法 16 GB/T 12831-1991 硫化橡胶人工气候(氙灯)老化试验方法 17 GB/T 12834-2001 硫化橡胶性能优选等级 18 GB/T 13248-1991 硫化橡胶中锰含量的测定高碘酸钠光度法 19 GB/T 13249-1991 硫化橡胶中橡胶含量的测定管式炉热解法 20 GB/T 13250-1991 硫化橡胶中总硫量的测定过氧化钠熔融法 21 GB/T 13642-1992 硫化橡胶耐臭氧老化试验动态拉伸试验法 22 GB/T 13643-1992 硫化橡胶或热塑性橡胶压缩应力松弛的测定环状试样 23 GB/T 13644-1992 硫化橡胶中镁含量的测定CYDTA滴定法 24 GB/T 13645-1992 硫化橡胶中钙含量的测定EGTA滴定法 25 GB/T 13934-2006 硫化橡胶或热塑性橡胶屈挠龟裂和裂口增长的测定(德墨西亚型) 26 GB/T 13935-1992 硫化橡胶裂口增长的测定 27 GB/T 13936-1992 硫化橡胶与金属粘接拉伸剪切强度测定方法 28 GB/T 13937-1992 分级用硫化橡胶动态性能的测定强迫正弦剪切应变法 29 GB/T 13938-1992 硫化橡胶自然贮存老化试验方法 30 GB/T 13939-1992 硫化橡胶热氧老化试验方法管式仪法 31 GB/T 14834-1993 硫化橡胶与金属粘附性及对金属腐蚀作用的测定 32 GB/T 14835-1993 硫化橡胶在玻璃下耐阳光曝露试验方法 33 GB/T 14836-1993 硫化橡胶灰分的定性分析 34 GB/T 15254-1994 硫化橡胶与金属粘接180°剥离试验 35 GB/T 15255-1994 硫化橡胶人工气候老化(碳弧灯)试验方法 36 GB/T 15256-1994 硫化橡胶低温脆性的测定(多试样法) 37 GB/T 15584-1995 硫化橡胶在屈挠试验中温升和耐疲劳性能的测定第一部分:基本原理 38 GB/T 15905-1995 硫化橡胶湿热老化试验方法 39 GB/T 16585-1996 硫化橡胶人工气候老化(荧光紫外灯)试验方法 40 GB/T 16586-1996 硫化橡胶与钢丝帘线粘合强度的测定 41 GB/T 16589-1996 硫化橡胶分类橡胶材料

材料级《材料力学性能》考试答案AB

贵州大学2007-2008学年第一学期考试试卷 A 缺口效应; 因缺口的存在,改变了缺口根部的应力的分布状态,出现: ① 应力状态变硬(由单向拉应力变为三向拉应力); ② 应力集中的现象称为缺口效应。 解理台阶; 在拉应力作用下,将材料沿某特定的晶体学平面快速分离的穿晶脆性断裂方式称为解理断裂,称该晶体学平面为解理平面;在该解理平面上,常常会出现一些小台阶,叫解理台阶;这些小台阶有汇聚为大的台阶的倾向,表现为河流状花样。 冷脆转变; 当温度T ℃低于某一温度T K 时,金属材料由韧性状态转变为脆性状态,材料的αK 值明显降低的现象。 热疲劳; 因工作温度的周期性变化,在构件内部产生交变热应力循环所导致的疲劳断裂,表现为龟裂。 咬合磨损; 在摩擦面润滑缺乏时,摩擦面间凸起部分因局部受力较大而咬合变形并紧密结合,并产生形变强化作用,其强度、硬度均较高,在随后的相对分离的运动时,因该咬合的部位因结合紧密而不能分开,引起其中某一摩擦面上的被咬合部分与其基体分离,咬合吸附于另一摩擦面上,导致该摩擦面的物质颗粒损失所形成的磨损。 二、计算题(共42分,第1题22分,第2题20分) 1、一直径为10mm ,标距长为50mm 的标准拉伸试样,在拉力P=10kN 时,测 得其标距伸长为50.80mm 。求拉力P=32kN 时,试样受到的条件应力、条件应变及真应力、真应变。(14分) 该试样在拉力达到55.42kN 时,开始发生明显的塑性变形;在拉力达到67.76kN 后试样断裂,测得断后的拉伸试样的标距为57.6mm ,最小处截面直径为8.32mm ;求该材料的屈服极限σs 、断裂极限σb 、延伸率和断面收缩率。(8分) 解: d 0 =10.0mm, L 0 = 50mm, P 1=10kN 时L 1 = 50.80mm ;P 2=32kN 因P 1、P 2均远小于材料的屈服拉力55.42kN ,试样处于弹性变形阶段,据虎克 得 分 评分人

材料力学性能检测实训报告

浙江工贸职业技术学院材料工程系实训室 材料力学性能检测实 训报告 院系:材料工程系 专业:机电一体化 班级:1304班 姓名: XXX 学号: 年月日

一、力学拉伸性能检测实训 试验条件:GB/T228 – 2002国家标准金属拉伸试验试样GB 6397-86 试验数据及结果:如表1所示。 表1 低碳钢拉伸试验表 试验数据及结果:如表1-1所示。 表1-1 低碳钢拉伸试验表 试 样材料 试验前断裂后屈服强 度σs (Mpa) 抗拉强 度σb (Mpa) 延伸率 δ 断面收 缩率ΨL0 (mm) D0 (mm) S0 (mm2) L1 (mm) D1 (mm) S1 (mm2) 铸 铁 99.38 9.93 77.40 100.26 9.94 77.36 210.5 184.5 0.9% 0.1% 低碳钢100.16 9.99 78.34 130.30 5.91 27.41 455.1 190.8 30% 65.9% 试样材料 试验前断裂后屈服强 度σs (Mpa) 抗拉强 度σb (Mpa) 延伸 率δ 断面 收缩 率ΨL0 (mm) D0 (mm) S0 (mm2) L1 (mm) D1 (mm) S1 (mm2) 铝合 金 60.49 12.22 117.22 59.9 12.10 114.93 207.1 179.2 1% 2%

低碳钢拉伸试验图 铸铁拉伸试验图 低碳钢、铸铁拉伸试验对比图

二、硬度性能检测实训 (一)维氏硬度 试验条件:GB/T4340 – 1999 (试验力1.98N 加载时间10S ) 试验数据及结果:如表2所示。 表2 维氏硬度值记录 (注:第一次拉伸试验用的铝合金,为下面固溶时效用) (二)布氏硬度 试验条件:(GB/T 231 – 1984)压头直径为5mm 加载时间为15s 62.5kg 试验力 试验数据及结果:如表2-1所示。 表2-1 压痕直径与布氏硬度值记录 试验 材料 试验 次数 硬度值 HV 硬度范围 HV 铝 合 金 1 142.7 139.5 - 143.4 2 143.4 3 139.5 试验 材料 试验 次数 压痕直径 (mm ) 硬度值 HB 硬度范围 HB 镁 合 金 1 2.70 40. 2 39.2 - 40.2 2 2.72 39.6 3 2.73 39.2 试验 材料 试验 次数 压痕直径 (mm ) 硬度值 HB 硬度范围 HB

塑料橡胶常规力学性能测试实验

第二章塑料橡胶常规力学性能测试实验材料在外力作用下所表现的力学行为称为材料的力学性能。材料力学实验的目的在于通过测定材料的强度和刚度等基本性能,得到生产质量的控制和质量验收的依据,同时实验结果还可作为材料应用中使用性能指标和工程设计的基本数据。高分子材料的使用总是要求具有必要的力学性能,而且对大部分应用来说,力学性能比其它物理性能显得更为重要。 高分子材料具有所有已知材料中可变范围最宽的力学性能,这种性能上的多样性为高分子材料在不同领域的应用提供了广泛的选择余地。然而,与其它材料相比,高分子材料结构的多分散性、粘弹行为以及松弛特性,使得高聚物对机械应力的反映性相差较大。实验表明影响高分子材料力学性能测试结果的因素很多,内在因素有:材料本身化学组分,分子量及其分布,结构的规整性,取向及结晶程度,增塑和填充以及内部存在各种缺陷的多少等。外部因素如:测试温度、湿度、外力施加的频率以及试样的形状尺寸和加工质量等。塑料橡胶常规力学性能包括塑料拉伸、压缩、弯曲、冲击、剪切性能,橡胶的拉伸、撕裂性能等,为了使测试结果真实反应性能本质,且测试数据具有较好的重复可比性,要求测试方法的技术条件和操作步骤统一化、标准化、仪器设备定型化。因此,这些性能的测试都有相应的国家或部颁标准。此外,国家标准还对塑料橡胶力学性能测试的方法制定了总则,提出了塑料橡胶力学性能实验中对试样、测试环境的要求。其内容如下: 1、试样制备 ⑴ 薄膜试样:用锋利的刀片裁切或者用所需形状的冲切刀冲切。 ⑵ 软板、片试样:用锋利的切样刀在衬垫物上冲切。衬垫物的硬度为70~95(邵氏A)。 ⑶ 模塑试样:按有关标准或协议模塑。 ⑷ 硬质板材试样:用机械加工法加工。加工时不应使试样受到过分的冲击、挤压和受热。加工面应光洁。 ⑸ 各向异性的材料应沿纵横方向分别取样。 2、试样外观检查 试样表面应平整、无气泡、裂纹、分层、明显杂质和加工缺陷。 3、实验环境 温度:热塑性塑料为25 ± 2 C; 热固性塑料为25 ± 5 C。 湿度:相对湿度为65± 5%

材料力学性能实验(2个)讲解

《材料力学性能》实验教学指导书 实验总学时:4 实验项目:1.准静态拉伸 2. 不同材料的冲击韧性 材料科学与工程学院实验中心 工程材料及机制基础实验室

实验一 准静态拉伸 一、实验目的 1.观察低碳钢(塑性材料)与铸铁(脆性材料)在准静态拉伸过程中的各种现象(包括屈服、强化和颈缩等现象),并绘制拉伸图。 2.测定低碳钢的屈服极限σs ,强度极限σb ,断后延伸率δ和断面收缩率ψ。 3.测定铸铁的强度极限σb 。 4.比较低碳钢和铸铁的力学性能的特点及断口形貌。 二、概述 静载拉伸试验是最基本的、应用最广的材料力学性能试验。一方面,由静载拉伸试验测定的力学性能指标,可以作为工程设计、评定材料和优选工艺的依据,具有重要的工程实际意义。另一方面,静载拉伸试验可以揭示材料的基本力学行为规律,也是研究材料力学性能的基本试验方法。 静载拉伸试验,通常是在室温和轴向加载条件下进行的,其特点是试验机加载轴线与试样轴线重合,载荷缓慢施加。 在材料试验机上进行静拉伸试验,试样在负荷平稳增加下发生变形直至断裂,可得出一系列的强度指标(屈服强度s σ和抗拉强度b σ)和塑性指标(伸长率δ和断面收缩率ψ)。通过试验机自动绘出试样在拉伸过程中的伸长和负荷之间的关系曲线,即P —Δl 曲线,习惯上称此曲线为试样的拉伸图。图1即为低碳钢的拉伸图。 试样拉伸过程中,开始试样伸长随载荷成比例地增加,保持直线关系。当载荷增加到一定值时,拉伸图上出现平台或锯齿状。这种在载荷不增加或减小的情况下,试样还继续伸长的现象叫屈服,屈服阶段的最小载荷是屈服点载荷s P ,s P 除以试样原始横截面面积Ao 即得到屈服极限s σ: s s A P = σ 试样屈服后,要使其继续发生变形,则要克服不断增长的抗力,这是由于金属材料在塑性变形过程中不断发生的强化。这种随着塑性变形增大,变形抗力不断增加的现象叫做形变强化或加工硬化。由于形变强化的作用,这一阶段的变形主要是均匀塑性变形和弹性变形。当载荷达到最大值b P 后,试样的某一部位截面积开始急剧缩小,出现“缩颈”现象,此后的变形主要集中在缩颈附近,直至达到 P b 试样拉断。P b 除以试样原始横截面面积A 0即得到

钢筋力学性能检测报告

00000000000R 有效期限至:2016-04-05 xxx建设工程质量安全监督站 钢筋力学性能检验报告 工程名称:/ 报告编号:BRZ11500092 (第2页共2页) 委托单位/ 委托编号15000697-2 委托日期2015-04-27 施工单位/ 钢材种类热轧带肋钢筋检测日期2015-04-28 结构部位/ 牌号HRB400 报告日期2015-04-29 见证单位/ 见证人/ 证书编号/ 检验性质委托检验 样品编号 公称 直径 (mm) 技术指标要求 序 号 屈服 强度 Re(MPa) 极限 强度Rm (MPa) 伸长 率 A(%) 最大力 下总伸 长率(%) 冷弯实测强度比值 重量 偏差 (%) 生产 厂别 炉号 出产合 格证编 号 代表 数量 (t) 弯心直 径d (mm) 弯曲 角度 a() 结果Rm/Re Re/Re K 屈服 强度 (MPa) 极限 强度 (MPa) 伸 长 率 (%) 最大力 下总伸 长率(%) 重量 偏差 (%) BZ11500392 18 ≥ 400 ≥ 540 ≥ 16 ≥ 7.5 ± 5 1 475 600 27.0 / 72.0 180 合格 1.26 1.19 -4 三钢/ / 60 2 470 595 27.0 / 72.0 180 合格 1.27 1.18 BZ11500393 20 ≥ 400 ≥ 540 ≥ 16 ≥ 7.5 ± 5 1 470 600 26.5 / 80.0 180 合格 1.29 1.18 -4 三钢/ / 60 2 475 605 26.0 / 80.0 180 合格 1.27 1.19 BZ11500394 16 ≥ 400 ≥ 540 ≥ 16 ≥ 7.5 ± 5 1 460 595 27.0 / 64.0 180 合格 1.29 1.15 -4 三钢/ / 60 2 465 590 27.5 / 64.0 180 合格 1.27 1.16 检验依据GB1499.2-2007《钢筋混凝土用热轧带肋钢筋》GB/T228.1-2010《金属材料室温拉伸试验方法》 主要仪 器设备仪器名称:油压万能材料试验机管理编号:YQ-03 规格型号: WI-100 有效期至:2016-01-14 结论样品编号:BZ11500392 样品编号:BZ11500393 样品编号:BZ11500394 试样依据标准所检验项目符合指标要求 试样依据标准所检验项目符合指标要求 试样依据标准所检验项目符合指标要求备注 声明1、报告未盖检测单位“检测报告专用章”无效。 2、复制报告未重新加盖检测单位“检测报告专用章”无效。 3、对报告若有异议,应及时向检测单位提出。 地址 地址:xxxxxxxxxxxxxxxxx(xxx建设工程质量安全监督 站) 邮编:000000 电话:0000-00000000 传真:0000-00000000 批准:审核:校核:检验:

氧化铝陶瓷材料力学性能的检测

实验二 氧化铝陶瓷材料力学性能的检测 为了有效而合理的利用材料,必须对材料的性能充分的了解。材料的性能包括物理性能、化学性能、机械性能和工艺性能等方面。物理性能包括密度、熔点、导热性、导电性、光学性能、磁性等。化学性能包括耐氧化性、耐磨蚀性、化学稳定性等。工艺性能指材料的加工性能,如成型性能、烧结性能、焊接性能、切削性能等。机械性能亦称为力学性能,主要包括强度、弹性模量、塑性、韧性和硬度等。而陶瓷材料通常来说在弹性变形后立即发生脆性断裂,不出现塑性变形或很难发生塑性变形,因此对陶瓷材料而言,人们对其力学性能的分析主要集中在弯曲强度、断裂韧性和硬度上,本文在此基础上对其力学性能检测方法做了简单介绍。 1.弯曲强度 弯曲实验一般分三点弯曲和四点弯曲两种,如图1-1所示。四点弯曲的试样中部受到的是纯弯曲,弯曲应力计算公式就是在这种条件下建立起来的,因此四点弯曲得到的结果比较精确。而三点弯曲时梁各个部位受到的横力弯曲,所以计算的结果是近似的。但是这种近似满足大多数工程要求,并且三点弯曲的夹具简单,测试方便,因而也得到广泛应用。 图1-1 三点弯曲和四点弯曲示意图 由材料力学得到,在纯弯曲且弹性变形范围内,如果指定截面的弯矩为M ,该截面对 中性轴的惯性矩为I z ,那么距中性轴距离为y 点的应力大小为: z I My =σ 在图1-1的四点弯曲中,最大应力出现在两加载点之间的截面上离中性轴最远的点,其大小为: =???? ???=z I y a P max max 21σ?????圆形截面 16矩形截面 332D Pa bh Pa π 其中P 为载荷的大小,a 为两个加载点中的任何一个距支点的距离,b 和h 分别为矩形截面试样的宽度和高度,而D 为圆形截面试样的直径。因此当材料断裂时所施加载荷所对应的应力就材料的抗弯强度。 而对于三点弯曲,最大应力出现在梁的中间,也就是与加载点重合的截面上离中性轴最远的点,其大小为:

材料力学性能拉伸试验报告

材料力学性能拉伸试验报告 材化08 李文迪 40860044

[试验目的] 1. 测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能。 2. 测定低碳钢的应变硬化指数和应变硬化系数。 [试验材料] 通过室温拉伸试验完成上述性能测试工作,测试过程执行GB/T228-2002:金属材料室温拉伸试验方法: 1.1试验材料:退火低碳钢,正火低碳钢,淬火低碳钢的R4标准试样各一个。 1.2热处理状态及组织性能特点简述: 1.2.1退火低碳钢:将钢加热到Ac3或Ac1以上30-50℃,保温一段时间后,缓慢而均匀 的冷却称为退火。 特点:退火可以降低硬度,使材料便于切削加工,并使钢的晶粒细化,消除应力。1.2.2正火低碳钢:将钢加热到Ac3或Accm以上30-50℃,保温后在空气中冷却称为正 火。 特点:许多碳素钢和合金钢正火后,各项机械性能均较好,可以细化晶粒。 1.2.3淬火低碳钢:对于亚共析钢,即低碳钢和中碳钢加热到Ac3以上30-50℃,在此 温度下保持一段时间,使钢的组织全部变成奥氏体,然后快速冷却(水冷或油冷),使奥氏体来不及分解而形成马氏体组织,称为淬火。 特点:硬度大,适合对硬度有特殊要求的部件。 1.3试样规格尺寸:采用R4试样。 参数如下:

1.4公差要求 [试验原理] 1.原理简介:材料的机械性能指标是由拉伸破坏试验来确定的,由试验可知弹性阶段 卸荷后,试样变形立即消失,这种变形是弹性变形。当负荷增加到一定值时,测力度盘的指针停止转动或来回摆动,拉伸图上出现了锯齿平台,即荷载不增加的情况下,试样继续伸长,材料处在屈服阶段。此时可记录下屈服强度R 。当屈服到一定 eL 程度后,材料又重新具有了抵抗变形的能力,材料处在强化阶段。此阶段:强化后的材料就产生了残余应变,卸载后再重新加载,具有和原材料不同的性质,材料的强度提高了。但是断裂后的残余变形比原来降低了。这种常温下经塑性变形后,材料强度提高,塑性降低的现象称为冷作硬化。当荷载达到最大值Rm后,试样的某一部位截面开始急剧缩小致使载荷下降,至到断裂。 [试验设备与仪器] 1.1试验中需要测得: (1)连续测量加载过程中的载荷R和试样上某段的伸长量(Lu-Lo)数据。(有万能材料试验机给出应力-应变曲线) (2)两个个直接测量量:试样标距的长度 L o;直径 d。 1.2试样标距长度与直径精度:由于两者为直接测量量,工具为游标卡尺,最高精度为 0.02mm。 1.3检测工具:万能材料试验机 WDW-200D。载荷传感器,0.5级。引伸计,0.5级。 注1:应力值并非试验机直接给出,由载荷传感器直接测量施加的载荷值,进而转化成工程应力,0.5级,即精确至载荷传感器满量程的1/500。 注2:连续测试试样上某段的伸长量由引伸计完成,0.5级,即至引伸计满量程的1/50。

材料力学性能实验报告

大连理工大学实验报告 学院(系):材料科学与工程学院专业:材料成型及控制工程班级:材0701姓名:学号:组:___ 指导教师签字:成绩: 实验一金属拉伸实验 Metal Tensile Test 一、实验目的Experiment Objective 1、掌握金属拉伸性能指标屈服点σS,抗拉强度σb,延伸率δ和断面收缩率 φ的测定方法。 2、掌握金属材料屈服强度σ0.2的测定方法。 3、了解碳钢拉伸曲线的含碳量与其强度、塑性间的关系。 4、简单了解万能实验拉伸机的构造及使用方法。 二、实验概述Experiment Summary 金属拉伸实验是检验金属材料力学性能普遍采用的极为重要的方法之一,是用来检测金属材料的强度和塑性指标的。此种方法就是将具有一定尺寸和形状的金属光滑试样夹持在拉力实验机上,温度、应力状态和加载速率确定的条件下,对试样逐渐施加拉伸载荷,直至把试样拉断为止。通过拉伸实验可以解释金属材料在静载荷作用下常见的三种失效形式,即过量弹性变形,塑性变形和断裂。在实验过程中,试样发生屈服和条件屈服时,以及试样所能承受的最大载荷除以试样的原始横截面积,求的该材料的屈服点σS,屈服强度σ0.2和强度极限σb。用试样断后的标距增长量及断处横截面积的缩减量,分别除以试样的原始标距长度,及试样的原始横截面积,求得该材料的延伸率δ和断面收缩率φ。 三、实验用设备The Equipment of Experiment 拉力实验的主要设备为拉力实验机和测量试样尺寸用的游标卡尺,拉力

实验机主要有机械式和液压式两种,该实验所用设备原东德WPM—30T液压式万能材料实验机。液压式万能实验机是最常用的一种实验机。它不仅能作拉伸试验,而且可进行压缩、剪切及弯曲实验。 (一)加载部分The Part of Applied load 这是对试样施加载荷的机构,它利用一定的动力和传动装置迫使试样产生变形,使试样受到力或能量的作用。其加载方式是液压式的。在机座上装有两根立柱,其上端有大横梁和工作油缸。油缸中的工作活塞支持着小横梁。小横梁和拉杆、工作台组成工作框架,随工作活塞生降。工作台上方装有承压板和弯曲支架,其下方为钳口座,内装夹持拉伸试样用的上夹头。下夹头安装在下钳口座中,下钳口座固定在升降丝杆上。 当电动机带动油泵工作时,通过送油阀手轮打开送油阀,油液便从油箱经油管和进入工作油缸,从而推动活塞连同工作框架一起上升。于是在工作台与大横梁之间就可进行压缩、弯曲等实验,在工作台与下夹头之间就进行拉伸实验。实验完毕后,关闭送油阀、旋转手轮打开回油阀,则工作油缸中的油液便经油管泄回油箱,工作台下降到原始位置。 (二)测力部分The Part of Measuring Force 加载时,油缸中的油液推动工作活塞的力与试样所承受的力随时处于平衡状态。如果用油管和将工作油缸和测力油缸连同,此油压便推动测力活塞,通过连杆框架使摆锤绕支点转动而抬起。同时,摆锤上方的推板便推动水平齿杆,使齿轮带动指针旋转。指针旋转的角度与油压亦即与试样所承受的载荷成正比,因此在测力度盘上便可读出试样受力的量值。 四、试样Sample 拉伸试样,通常加工成圆型或矩形截面试样,其平行长度L0等于5d或10d (前者为长试样,后者为短试样),本实验用短试样,即L0=5d。本实验所用的试样形状尺寸如图1—1所示。 图1-1圆柱形拉伸试样及尺寸

橡胶件的技术规范

橡胶件的技术规范 1 范围本标准规定了本公司各类产品中使用的橡胶件的技术要求、试验方法、检验规则、包装及贮存。本标准适用于橡胶件成品件的进货检验、型式检验、包装、贮存管理。 2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 533 硫化橡胶密度的测定 GB/T 1690 硫化橡胶耐液体试验方法 GB/T 3452.2 液压气动用O 型橡胶密封圈外观质量检验标准 GB/T3452.1 液压气动用O 型橡胶密封圈第1 部分:尺寸系列及公差 GB/T 3512 硫化橡胶或热塑性橡胶热空气加速老化和耐热试验 GB/T 5723 硫化橡胶或热塑性橡胶试验用试样和制品尺寸的测量 GB/T 20739 橡胶制品贮存指南 GB/T 5721 橡胶密封制品标志、包装、运输、贮存的一般规定 GB/T 528 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定 BS EN549 燃气器具、设备密封件和膜片用橡胶材料规范 NSF 61 饮用水系统部件健康影响 BS EN331 建筑物燃气供应设备用手动球阀和密封底部锥体旋塞阀ASME B16.33 压力在125PSI 以下燃气系统用手动金属制燃气阀门ASME B16.44 家用管道系统中使用的手工操作的金属气体阀门 CJ 50 瓶装液化石油气调压器 CJ/T 180 家用手动燃气阀门 HG/T 2807 城镇燃气调压器用橡胶膜片 Q/NZFJ30 液化石油气瓶阀 3 技术要求 3.1 通用技术要求 3.1.1 气味:无刺鼻气味; 3.1.2 外观:表面无气泡、无杂质、无飞边、无缺胶、无脱层、色泽一致、无局部缺陷; 3.1.3 尺寸:符合图纸要求;3.1.4 应采用耐工作介质的材料且材料应采用正料。

橡胶力学性能测试标准

序号标准号 :发布年份标准名称(仅供参考) 1 GB 1683-1981 硫化橡胶恒定形变压缩永久变形的测定方法 2 GB 1686-1985 硫化橡胶伸张时的有效弹性和滞后损失试验方法 3 GB 1689-1982 硫化橡胶耐磨性能的测定(用阿克隆磨耗机) 4 GB 532-1989 硫化橡胶与织物粘合强度的测定 5 GB 5602-1985 硫化橡胶多次压缩试验方法 6 GB 6028-1985 硫化橡胶中聚合物的鉴定裂解气相色谱法 7 GB 7535-1987 硫化橡胶分类分类系统的说明 8 GB/T 11206-1989 硫化橡胶老化表面龟裂试验方法 9 GB/T 11208-1989 硫化橡胶滑动磨耗的测定 10 GB/T 11210-1989 硫化橡胶抗静电和导电制品电阻的测定 11 GB/T 11211-1989 硫化橡胶与金属粘合强度测定方法拉伸法 12 GB/T 未硫化橡胶用圆盘剪切粘度计进行测定第1部分:门尼粘度的测定 13 GB/T 12585-2001 硫化橡胶或热塑性橡胶橡胶片材和橡胶涂覆织物挥发性液体透过速率的测定(质量法) 14 GB/T 12829-2006 硫化橡胶或热塑性橡胶小试样(德尔夫特试样)撕裂强度的测定 15 GB/T 12830-1991 硫化橡胶与金属粘合剪切强度测定方法四板法 16 GB/T 12831-1991 硫化橡胶人工气候(氙灯)老化试验方法 17 GB/T 12834-2001 硫化橡胶性能优选等级 18 GB/T 13248-1991 硫化橡胶中锰含量的测定高碘酸钠光度法 19 GB/T 13249-1991 硫化橡胶中橡胶含量的测定管式炉热解法 20 GB/T 13250-1991 硫化橡胶中总硫量的测定过氧化钠熔融法 21 GB/T 13642-1992 硫化橡胶耐臭氧老化试验动态拉伸试验法 22 GB/T 13643-1992 硫化橡胶或热塑性橡胶压缩应力松弛的测定环状试样 23 GB/T 13644-1992 硫化橡胶中镁含量的测定 CYDTA滴定法 24 GB/T 13645-1992 硫化橡胶中钙含量的测定EGTA滴定法 25 GB/T 13934-2006 硫化橡胶或热塑性橡胶屈挠龟裂和裂口增长的测定(德墨西亚型)

金属材料的力学性能及其测试方法

目录 摘要1 1引言2 2金属材料的力学性能简介2 2.1 强度3 2.2 塑性3 2.3 硬度3 2.4 冲击韧性4 2.5 疲劳强度4 3金属材料力学性能测试方法4 3.1拉伸试验5 3.2压缩试验8 3.3扭转试验11 3.4硬度试验15 3.5冲击韧度试验22 3.6疲劳试验27 4常用的仪器设备简介29 4.1万能试验机29 4.2扭转试验机34 4.3摆锤式冲击试验机40 5金属材料力学性能测试方法的发展趋势42 参考文献42

金属材料的力学性能及其测试方法 摘要:金属的力学性能反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力,它与材料的失效形式息息相关。本文主要解释了金属材料各项力学性能的概念,介绍了几个常见的测试金属材料力学性能的试验以及相关的仪器设备,最后阐述了金属材料力学性能测试方法的发展趋势。 关键词:金属材料,力学性能,测试方法,仪器设备,发展趋势 Test Methods for The Mechanical Properties of Metal Material Abstract:The mechanical properties of metal material which reflect some abilities of deformation and fracture resistance under various external forces are closely linked with failure forms. This paper mainly introduces some concepts of mechanical properties of metal material, mon experiments testing mechanical properties of metal material and apparatuses used. The trend of development of test methods for mechanical properties of metal material is also discussed. Keywords:metal material,mechanical properties,test methods,apparatuses,development trend

材料力学性能测试实验报告

材料力学性能测试实验 报告 标准化管理部编码-[99968T-6889628-J68568-1689N]

材料基本力学性能试验—拉伸和弯曲一、实验原理 拉伸实验原理 拉伸试验是夹持均匀横截面样品两端,用拉伸力将试样沿轴向拉伸,一般拉 至断裂为止,通过记录的力——位移曲线测定材料的基本拉伸力学性能。 对于均匀横截面样品的拉伸过程,如图 1 所示, 图 1 金属试样拉伸示意图 则样品中的应力为 其中A 为样品横截面的面积。应变定义为 其中△l 是试样拉伸变形的长度。 典型的金属拉伸实验曲线见图 2 所示。 图3 金属拉伸的四个阶段 典型的金属拉伸曲线分为四个阶段,分别如图 3(a)-(d)所示。直线部分的斜率E 就是杨氏模量、σs 点是屈服点。金属拉伸达到屈服点后,开始出现颈缩 现象,接着产生强化后最终断裂。 弯曲实验原理 可采用三点弯曲或四点弯曲方式对试样施加弯曲力,一般直至断裂,通过实 验结果测定材料弯曲力学性能。为方便分析,样品的横截面一般为圆形或矩形。 三点弯曲的示意图如图 4 所示。 图4 三点弯曲试验示意图 据材料力学,弹性范围内三点弯曲情况下C 点的总挠度和力F 之间的关系是 其中I 为试样截面的惯性矩,E 为杨氏模量。 弯曲弹性模量的测定 将一定形状和尺寸的试样放置于弯曲装置上,施加横向力对样品进行弯曲, 对于矩形截面的试样,具体符号及弯曲示意如图 5 所示。 对试样施加相当于σpb0.01。 (或σrb0.01)的10%以下的预弯应力F。并记录此力和跨中点处的挠度,然后对试样连续施加弯曲力,直至相应于σpb0.01(或σrb0.01)的50%。记录弯曲力的增量DF 和相应挠度的增量Df ,则弯曲弹性模量为 对于矩形横截面试样,横截面的惯性矩I 为 其中b、h 分别是试样横截面的宽度和高度。 也可用自动方法连续记录弯曲力——挠度曲线至超过相应的σpb0.01(或σrb0.01)的弯曲力。宜使曲线弹性直线段与力轴的夹角不小于40o,弹性直线段的高度应超过力轴量程的3/5。在曲线图上确定最佳弹性直线段,读取该直线段的弯曲力增量和相应的挠度增量,见图 6 所示。然后利用式(4)计算弯曲弹性模量。 二、试样要求

塑料橡胶常规力学性能测试

第二章塑料橡胶常规力学性能测试实验 材料在外力作用下所表现的力学行为称为材料的力学性能。材料力学实验的目的在于通过测定材料的强度和刚度等基本性能,得到生产质量的控制和质量验收的依据,同时实验结果还可作为材料应用中使用性能指标和工程设计的基本数据。高分子材料的使用总是要求具有必要的力学性能,而且对大部分应用来说,力学性能比其它物理性能显得更为重要。 高分子材料具有所有已知材料中可变范围最宽的力学性能,这种性能上的多样性为高分子材料在不同领域的应用提供了广泛的选择余地。然而,与其它材料相比,高分子材料结构的多分散性、粘弹行为以及松弛特性,使得高聚物对机械应力的反映性相差较大。实验表明影响高分子材料力学性能测试结果的因素很多,内在因素有:材料本身化学组分,分子量及其分布,结构的规整性,取向及结晶程度,增塑和填充以及内部存在各种缺陷的多少等。外部因素如:测试温度、湿度、外力施加的频率以及试样的形状尺寸和加工质量等。塑料橡胶常规力学性能包括塑料拉伸、压缩、弯曲、冲击、剪切性能,橡胶的拉伸、撕裂性能等,为了使测试结果真实反应性能本质,且测试数据具有较好的重复可比性,要求测试方法的技术条件和操作步骤统一化、标准化、仪器设备定型化。因此,这些性能的测试都有相应的国家或部颁标准。此外,国家标准还对塑料橡胶力学性能测试的方法制定了总则,提出了塑料橡胶力学性能实验中对试样、测试环境的要求。其内容如下: 1、试样制备 ⑴ 薄膜试样:用锋利的刀片裁切或者用所需形状的冲切刀冲切。 ⑵ 软板、片试样:用锋利的切样刀在衬垫物上冲切。衬垫物的硬度为70~95(邵 氏A)。 ⑶ 模塑试样:按有关标准或协议模塑。 ⑷ 硬质板材试样:用机械加工法加工。加工时不应使试样受到过分的冲击、挤压和受热。加工面应光洁。 ⑸ 各向异性的材料应沿纵横方向分别取样。 2、试样外观检查 试样表面应平整、无气泡、裂纹、分层、明显杂质和加工缺陷。 3、实验环境 温度:热塑性塑料为25± 2℃; 热固性塑料为25± 5℃。 32

常用橡胶性能一览表

常用橡胶性能一览表

由于具有优异的耐老化性能耐冲击性也较好,所以常用做胎侧。 EPDM三元乙丙胶三元乙丙橡胶是一种在乙烯和丙烯共聚物中引入了第三单体的高分子聚合物,产品性能及优点:超高分子量,高乙烯含量,可高度填充填充剂和油,易碎的性能缩短了混炼的时间. 分子结构和特性 三元乙丙是乙烯、丙烯和非共轭二烯烃的三元共聚物。二烯烃具有特殊的结构,只有两键之一的才能共聚,不饱和的双键主要是作为交链处。另一个不饱和的不会成为聚合物主链,只会成为边侧链。三元乙丙的主要聚合物链是完全饱和的。这个特性使得三元乙丙可以抵抗热,光,氧气,尤其是臭氧。三元乙丙本质上是无极性的,对极性溶液和化学物具有抗性,吸水率低,具有良好的绝缘特性。

在三元乙丙生产过程中,通过改变三单体的数量,乙烯丙烯比,分子量及其分布以及硫化的方法可以调整其特性。 热塑性弹性体 (TPE) 高刚性耐高温且保有低温的弯曲性,优异的耐化学品性,应用于管材、静音齿轮、电线被覆、发卷、自动收缩管线. TPE热塑性弹性体特性: 1、材料有半透、高透明、白色、黑色供选择。 2、已通过ROHS、PAHs、FDA测试,等级测试。 3、材料环保无卤无毒无味,不含塑胶软化剂、磷苯二甲酸盐、重金属等化合物。 4、良好的减震性和防滑耐磨。 5、良好的抗紫外线及耐化学药品性。 6、广阔的硬度范围选择(邵氏0度-110度)。可根据需求任意调整。 7、在—60度至135度的长期使用温度 8、压缩变形及永久变形小 9、卓越的抗动态疲劳性能 10、极优的耐臭氧及耐候性能 11、亮面、雾面均可,光滑的外观和舒适的橡胶柔软质感。 12、材料不含水分,无须干燥可直接使用,节约能源。 13、易于加工,着色。水口料即边角料可百分百回收再利用,降低产品,且不影响产品物性。 14、它可以通过二次注塑成型,与PP、PE、PS、ABS、PC、PA等基体材料包覆粘合,也可单独成形。替代软质PVC部分硅橡胶。 TPE/TPR 之应用领 域运动器材: 手把类(高尔夫球、各种球拍、脚踏车、滑雪器材、滑水器材等), 潜水器材(蛙鞋、蛙镜、呼吸管、手电筒等)、刹车块、运动护垫。日常用品:

橡胶力学性能测试标准

橡胶力学性能测试标准公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

序号标准号 :发布年份标准名称(仅供参考) 1 GB 1683-1981 硫化橡胶恒定形变压缩永久变形的测定方法 2 GB 1686-1985 硫化橡胶伸张时的有效弹性和滞后损失试验方法 3 GB 1689-1982 硫化橡胶耐磨性能的测定(用阿克隆磨耗机) 4 GB 532-1989 硫化橡胶与织物粘合强度的测定 5 GB 5602-1985 硫化橡胶多次压缩试验方法 6 GB 6028-1985 硫化橡胶中聚合物的鉴定裂解气相色谱法 7 GB 7535-1987 硫化橡胶分类分类系统的说明 8 GB/T 11206-1989 硫化橡胶老化表面龟裂试验方法 9 GB/T 11208-1989 硫化橡胶滑动磨耗的测定 10 GB/T 11210-1989 硫化橡胶抗静电和导电制品电阻的测定 11 GB/T 11211-1989 硫化橡胶与金属粘合强度测定方法拉伸法 12 GB/T 未硫化橡胶用圆盘剪切粘度计进行测定第1部分:门尼粘度的测定 13 GB/T 12585-2001 硫化橡胶或热塑性橡胶橡胶片材和橡胶涂覆织物挥发性液体透过速率的测定(质量法) 14 GB/T 12829-2006 硫化橡胶或热塑性橡胶小试样(德尔夫特试样)撕裂强度的测定 15 GB/T 12830-1991 硫化橡胶与金属粘合剪切强度测定方法四板法 16 GB/T 12831-1991 硫化橡胶人工气候(氙灯)老化试验方法 17 GB/T 12834-2001 硫化橡胶性能优选等级 18 GB/T 13248-1991 硫化橡胶中锰含量的测定高碘酸钠光度法 19 GB/T 13249-1991 硫化橡胶中橡胶含量的测定管式炉热解法 20 GB/T 13250-1991 硫化橡胶中总硫量的测定过氧化钠熔融法 21 GB/T 13642-1992 硫化橡胶耐臭氧老化试验动态拉伸试验法 22 GB/T 13643-1992 硫化橡胶或热塑性橡胶压缩应力松弛的测定环状试样 23 GB/T 13644-1992 硫化橡胶中镁含量的测定 CYDTA滴定法 24 GB/T 13645-1992 硫化橡胶中钙含量的测定EGTA滴定法 25 GB/T 13934-2006 硫化橡胶或热塑性橡胶屈挠龟裂和裂口增长的测定(德墨西亚型) 26 GB/T 13935-1992 硫化橡胶裂口增长的测定 27 GB/T 13936-1992 硫化橡胶与金属粘接拉伸剪切强度测定方法 28 GB/T 13937-1992 分级用硫化橡胶动态性能的测定强迫正弦剪切应变法 29 GB/T 13938-1992 硫化橡胶自然贮存老化试验方法

胶力学性能与测试

胶力学性能与测试|橡胶力学与测试|橡胶力学与测试 一、生胶性能 未经加工的原料橡胶俗称生胶,其实生胶也并非100%纯净的,如天然胶中含有的非橡胶烃(约5%)包括树脂酸蛋白质等物质,在SR中同样添加了防老剂及未耗尽的合成助剂,如:分子量控制剂,终止剂及分散剂等。不过大体上讲,生胶与胶料相比更能代表橡胶固有的特性,包括如下: 1、分子量。指橡胶大分子的分子量的平均值,应该把橡胶看成不同分子量聚合物的体系,既有高分子量级份,也混杂一些低分子量级份,这是不可避免的,所以只能以平均分子量的概念来描述。根据不同测试方法又分粘均分子量、散均分子量及重均分子量。比较常用的是粘均分子量,因为比较容易测,采用不同粘度来表征不同分子量,更为直观(分子量越大,粘度越高)。 分子量与生胶性能之间有着直接和密切的关系,一般而言分子量越大,则生胶的强度越高,力学性能越好,但是随着分子量的增大,加工时的流动性变差。 2、分子量分布。橡胶实际上是不同比例的大小分子量不同的分子链的混合物,如果把不同的分子量按出现的频率来排列,则可得到分子量分布曲线。 NR的分子量分布特点: 中等分子量占统治地位,高分子量及低分子量级各占少数,其中高的部分有利于力学性而低的部分则有利于加工,因此兼顾了性能和加工。 SR的分子量分布特点: 分子量分布很窄,局限在很小的范围,因为缺少低分子量部分所以加工性不及NR,但性能均匀性好。原因是合成橡胶的分子量由人为地加以控制,所以模式单纯,难以做到大、中、小兼顾。 3、凝胶含量。一般只发生在SR。当聚合过程中,因结构控制不同,形成太多的支链结构,结果这一部分就出现凝胶,用溶剂无法溶解故称凝胶。炼胶时助剂难以进入,影响性能。 4、侧挂基团。橡胶单体上的不同基团给橡胶带来不同的特性。如:-COOH (羧基):能赋予良好的粘性;-CL:具有极性及电负性;苯基:体积庞大可以阻拦射线,故具抗射线性良好。 5、极性。与基团有密切相关,凡是带有腈基(-CN)羟基(-OH)和羧基(-COOH)等基团的橡胶都有较强的极性,称为极性橡胶。他们与金属有良好的结合性,另外极性接近的橡胶,彼此容易掺和。 二、硫化胶性能 如果说生胶和未硫化胶的性能主要为加工生产服务,那么硫化胶性能主要为客户和实际应用服务。硫化胶性能可以概括分为俩大类即力学性能及抗环境性能,前者都是衡量橡胶在受力情况下的性能,主要有拉伸强度、定伸强度、扯断伸长率、拉伸永久变形(均在拉力机上进行)、硬度、回弹性、压缩永久变形、抗撕裂强度、粘和强度等。后者是测量橡胶在外界环境下的性能变化,包括热老化性能、抗臭氧性能、阻燃性能、抗霉性能等。 先将常用的硫化胶测定项目简述如下– 1、拉伸强度。用拉动机对橡胶试片进行拉伸,测定断裂时的强度以Mpa表示,是衡量橡胶力学性能的最主要最基本项目,其值越大,表明强度越大,一般在10~30Mpa。 2、定伸强度。试样拉伸到一定长度时,单位面积所需的力。可以反映橡胶的交联程度。其值越高,表明橡胶越坚韧,单位MPa 3、扯断伸长率。试样拉断时,伸长部分与原长的百分比,用以表示橡胶在伸长时的应变能力的极限,以%表示。

相关文档
最新文档